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Abstract Purpose To constrain the risk of severe toxicity in radiotherapy and
radiosurgery, precise volume delineation of organs at risk (OARs) is required.
This task is still manually performed, which is time-consuming and prone
to observer variability. To address these issues, and as alternative to atlas-
based segmentation methods, machine learning techniques, such as support
vector machines (SVM), have been recently presented to segment subcortical
structures on magnetic resonance images (MRI).
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1 INTRODUCTION

Methods SVM is proposed to segment the brainstem on MRI in multicenter
brain cancer context. A dataset composed by 14 adult brain MRT scans is used
to evaluate its performance. Additionally to spatial and probabilistic informa-
tion, 5 different Image Intensity Values (ITVs) configurations are evaluated as
features to train the SVM classifier. Segmentation accuracy is evaluated by
computing the Dice Similarity Coefficient (DSC), Absolute Volumes Differ-
ence (AVD) and percentage Volume Difference (pVD) between automatic and
manual contours.

Results Mean DSC for all proposed IIVs configurations ranged from 0.89 to
0.90. Mean AVD values were below 1.5 cm®, where the value for best perform-
ing ITVs configuration was 0.85 cm3, representing an absolute mean difference
of 3.99 % with respect to the manual segmented volumes.

Conclusion Results suggest consistent volume estimation and high spatial
similarity with respect to expert delineations. The proposed approach out-
performed presented methods to segment the brainstem, not only in volume
similarity metrics, but also in segmentation time. Preliminary results showed
that the approach might be promising for adoption in clinical use.

Keywords Support Vector Machines - Machine learning - Supervised
learning - MRI segmentation - Radiotherapy - Brain cancer

1 Introduction

Brain tumours kill more children and adults under the age of 40 than any
other cancer and five-year survival remains still low [1]. Among available tech-
niques to treat brain tumors, radiotherapy and radio surgery have become of-
ten the selected treatment, especially when others techniques such as surgery
or chemotherapy might not be applicable. During the radiation treatment
planning (RTP), the tumor to irradiate, i.e. clinical target volume (CTV), as
well as healthy structures to be spared, i.e. the organs at risk (OARs), must be
precisely delineated. Because of the high doses used to irradiate the CTV, the
risk of severe toxicity of the OARs must be constrained. Therefore, these seg-
mentations are crucial inputs for the RTP, in order to compute the parameters
for the accelerators, and to verify the dose constraints. The highly precise irra-
diation of targets within the brain is planned using information from medical
images that are obtained via several image modalities. Among these modal-
ities, and particularly in oncology, magnetic resonance images (MRI) is the
preferred modality to contour OARs. Nowadays in clinical practice, OARs de-
lineation on MRI is performed manually by experts, or with very few machine
assistance. Consequently, this process is highly time-consuming for radiation
oncologists, especially for large datasets, and remains operator dependent [2].

In recent years, numerous methods have been proposed to overcome lim-
itations of manual contouring in RTP [3]. Because of the similar textures
and weak boundaries of most of the subcortical brain structures, such as the
brainstem (BS), proposed segmentation approaches usually incorporate some
prior knowledge. This information is often given as shape or location of the
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structure of interest. Among methods using prior information, atlas based
have been extensively used [4-6]. In atlas based approaches, anatomical infor-
mation is exploited by means of atlases to be matched to the patient under
examination. To compute such transformation, deformable registration is of-
ten used [7]. In [4], an atlas-based approach called Classifier Fusion and La-
belling (CFL), was evaluated and compared with other three approaches to
segment subcortical brain structures: two statistical based models - Profile
Active Appearance Models (PAM) and Bayesian Appearance Models (BAM)-
and an Expectation-Maximisation-based approach (EMS). Regarding the BS
segmentation, mean Dice Similarity Coefficient (DSC) values for the proposed
methods ranged from 0.83 to 0.94, with percentage mean Absolute Volume
Difference (AVD) from 21.10% to 3.98%respectively.

Specifically for the BS segmentation, some atlas-based methods have been
evaluated in RTP context [5,6]. In [5], the BS was automatically segmented
on 6 patients by using an atlas base approach. In addition to automatically
generated contours, brainstem on these 6 patients was manually segmented by
7 experts, and all segmentations were compared. A mean sensitivity of 0.76 for
the automatic proposed method was reported, which lay in the means range for
the experts. In the work of [6], an automatic segmentation software (ABAS)
was evaluated when segmenting OARs -including the BS - in brain cancer. DSC
values for the BS ranged from 0.8 to 0.88 and a mean volume underestimation
equal to -14.8% was reported. However, processing time reported in previously
presented works to segment the BS was always above several minutes, if not
more.

Additionally to atlas-based methods, other approaches such as statistical
models [4,8] have also been employed to segment the BS. In [8], a 2D auto-
matic scheme based on Scale-based Fuzzy Connectedness algorithm and Active
Contour models was proposed to segment the BS. In their work, a set of 66
MRT?2 images was used, where 33 images were used as training samples and
the other 33 formed the testing set. The presented results showed a mean DSC
of 0.86 over 5 selected MRI scans.

However, with the presence of tumors, all these methods might fail in the
classification, since the anatomical variability introduced by the tumor might
not have been captured during the atlas creation or training phase.

In the presented work, an automatic approach based on a supervised ma-
chine learning technique, SVM, that outperforms all the presented approaches
up to the date to segment the brainstem is proposed. First, it increases the
similarity with respect to manual expert segmentations, while also provides
a substantial improvement on the processing time. Second, it reduces volume
differences between automatic segmentations and expert delineations. Third,
no computational expensive registration processes are required. And fourth, a
limited training set is sufficient to achieve promising results.
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2 Methods

In this section all steps included in the proposed approach are explained. First,
the initial alignment performed to the MRIs to be segmented is detailed. In
the following subsection, features often used in the literature to train some
machine learning classifiers are presented. After this, support vector machine
(SVM) technique is formally introduced. Finally, the set-up of the proposed
experiment is described.

2.1 Pre-processing

Tt is a common practice in brain segmentation approaches to apply registration
techniques to the MRI images to make them as similar as possible to a common
MRI template. Some approaches require a rigid registration step to align the
images [9,10]. However, in the proposed approach, and as in [11] and [12],
MRI T1 images were spatially aligned such that the anterior commissure and
posterior commissure (AC—PC) line was horizontally oriented in the sagittal
plane, and the inter hemispheric fissure was aligned on the two other axes.

2.2 Features extraction

The most influencing factor in realizing a classifier with high generalization
ability is the set of features used. A poor selection of features may lead to
unsatisfactory results. Unlike in most segmentation methods, image inten-
sity information solely is not good enough to distinguish different subcortical
structures since most of these structures share similar intensity patterns on
MRI. To address such problem, in learning based segmentation methods, more
discriminative features are often extracted from MRI [9-12]. The method pre-
sented in [11] used image intensity values (ITVs) of the neighborhood of the
voxel to be considered. To provide a computationally efficient survey of the
neighboring voxels, signal intensity was sampled as far away as three voxels.
A spherical region was additionally used for 3D applications. Only diagonal
and orthogonal voxels to the location of the input voxel were used, which pro-
vided information from 42 surrounding voxels. Three additional nodes were
used to specify the voxel location. The final input feature was the frequency
with which the location was found in the search space for the training set.
Since image features did not contain a shape representation, however, a large
training set was needed.

Recently, Powell et al. [12] have further developed their previous algo-
rithm [11] using 9 1TVs along the largest gradient, a probabilistic map, and
the IIVs along each of the three orthogonal axes, leading to an input vector
composed by 25 features. In [10], a slightly modified input vector was adapted
to increase the performance of an artificial neural network. In their work, a
modified spatial location for the spherical coordinates and a neighborhood
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connection based on gradient descent were used. While the former aided to
reflect symmetry of brain, the latter was used for directional consistency. To
improve the differentiation between the brain regions compared to the ITVs,
Geometric Moment Invariants (GMIs) were used in [9]. The use of GMIs as
feature is interesting because they represent features that are theoretically
not sensitive to particular deformation such as rotation, translation or scaling.
Additionally to GMI, neighbouring voxel IIVs along the main axis (3 for each
direction), as well as the voxel coordinates, completed the input vector.

Several combinations of IIVs were used as subset of the input features
vector in the presented work (Table 1). Cubic traditional patches of size 3 and
5 were extracted around the voxel under examination as ITVs for the input
features vector in configurations A and B, respectively. Similarly to 9], a cross
was used in configuration C, which was composed by the 12 1IVs along each of
the orthogonal axis (2 in each direction). Neihghorhood information based on
gradient descent, as in [10] was used in configuration E, where 9 1IVs along the
largest gradient including the voxel to be analyzed composed the ITVs subset.
And as in [12], configurations C and E formed the IIVs array in configuration
D;

IIVs Bx3x3  5xox5 0% - Conf. C + phu L
configuration Patch  Patch S0 Conf. E i
to axes Gradient
Conf. Name A B C D E

Table 1: Names of the different IIVs configurations used in the input features vector used
in the SVM classifier.

Additionally to the ITVs, a spatial probabilistic distribution map (SPDM)
of the brainstem is used as input feature. SPDM represents the probability
of a voxel to be classified as brainstem, according to the training data. The
sum of all the brainstem masks contained in the training data set is used to
create the SPDM. The resulted map is then smoothed by using a Gaussian
filter with a kernel size of 3x3x3 (Fig.1). In addition, to reduce the number of
input samples that contains consistent information, the voxel space is pruned.
A dilated version of the SPDM is binarized (Fig.1) and its result is used to
prune the voxels. To obtain this dilated mask, the SPFM is first binarized
by setting its values greater than 0.005 to 1, and the others to 0. Then, a
dilation operation with a square kernel type of size 3x3x3 is applied over the
binary image, leading to the dilated binary version of the SPDM. Ounly those
voxels that belong to the inner part of the dilated SPDM are kept to feed the
prediction algorithm. Last, voxel spherical coordinates completed the input
vector.
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Fig. 1: Brainstem probability map (top) and brainstem mask extracted from the probability
map (bottom). From left to right axial, sagittal and cornoal views are shown.

2.3 Support vector machines

Support vector machines and their variants and extensions, often called kernel-
based methods, have been studied extensively and applied to various pattern
classification and function approximation problems. Basically, the main idea
behind SVM is to find the largest margin hyperplane that separates two classes.
The minimal distance from the separating hyperplane to the closest training
example is called margin. Thus, the optimal hyperplane is the one provid-
ing the maximal margin, which represents the largest separation between the
classes. This will be the line such that the distances from the closest point in
each of the two groups will be farthest away. The training samples that lie
on the margin are referred as support vectors, and conceptually are the most
difficult data points to classify. Therefore, support vectors define the location
of the separating hyperplane, being located at the boundary of their respective
classes. By employing kernel transformations to map the objects from their
original space into a higher dimensional feature space [13], SVM can separate
objects which are not linearly separable (Figure 2).

Their good generalization ability and their capability to successfully clas-
sify non-linearly separable data have led to a growing interest on them for
classification problems. By combining both local and global information as
input for the classifier, SVM can take decisions at voxel level, even for un-
seen situations. This makes machine learning techniques in general, and SVM
in particular, more suitable segmentation methods for situations where the
presence of tumors can modify the anatomy of the patient.



2 METHODS 2.4 Kernel selection and parameters tunning

I Classification by mapping features into higher dimensions may become easier |

Map into the features space
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Complex classification in low dimensions Classification becomes simpler in higher dimensions

Fig. 2: SVM and hyperplane. Mapping features into a higher dimensionality may make the
classification simpler.

2.4 Kernel selection and parameters tunning

As explained in previous section, to map input features into higher dimen-
sionality spaces several kernels can be used, according to the nature of the
data. Radial Basis Function (RBF) kernels are one of the most used kernels to
separate data in SVM classifiers in complex classification environments. Some
previous works have found that RBF kernel generally provides better classifi-
cation accuracy than many other kernel functions [15]. This kernel nonlinearly
maps samples into a higher dimensional space. That means that RBF kernel
can handle the cases when the relation between class labels and attributes is
nonlinear. Second reason to use this kernel is the number of hyperparameters
which influences the complexity of model selection, which is lower than in
other non-linear kernels, such as the polynomial kernel.

There are two parameters that can be tuned in the RBF kernel and which
depend on the input data: C' and v. While C' controls the cost of missclassifica-
tion on the training data, 7 is the parameter of the kernel to handle non-linear
classification. Different values for both parameters might lead to soft or hard
margins, for the case of C, and the lost of its non-linear power or increase of
sensivity to noise, in the case of . Therefore, some kind of model selection,
i.e. parameter search, must be done. The goal of this search is to identify good
C and ~ values so that the classifier can accurately predict unknown data, i.e.
testing data.

Best values for parameters C and ~y were selected in this work by per-
forming a cross-validation and grid search in the training set of configuration
A with v = 10 subfolders (Fig. 3). Since performing a fully grid search may
become time consuming, a coarse grid search was initially conducted. After
identifying the best region on the grid, a finer grid search on that region was
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Fig. 3: Optimal parameter selection. The heat map is used for the cross-validation (10-fold)
coarse (top) and fine (bottom) grid search to find the hyper-parameter C' and 7 in the RBF
kernel of the proposed approach. An initial estimation of the search area is found in the
heatest spot of the coarse search. This spot is then used to performed a fine search of the
best combination of C' and v. A balance between accuracy and precision is employed for the
decision of the parameters.

performed. From this search was found that best values for C' and v were
aproximately 6 and 5.5, respectively, with an accuracy close to 97% and a
precision nearly of 95%. These values for C' and 7 were kept for the training
and classification in all the IIVs configurations.

2.5 Materials

The presented approach was evaluated on a dataset containing several data
subsets from different institutions and presenting several pathologies. MR 1.5T
T1 with and without gadolinium injection brain images were used in this ex-
periment (See Table 2). Pathologies visible in these data sets included trigemi-
nal neuralgia, metastases, brainstem cavernoma and glioblastoma multiforme.
According to the brain tumor and radiotherapy center, either radiotherapy
or radiosurgery were the techniques used to treat these patients. Additionally,
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some of the subjects included in these data sets presented some tumours inside
or very close to the brainstem, causing deformations on it.

—— . . Voxel Size
MRI System TE(ms) TR(ms) Matrix size Num. Slices O(‘t(nmS)
Philips Achieva 4.602 25 256x256 180 0.9x0.9x1.0
1.5T Scanner
Siemens Avanto 17 532 256x224 160 1x1x1

MRI Scanner

Table 2: Acquisition parameters on the 2 MRI devices.

The SVM classifier was trained by using 3 subjects randomly selected from
the whole dataset and tested on an independent set of the remaining 14 sub-
jects. From the full set of sampled vectors in the training phase, 50.000 samples
were randomly selected to train the classifier. Because of SVM algorithms are
not scale invariant, once all samples were added to the input features vectors,
and before to start the training, all values were normalized between -1 and 1.
Training times for each configuration are shown in Table 3.

Configurations A B C D E

Training Time (sec) 68.06 202.62 45.83 59.05 44.03

Table 3: Training times for each of the 5 IIVs configurations used in the proposed approach
to train SVM classifier.

MATLAB was the platform used for this experiment. The publicly available
library libsvm [16] was used for the classification task. A workstation with 8GB
of RAM memory and Intel Xeon processor at 3.06 HGz was employed.

2.6 Data analysis

Performance of the proposed approach was quantitatively assessed by compar-
ing automatic and manual reference contours in terms of shape and volume.
DSC [17] was computed to evaluate shapes similarities between automatic and
manual BS segmentations. Regarding the volume, absolute volume difference
(AVD) between automatic and manual segmented volumes, as well as percent-
age volume difference (pVD) (Eq. 1) were calculated.

Vauto = Vref e
‘/ref
Both AVD and pVD meassure volume similarities. Nevertheless, whilst

AVD represents the absolute value of volume differences, in em?, pVD is the

real signed value of such differences in terms of percentage. While the former

is important to evaluate the total difference on volumne, the later will tell
us whether there is underestimation of the volume and how important the

pVD(%) = 100 (1)
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volume difference is. Unlike volume differences, DSC or overlap ratio metrics
are sensitive to misplacement of the segmentation label, but they are relatively
insensitive to volumetric under- and overestimations.

3 Results

VM was successfully applied to the 14 independent patients using the 5 differ-
ent ITVs configurations in the input features vector. A one-way within-subjects
analysis of variance (ANOVA) test was performed separately on the DSC and
pVD values using the 5 configurations (See Fig. 4). The computed p-values
were 0.8312 and 0.583 for DSC and pVD, respectively. This means there were
no significant differences between groups in terms of shape and volume simi-
larity. It can be observed that DSC values ranged from 0.82 (conf.A) to 0.93
(conf.D), with means values ranging from 0.89 to 0.91 for all the configura-
tions.

Dice Similarity Coefficients (ANOVA) Percentage Volume Differences (ANOVA)

0.94 .

‘ - T = N 25 p-value = 0.583
092‘, ! . . ' F-stat = 072
IR BBE T

‘ : . ‘ .

8 ! i +

i
=t —

0.8

i
C
. * : [l
7
0.82 . p-value = 0.8312 i ! =8 [ i
F-stat = 0.37 =5 L -+ 3 -
o - . N
8 Conf.A Conf.B Conf.C Conf.D ConfE ConfA ConfB Conf.C ConfD Conf.E

Fig. 4: Statistical analysis of Dice similarity coefficients and percentage volume differences
(pVD) for the automatic proposed approach for each of the five ITV configurations.

Concerning volumes differences, the 5 IIVs configurations reported mean
AVD values comprised between nearly 1.500 cm® and 0.850 cm?, being con-
figurations D and E the ones that reported better results, with mean AVD
of 0.999 cm? (0.075-3.194 cm?®) and 0.850 cm? (0.155-2.679 cm?), respectively
(Figure 5). In terms of percentage of volume differences between automatic
and manual segmentations, these volume difference values can be translated
to pVD values ranging from -7.43% to 16.19% for conf.D, and from -5.52% to
13.57% for conf.E (Figure 4, right and Table 4).

Table 4 shows the pVD for all the patients when using the 5 ITVs con-
figuration. This makes possible to compare how different I1IVs configuration
impacted on the pVD for a given patient and evaluate whether the automatic
approach underestimated or overestimated the manually segmented volume.
Configurations B, D and E showed the highest volume similarities for the
majority of patients. However, although mean AVD and pVD values of con-
figurations B and D were closer to those reported by E, standard deviation

10
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Absolute volume difference (cm3)
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Fig. 5: Absolute volume differences for the automatic proposed approach for each of the five
1TV configurations.

values were slightly higher for the former ones (Fig. 4 and 5). Volume dif-
ference in conf.FE represented in most of the cases an absolute pVD ranging
from 0 to nearly 5% with respect to the manual volume segmentation. Even in
its worst case (Patient002), conf.E only over-estimated the brainstem volume
13.57% with respect to the reference volume. These results were very similar
to the results observed in Configuration D.

pVD (%)
IIV Conf. A B C D E

Patient001 -6.97 -6.08 -4.28 -7.43 -1.17
Patient002 22.95 19.04 23.45 16.19 13.57
Patient003 12.49 10.82 15.62 11.53 9.50
Patient004 9.37 5.30 8.21 5.49 2.73
Patient005 5.69 1.44 5.05 1.39 0.30
Patient006 5.29 5.44 5.68 2.78 3.75
Patient007 2.28 -1.61 -3.49 -1.14 -3.98
Patient008 2.87 1.08 3.16 0.31 -0.64
Patient009 291 4.62 6.33 4.05 4.55
Patient010 -1.22 -2.02 -0.66 -2.99 -5.52
Patient011  -0.12 0.08 111 0.37 -1.59
Patient012 12.05 5.96 11.44 9.91 5.65
Patient013 4.86 2.87 5.09 1.55 -1.03
Patient014 -0.86 -1.12 -0.38 -1.97 1.86

Table 4: Percentage volume differences (pVD) between results obtained with the proposed
approach for each of the configurations and manual delineations.

In relation with segmentation time, configurations C' and E reported the
fastest times, with 40.45 and 36.6 seconds as average, respectively. Processing
times for configurations A and D, although slower, were still under one minute,
and configuration B was the slowest one, with a processing time close to 5
minutes (See Fig. 6).

Figure 7 shows an example of the automatic segmentation provided by the
proposed approach (in red) compared to the manual reference standard (in
green).

11
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Mean Segmentation Time (seconds)
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Fig. 6: Mean segmentation times for the automatic proposed approach for each of the five
IIV configurations.

Fig. 7: Brainstem segmentation example. Green represents manual contouring while red bold
is the segmentation provided by the proposed approach.

4 Discussion

A supervised machine learning based approach to automatically segment the
brainstem on MRI in multicenter brain tumor treatment context has been
proposed. The main contribution of this paper is to apply a machine learning
method -SVM- to a problem in which it has not been applied before, i.e.
brainstem segmentation. To do so, we investigate how different set of features
impact on the segmentation performance for this specific problem. Pathologies
visible in the analyzed data sets included trigeminal neuralgia, metastases,
brainstem cavernoma and glioblastoma multiforme, which were treated either
by radiotherapy or radiosurgery. Additionally, some of the subjects included
in the study presented some tumours inside or very close to the brainstem,
causing deformations on it, which makes the segmentation sometimes more
challenging.

Among the features used to train the classifier, 5 different configurations
of image intensity values have been evaluated and compared in terms of shape
and volume similarity, as well as segmentation processing time. Although the
results from the 5 ITVs configurations reported strong agreement compared to
the reference segmentations, conf.4 provided the worst performance in terms
of similarity. It used a 3x3x3 texture patch in the input vector, representing the

12
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weakest neighborhood scope among the five proposed configurations, since only
1 voxel beyond of the voxel under examination was reached. By incorporating a
larger patch of size 5x5x5 to capture images intensity values, conf.B improved
DSC values, as well as AVD and pVD. However, due to the patch size, 125
elements were added to the input features vector, instead of 27 in conf. A,
leading to a considerably slower segmentation time.

To reduce the number of elements in the input vector, whilst preserving
DSC and AVD values, a cross orthogonal to the axis was presented in conf.C,
taking +2 voxels in each direction (12 IIVs in total). DSC values remained
similar to conf.B and processing time was substantially reduced. However,
AVD and pVD were higher than those provided by conf.B. As in [12], 9 ITVs
along the maximum Gradient direction were added to the existing IIVs in
conf. C, which represented the conf.D. This resulted in an input vector with 21
IIVs, in addition to other features. Even though processing time augmented
around 20% respect to conf.C, AVD and pVD values notably decreased, while
DSC values did not practically change.

Since the brainstem is a large homogeneous structure, a large scope like in
conf.D often gives more information than a short neighborhood view, like in
conf.C. Based on this, a novel texture configuration was proposed in conf.E,
which only used the 9 IIVs along the maximum Cradient direction, includ-
ing the voxel under examination, in the input vector. Quantitative results
for this ITVs configuration showed that it reported the best trade-off between
segmentation similarity and processing time among the five analyzed IIVs con-
figurations. While it reported one of the highest mean DSC values (0.9007),
together with configurations C' (0.9006) and D (0.9033), it also represented
the fastest segmentation process. Mean segmentation time in conf.E was mea-
sured to be 36.60 seconds, which represented an improvement of 10% and
25% with respect to configurations C' and D, respectively. From the statistical
analysis (Figure 4) it is observed that differences between the results of the 5
configurations were not significantly important in terms of shape and volume
similarity. However, segmentation time (Figure 6) was substantially reduced
in the last three configurations -i.e., C, D and E - , being the configuration F
the fastest one. Therefore, it is reasonable to select configuration E as the IIVs
configuration to train the classifier in the presented approach when segment-
ing the brainstem on MRI, particularly in relation to improving segmentation
times.

Reference Method DSC | pVD (%) Segmentation Time
Atlas-Based 0.94 3.98 120-180 min. (Set of brain structures)

Statistical-Based (PAM 0.88 6.80 1 min. + 20 min.?

Babalola et al., (2009) | gasistical-Based ((BAM)) 080 | 7.80 5 min. + 3min.®
Expectation-Minilization | 0.83 21.10 30 min. (Set of brain structures)

Bondiau et al., (2005) Atlas-Based - -13.11 20 min. (7 OARs and 7 normal structures)

Isambert et al., (2008) Atlas-Based 0.85 -14.8 7-8 min. (6 OARs)

Proposed approach SVM 0.90 3.99 36.6 seconds

Table 5: Table that summarizes results of previous works which attempted to segment the
brainstem on MRI images. DSC and pVD are given as mean values.

13
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Comparing results presented in Table 5 to the ones provided by proposed
approach, it can be concluded that SVM was ranked at high to segment the
brainstem with relatively fast processing time, reducing substantially the time
required in comparison to the other presented methods. Additionally, given
the promising results, and following the work of [5] and [6], a larger evaluation
involving several clinicians would validate its use in clinical routine to segment
the brainstem in brain cancer context.

The main direction for future research is to examine the contribution of
other image properties as features during the training and classification. In
addition, we aim to extend the presented approach to make it work with a
larger set of subcortical structures, which are involved in external radiother-
apy and radio-surgery. We are aware that the surrogate ground truth used in
the presented work may not be completely satisfactory, since it is based in
single manual delineations. Differences in data acquisition often compromise
fair comparisons with other works. A solution to perform such comparison
would be to have access either to all the code for other methods or to a pub-
lic database where we may use the same patients than others do and then
compare our results. Nevertheless, both options are not straightforward and
they are still a topic under discussion. For our current research, which deals
with the segmentation of other organs at risk in brain cancer - such as the op-
tic nerves or the optic chiasm -, because of the lack of public datasets with a
ground truth, we have no other choice than using manual expert segmentations
as gold standards in all our experiments. For this reason, multiple observers
delineations will be used during the learning and testing process. Involving
several experts in the delineation process will allow to compare automatic seg-
mentations with those that would be clinically used in RTP, helping to validate
the presented approach in clinical brain cancer context.

5 Acknowledgment

This project has received funding from the European Unions Seventh Frame-
work Programme for research, technological development and demonstration
under grant agreement no PITN-GA-2011-290148.

6 Statements

Jose Dolz, Solakhna Ken, Henri-Arthur Leroy, Nicolas Reyns, Anne Laprie,
Laurent Massoptier and Maximilen Vermandel declare that they have no con-
flict of interest.

2 These two approaches required registration steps which took 20 minutes in the first case,
and around 3 minutes for the second method.

14



References References

All procedures followed were in accordance with the ethical standards of the
responsible committee on human experimentation (institutional and national)
and with the Helsinki Declaration of 1975, as revised in 2008 (5).

For this type of study formal consent is not required.

References

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman
D, Bray F. (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide:
TARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer; .
URL http://globocan.iarc.fr (accessed December 16, 2014)

2. Cattaneo GM, Reni M, Rizzo G, Castellone P, Ceresoli GL, Cozzarini C, Ferreri AlJ,
Passoni P, Calandrino R. (2005) Target delineation in post-operative radiotherapy of brain
gliomas: interobserver variability and impact of image registration of MR (pre-operative)
images on treatment planning CT scans. Radiotherapy and oncology, 75(2): 217-223.

3. Dolz J, Massoptier L, Vermandel M. (2015) Segmentation algorithms of subcorti-
cal brain structures on MRI for radiotherapy and radiosurgery: a survey. IRBM,
doi:10.1016/j.irbm.2015.06.001.

4. Babalola KO, and Patenaude B, Aljabar P, Schnabel J, Kennedy D, Crum W, Smith S,
Cootes T, Jenkinson M, Rueckert D. (2009) An evaluation of four automatic methods of
segmenting the subcortical structures in the brain. Neuroimage 47(4):1435-1447.

5. Bondiau PY, Malandain G, Chanalet S, Marcy PY, Habrand JL, Fauchon F,Paquis P,
Courdi A Commowick O, Rutten I and others. (2005) Atlas-based automatic segmentation
of MR images: validation study on the brainstem in radiotherapy context. International
Journal of Radiation Oncology Biology Physics 61: 289-298.

6. Isambert A, Dhermain F, Bidault F, Commowick O, Bondiau PY, Malandain G,
Lefkopoulos D. (2008). Evaluation of an atlas-based automatic segmentation software for
the delineation of brain organs at risk in a radiation therapy clinical context. Radiotherapy
and oncology 87: 93-99.

7. Toga AW, Thompson PM. (2001) The role of image registration in brain mapping. Image
and vision computing 19: 3-24.

8. Lee JD, Tseng YX, Liu LC, Huang CH. (2007) A 2-D Automatic Segmentation Scheme for
Brainstem and Cerebellum Regions in Brain MR Imaging. Conf. Proc. on Fuzzy Systems
and Knowledge Discovery 4: 270-274.

9. Moghaddam MJ, Soltanian-Zadeh H. (2009) Automatic segmentation of brain structures
using geometric moment invariants and artificial neural networks. Information Processing
in Medical Imaging: 326-337.

10. Kim EY, Johnson H. (2010) Multi-structure segmentation of multi-modal brain images
using artificial neural networks. SPIE Medical Imaging: 76234B-76234B.

11. Magnotta VA, Heckel D, Andreasen NC, Cizadlo T, Corson PW, Ehrhardt JC, Yuh
W. (1999) Measurement of Brain Structures with Artificial Neural Networks: Two-and
Three-dimensional Applications 1. Radiology 211(3): 781-790.

12. Powell S, Magnotta VA, Johnson H, Jammalamadaka VK, Pierson R, Andreasen NC.
(2008) Registration and machine learning-based automated segmentation of subcortical
and cerebellar brain structures. Neuroimage 39(1): 238-247.

13. Burges C. (1988) A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery 2(2): 121-167.

14. Abe S. (2010) Support vector machines for pattern classification. Springer.

15. Abdi MJ, Hosseini SM, Rezghi M. (2012) A novel weighted support vector machine
based on particle swarm optimization for gene selection and tumor classification. Compu-
tational and mathematical methods in medicine 2012.

16. Chang CC, Lin CJ. (2011) LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2: 27:1-27:27.

15



References References

17. Dice LR. (1945) Measures of the amount of ecologic association between species. Ecology
26(3): 297-302.

16



