Measuring enhanced optical correlation induced by transmission open channels in slab geometry (supplementary)

N. Verrier,¹ L. Depreater,¹ D. Felbacq,¹ and M. Gross¹

 $^{1}Laboratoire\ Charles\ Coulomb$ - UMR 5221 CNRS-UM Université

Montpellier Bat 11. Place Eugène Bataillon 34095 Montpellier

PACS numbers: 42.25.Bs Wave propagation, transmission and absorption; 05.60.Cd Classical transport; 02.10.Yn Matrix theory; 42.40.Ht Hologram recording and readout methods.

Consider two random gaussien vectors $\mathbf{E}_1 = \sum_{n=1}^{N_g} c_n$ and $\mathbf{E'}_1 = \sum_{n=1}^{N_g} c'_n$, where c_n and c'_n are random complex gaussien variable with $\langle c_n \rangle = \langle c'_n \rangle = 0$ and $\langle |c_n|^2 \rangle = \langle |c'_n|^2 \rangle = 1$. Let us consider the correlation C_1 :

$$C_{1} = \frac{\mathbf{E}_{1} \cdot \mathbf{E}'_{1}}{\left|\mathbf{E}_{1}\right|^{2}} = \frac{1}{\left|\mathbf{E}_{1}\right|^{2}} \sum_{n=1}^{N_{g}} c_{n} c_{n}^{\prime *}$$
(1)

Let us calculate $\left<|C_1|^2\right>$ with the Law of large Numbers. We get:

$$\langle |C_1|^2 \rangle = \frac{1}{N_g^2} \left\langle \left| \sum_{n=1}^{N_g} c_n c_n'^* \right|^2 \right\rangle$$

$$= \frac{1}{N_g^2} \left\langle \sum_{n=1}^{N_g} \sum_{p=1}^{N_g} c_n c_n'^* c_p^* c_p' \right\rangle$$

$$(2)$$

Here, the $n \neq p$ terms do not contribute to $\langle |C_1|^2 \rangle$, because c_n , c'_n , c_p and c'_p are statistically independent. We get thus:

$$\langle |C_1|^2 \rangle = \frac{1}{N_g^2} \sum_{n=1}^{N_g} \langle |c_n|^2 |c'_n|^2 \rangle$$
 (3)

Since $|c_n|^2$ and $|c'n|^2$ are also statistically independent, we get:

$$\left\langle |C_1|^2 \right\rangle = \frac{1}{N_g^2} \sum_{n=1}^{N_g} \left\langle |c_n|^2 \right\rangle \left\langle |c_n'|^2 \right\rangle = \frac{1}{N_g} \tag{4}$$

This proves rigorously the result obtained by Monte Carlo for $\left< |C_1|^2 \right>$.