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Consider two random gaussien vectors E1 =
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n=1 cn
and E’1 =
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′

n, where cn and c′n are random com-
plex gaussien variable with 〈cn〉 = 〈c′n〉 = 0 and 〈|cn|

2〉 =
〈|c′n|

2〉 = 1. Let us consider the correlation C1:
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Let us calculate
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with the Law of large Numbers.
We get:
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Here, the n 6= p terms do not contribute to
〈
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2
〉

, be-
cause cn, c

′

n, cp and c′p are statistically independent. We
get thus:
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Since |cn|
2 and |c′n|2 are also statistically independent,

we get:
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This proves rigorously the result obtained by Monte
Carlo for

〈

|C1|
2
〉

.

EXPERIMENTAL SETUP AND DATA ANALYSIS

DETAILS

Figure 1 shows the setup we used to study the open
channels by measuring E2(x, y, t, p) and by calculating
C2 by :

C2(t, t
′) =

∑

x,y,pE2(x, y, t, p)E
∗

2 (x, y, t
′, p)

∑

x,y,p |E2(x, y, t, p)|2
(5)

FIG. 1: Experimental setup. E1: incoming field; E2: out-
going field; R(1), R(2): reference fields of polarisation p=1
and p=2; PBS1, PBS2: polarized beam splitters; λ/2: half
wave plate to control E1, R(1) and R(2) respective power;
BS: beam splitter; M: mirror; DL: diffusing liquid; MO1 and
MO2: microscope objectives; Q, Q’: camera plane, and cam-
era conjugate plane with respect to MO2; S: sample outgoing
plane. P’ and P: MO1 and MO2 pupil planes.

The setup consists of a Mach-Zehnder off-axis interfer-
ometer with two orthogonally polarized reference beams.
The light emitted by a λ = 532 nm, 70 mW laser is
split into a reference and an object field using a po-
larizing beam splitter (PBS1). The studied sample is
a ZnO powder slab with thickness l = 22 µm ± 7 µm
deposited on a microscope cover slide. In order to maxi-
mize the collection of both input and output modes, the
sample is positioned between two microscope objectives:
MO1 (NA = 0.9 air, x60) in the powder side, and MO2
(NA = 1.4 oil, x60) in the cover slide side.
A tank (1.5 cm thick) filled with viscous diffusing liq-

uid (glycerol + concentrated milk) is positioned in front
of MO1 to randomize the illumination structure in both
time and space. The incoming field E1 is therefore ran-
domly distributed over all the incoming modes and varies
in time. Thus, considering |t− t′| > 100 ms, the fields
E1(t) and E1(t

′) are uncorrelated.

Measurement of the outgoing field E2 is holograph-
ically performed. The two orthogonally polarized refer-
ence beams R(p) (where p = 1, 2 is polarization) interfere
with the outgoing fields E2(p), and the interference pat-
tern I =

∑

p=1,2 |R(p) +E2(p)|
2 is recorded on the CCD

sensor (10 Hz, 1340 × 1040 pixels with ∆x = 6.45 µm
pitch). This configuration makes it possible to calculate
from I the complex amplitudes E2(p) of the outgoing
fields along both polarizations p = 1, 2 directions by fil-
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FIG. 2: |H̃ |2 (a,d); ×2 zoom of |H̃ |2 near zone 1 (b); |E2R
∗|2

calculated by Eq. 6 for p = 1 (c). In (c), the dashed squares
of size M =724, 512, 362 and 256 pixels illustrate the ability
to select different zones of the sample to calculate 〈|C2|

2〉.
Images are obtained with ZnO sample (a-c), and without (d).

tering, in the Fourier space, the desired +1 grating order
i.e. E2(p)R

∗(p) [1].
The Fourier spacial filtering is illustrated by Fig. 2.

The 1340× 1040 holograms were cropped to 1024× 1024
(the imaged area is therefore L = 77 µm) and two
frames holograms H were calculated from successive
frames: H(t2n) = I(t2n) − I(t2n+1). The Fourier holo-
gram H̃(kx, ky) = FFT [H (x, y)] (where FFT is the Fast

Fourier transform) is then calculated. |H̃|2 is displayed
on Fig. 2(a). Four bright circular regions can be ob-
served. They correspond to the reconstructed image of
the MO2 pupil. Reconstruction is made with +1 grating
order E2(p)R

∗(p) for p = 1 (zone 1), and p = 2 (zone 2),
and to the -1 grating order E∗

2 (p)R(p) for p = 2 (zone 3)
and p = 1 (zone 4). Because the calculations are made
with two frames hologram, the zero order terms |R(p)|2

cancel, and are not visible on Fig. 2(a).
Note that the angular tilt of the beam splitter BS as

well as the source point positions F1 and F2 (see Fig. 1)
have been chosen so that the four regions in Fig. 2(a) do
not overlap, and have sharp edges [2]. From Fig. 2(a),
we have selected the desired +1 grating orders E2R

∗ by
cropping zone 1 and zone 2 (for p = 1 and 2) and by
taking the inverse Fourier transform of the cropped zones:

E2R
∗(x, y, p) = FFT−1Cp

[

H̃(kx, ky, p)
]

(6)

where Cp is the crop operator for polarisation p.
Since R(p) is roughly constant with the position x, y,

the correlations C2(t, t
′) can be then calculated by re-

placing E2(x, y, p, t) by [E2R
∗](x, y, p, t) in Eq. 5. The

statistical average 〈|C2|
2〉 was obtained by first recording

the sequences of 150 camera frames: I(t0)...I(t149), at
times: tn = n∆t and ∆t = 100 ms, yielding 75 holo-
gram: H(t0), H(t2)...H(t148), which were used to cal-
culate [E2R

∗](x, y, p, t2n) and C2(t2n, t2n′), and then by
averaging |C2(t2n, t2n′)|2 for all couple of times t2n, t2n′

with |n− n′| > 5 and n, n′ = 0..74.
Because of experimental defects, |R(p)| varies slightly

with position. This affects the calculation of C2(t, t
′) and

〈|C2|
2〉. In order to account for this effect, we measured

|R(x, y, p)| from our stack of holographic data and we cal-
culated C2(t, t

′) with [E2R
∗](x, y, p, t)/|R(x, y, p)|. This

correction is about 10% for 〈|C2|
2〉.

NUMBER OF GEOMETRICAL MODES N ′

g

Figure 2 (d) displays the hologram |H̃ |2 we got with-
out sample. |H̃ |2 exhibits four bright circular zones that
are smaller in diameter than with the sample (Fig.2(a)).
These circles correspond to the MO1 pupil located in the
plane P’ that appears sharp in the plane P, because MO1
and MO2 form an afocal optical system. There is thus
no field out of the MO1 collection angle, and the number
of geometrical mode N ′g must be calculated with MO1
numerical aperture NA=0.9.

We must notice that N ′

g is a little bit smaller than the
number of pixels of zones 1 and 2 in Fig. 2 (d). Similarly
Ng is a little bit smaller than the number pixels of zones
1 and 2 in Fig. 2 (a), but the difference is larger, because
the brightness within the pupil decreases noticeably near
the pupil edge. This means that the reconstructed field
within the pupil is random from one pixel to the next.

We used this property to calculate Ng and N ′

g. We

measured the averaged intensities 〈|H̃ |2〉 for each pixels
of zone 1 and 2, and we used this information to calculate
by Monte Carlo the residual correlation 〈|C2|

2〉 that is
expected for pupils fields random in space and time. The
number of mode Ng and N ′

g we got by this way, with
and without sample, agree within a few per cent with
2π[NA]2L2/λ2 with NA=1.4 and 0.9.
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