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We define a new class of positive and Lebesgue measurable functions in terms of their asymptotic behavior, which includes the class of regularly varying functions. We also characterize it by transformations, corresponding to generalized moments when these functions are random variables. We study the properties and extensions of classical theorems for this class.

Introduction

The class of regularly varying functions has been introduced in the 30s by Karamata, who defined the notion of slowly varying (SV) and regularly varying (RV) functions, describing a specific asymptotic behavior of these functions, namely: Definition. A Lebesgue-measurable function U : R + → R + is RV at infinity if, for all t > 0,

lim x→∞ U (xt ) U (x)
= t ρ for some ρ ∈ R, [START_REF] Či Ć | O-regularly varying functions[END_REF] ρ being called the tail index of U , and the case ρ = 0 corresponding to the notion of SV function. U is RV at 0 + if (1) holds, when taking the limit as x → 0 + instead of +∞.

Since then, much literature has been devoted to RV functions (see e.g. [START_REF] Seneta | Regularly Varying Functions[END_REF], [START_REF] Bingham | Regular Variation[END_REF] and references therein), in particular in Extreme Value Theory (EVT) (see e.g. [START_REF] Gnedenko | Sur La Distribution Limite Du Terme Maximum D'Une Série Aléatoire[END_REF], [START_REF] Feller | An introduction to probability theory and its applications[END_REF], [START_REF] Haan | On regular variation and its applications to the weak convergence of sample extremes[END_REF], [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF]) where the RV property helps characterizing maximum domains of attraction. The notion of multivariate regular variation has been developed (see e.g. [START_REF] Haan | Extreme Value Theory. An Introduction[END_REF], [START_REF] Resnick | On the Foundations of Multivariate Heavy-Tail Analysis[END_REF], and references therein) and various extensions of the RV class have been proposed. We may cite, in a non exhaustive way, the class of Extended RV (ERV ) (which is implicit in the work of Matuszewska [START_REF] Matuszewska | A remark on my paper 'Regularly increasing functions in connection with the theory of L * φ -spaces[END_REF], and simply allows the limit in [START_REF] Či Ć | O-regularly varying functions[END_REF] to vary), its natural extension, named the O-Regularly Varying (O-RV ) class, defined and studied by Avakumović [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF], also analyzed by Karamata [START_REF] Karamata | Bemerkung über die vorstehende Arbeit des Herrn Avakumović mit, näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen[END_REF] (see also e.g. [START_REF] Matuszewska | A remark on my paper 'Regularly increasing functions in connection with the theory of L * φ -spaces[END_REF], [START_REF] Feller | One-sided Analogues of Karamata's Regular Variation[END_REF], [START_REF] Seneta | Regularly Varying Functions[END_REF], [START_REF] Či Ć | O-regularly varying functions[END_REF], [START_REF] Maller | A note on Karamata's generalised regular variation[END_REF], and [START_REF] Cline | Intermediate Regular and Π Variation[END_REF], where relations between ERV and O-RV are analyzed), the Bojanic-Karamata class (see [START_REF] Bojanic | On a Class of Functions of Regular Asymptotic Behavior[END_REF]) that is a subclass of the SV class, the Π classes (see e.g. [START_REF] Bingham | Extensions of Regular Variation, I: Uniformity and Quatifiers[END_REF], or [START_REF] Bingham | Regular Variation[END_REF]), and the Beurling classes, the slowly varying one (see e.g. [START_REF] Bingham | Regular Variation[END_REF]) that contains the SV class, or the RV one (see [START_REF] Bingham | Beurling slow and regular variation[END_REF]). It is worth noticing that the Beurling theory includes the Karamata theory (see [START_REF] Bingham | Beurling slow and regular variation[END_REF]).

In this paper, we propose a new extension of the RV class, defined in terms of the asymptotic decay of the functions, and for which the limit in (1) might not exist. This new class not only extends in a simple way main RV properties but also offers broader applications, as e.g. in EVT. We can mention, for instance, new results on maximum domains domain of attraction (see [START_REF] Cadena | New results for tails of probability distributions according to their asymptotic decay[END_REF]) and the proposition of a new tail index estimator (see [START_REF] Cadena | A simple estimator for the M -index of functions in M[END_REF]).

The aim of this work is to present and characterize fully this new class.

The paper is organized in two main parts. The first section defines this large class of functions, describing it in terms of their asymptotic behaviors, which may violate [START_REF] Či Ć | O-regularly varying functions[END_REF]. It provides its algebraic properties, as well as characteristic representation theorems, one being of Karamata type. In the second section, we discuss extensions for this class of functions of other important Karamata theorems. Proofs of the results are given in the appendix.

Study of a new class of functions

We focus on the new class M of positive and measurable functions with support R + , characterizing their behavior at ∞ with respect to polynomial functions. A number of properties of this class are studied and characterizations are provided. Further, variants of this class, considering asymptotic behaviors of exponential type instead of polynomial one, provide other classes, denoted by M ∞ and M -∞ , having similar properties and characterizations as M does.

Let us introduce a few notations.

When considering limits, we will discriminate between two main cases, namely when the limit is finite or infinite (±∞), and when it does not exist.

The notation a.s. (almost surely) in (in)equalities concerning measurable functions is omitted. Moreover, for any random variable (rv) X , we denote its distribution by F X (x) = P (X ≤ x), and its tail of distribution by F X = 1 -F X . The subscript X will be omitted when no possible confusion.

RV (RV ρ respectively) denotes indifferently the class of regularly varying functions (with tail index ρ, respectively) or the property of regularly varying function (with tail index ρ).

Finally recall the notations min(a, b) = a ∧b and max(a, b) = a ∨b that will be used, x for the largest integer not greater than x and x for the lowest integer greater or equal than x, and log(x) represents the natural logarithm of x.

The class M

We introduce a new class M that we define as follows. (
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On M , we can define specific properties.

Properties 1.1.

(i) For any U ∈ M, ρ defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF] is unique, and denoted by ρ U .

(ii

) If U ,V ∈ M s.t. ρ U > ρ V , then lim x→∞ V (x) U (x) = 0.
(iii) For any U ,V ∈ M and any a ≥ 0, aU + V ∈ M with ρ aU +V = ρ U ∨ ρ V .

(iv) If U ∈ M with ρ U defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF], then 1/U ∈ M with ρ 1/U = -ρ U .

(v) Let U ∈ M with ρ U defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF]. If ρ U < -1, then U is integrable on R + , whereas, if ρ U > -1, U is not integrable on R + .

Note that in the case ρ U = -1, we can find examples of functions U which are integrable or not.

(vi) Sufficient condition for U to belong to M : Let U be a positive and measurable function with support R + , bounded on finite intervals. Then

-∞ < lim x→∞ log (U (x)) log(x) < ∞ =⇒ U ∈ M .
To simplify the notation, when no confusion is possible, we will denote ρ U by ρ.

Remark 1.1. Link to the notion of stochastic dominance

Let X and Y be rv's with distributions F X and F Y , respectively, with support R + . We say that X is smaller than Y in the usual stochastic order (see e.g. [START_REF] Shaked | Stochastic Orders[END_REF], pp. 3) if

F X (x) ≤ F Y (x) for all x ∈ R + . ( 3 
)
This relation is also interpreted as the first-order stochastic dominance of X over Y , as F X ≥ F Y (see e.g. [START_REF] Hadar | Stochastic Dominance and Diversification[END_REF], pp. 289).

Let X , Y be rv's such that F X = U and F Y = V , where U ,V ∈ M and ρ U > ρ V . Then Properties 1.1, (ii), implies that there exists x 0 > 0 such that, for any x ≥ x 0 , V (x) < U (x), hence that (3) is satisfied at infinity, i.e. that X strictly dominates Y at infinity. Furthermore, the previous proof shows that a relation like (3) is satisfied at infinity for any functions U and V in M satisfying ρ U > ρ V . It means that the notion of first-order stochastic dominance or stochastic order confined to rv's can be extended to functions in M . In this way, we can say that if ρ U > ρ V , then U strictly dominates V at infinity. Now let us define, for any positive and measurable function U with support R + ,

κ U := sup r : r ∈ R and ∞ 1 x r -1 U (x)d x < ∞ . ( 4 
)
Note that κ U may take values ±∞.

Definition 1.2. For U ∈ M , κ U defined in (4) is called the M -index of U . Remark 1.2.
1. If the function U considered in (4) is bounded on finite intervals, then the integral involved can be computed on any interval [a, ∞) with a > 1.

2. When assuming U = F , F being a continuous distribution, the integral in ( 4) reduces (by changing the order of integration), for r > 0, to an expression of moment of a rv:

∞ 1 x r -1 F (x)d x = 1 r ∞ 1 x r -1 d F (x) = 1 r ∞ 1 x r d F (x) - F (1) r .
3. We have κ U ≥ 0 for any tail U = F of a distribution F .

Indeed, suppose there exists F such that κ

F < 0. Let us denote κ F by κ. Since κ < κ/2 < 0, we have by definition of κ that ∞ 1 x κ/2-1 F (x)d x = ∞. But, since F ≤ 1 and κ/2 -1 < -1, we can also write that ∞ 1 x κ/2-1 F (x)d x ≤ ∞ 1 x κ/2-1 d x < ∞.
Hence the contradiction.

4.

A similar statement to Properties 1.1, (iii), has been proved for RV functions (see [START_REF] Bingham | Regular Variation[END_REF], pp. [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF]).

Let us develop a simple example, also useful for the proofs.

Example 1.1. Let α ∈ R and U α the function defined on (0, ∞) by

U α (x) := 1, 0 < x < 1 x α , x ≥ 1 .
Then U α ∈ M with ρ U α = α defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF], and its M -index satisfies κ U α = -α.

To check that U α ∈ M , it is enough to find a ρ U α , since its unicity follows by Properties 1.1, (i). Choosing ρ U α = α, we obtain, for any > 0, that

lim x→∞ U α (x) x ρ Uα + = lim x→∞ 1 x = 0 and lim x→∞ U α (x) x ρ Uα -= lim x→∞ x = ∞. Hence U α satisfies (2) with ρ U α = α. Now, noticing that ∞ 1 x s-1 U α (x)d x = ∞ 1 x s+α-1 d x < ∞ ⇐⇒ s + α < 0 then κ U α defined in (4) satisfies κ U α = -α.
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As a consequence of the definition of the M -index κ on M , we can prove that Properties 1.1, (vi), is not only a sufficient but also a necessary condition, obtaining then a first characterization of M .

Theorem 1.1. First characterization of M

Let U be a positive measurable function with support R + and bounded on finite intervals.

Then

U ∈ M with ρ U = -τ ⇐⇒ lim x→∞ log (U (x)) log(x) = -τ, (5) 
where ρ U is defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF].

Example 1.2. The function U defined by U (x) = x sin(x) does not belong to M since the limit expressed in [START_REF] Bingham | Regular Variation[END_REF] does not exist .

Other properties on M can be deduced from Theorem 1.1, namely:

Properties 1.2. For U , V ∈ M with ρ U and ρ V defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF], respectively, we have:

(i) The product U V ∈ M with ρ U V = ρ U + ρ V . (ii) If ρ U ≤ ρ V < -1 or ρ U < -1 < 0 ≤ ρ V , then the convolution U * V ∈ M with ρ U * V = ρ V . If -1 < ρ U ≤ ρ V , then U * V ∈ M with ρ U * V = ρ U + ρ V +1. (iii) If lim x→∞ V (x) = ∞, then U • V ∈ M with ρ U •V = ρ U ρ V .
Remark 1.3. A similar statement to Properties 1.2, (ii), has been proved when restricting the functions U and V to RV probability density functions, showing first

lim x→∞ U * V (x) U (x) + V (x) =
1 (see [START_REF] Bingham | Regularly varying probability densities[END_REF], Theorem 1.1). In contrast, we propose a direct proof, under the condition of integrability of the function of M having the lowest ρ.

When U and V are tails of distributions belonging to RV, with the same tail index, Feller ([18], Proposition, pp. 278-279) proved that the tail of the convolution of 1 -U and 1 -V also belongs to this class and has the same tail index as U and V .

We can give a second way to characterize M using κ U defined in (4).

Theorem 1.2. Second characterization of M

If U is a positive measurable function with support R + , bounded on finite intervals, then

U ∈ M with associated ρ U ⇐⇒ κ U = -ρ U ( 6 
)
where ρ U satisfies (2) and κ U satisfies (4).

Here is another characterization of M, of Karamata type.

Theorem 1.3. Representation Theorem of Karamata type for M

(i) Let U ∈ M with finite ρ U defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF]. There exist b > 1 and functions α, β and satisfying, as x → ∞,

α(x)/ log(x) → 0 , (x) → 1 , β(x) → ρ U , (7) 
such that, for x ≥ b,

U (x) = exp α(x) + (x) x b β(t ) t d t . ( 8 
)
(ii) Conversely, if there exists a positive measurable function U with support R + , bounded on finite intervals, satisfying [START_REF] Cadena | Revisiting extensions of the class of regularly varying functions[END_REF] for some b > 1 and functions α, β, and satisfying [START_REF] Bojanic | On a Class of Functions of Regular Asymptotic Behavior[END_REF], then U ∈ M with finite ρ U defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF].

Remark 1.4. [START_REF] Cadena | Revisiting extensions of the class of regularly varying functions[END_REF] is the following: 

Another way to express

U (x) = exp α(x) + (x) log(x) x x b β(t )d t . ( 9 
M ∞ := U : ∀ρ ∈ R, lim x→∞ U (x) x ρ = 0 , ( 10 
)
and

M -∞ := U : ∀ρ ∈ R, lim x→∞ U (x) x ρ = ∞ . ( 11 
)
Notice that it would be enough to consider ρ < 0 (ρ > 0, respectively) in (10) ((11), respectively), and that M ∞ , M -∞ and M are disjoint.

We denote by M ±∞ the union M ∞ ∪ M -∞ .

We obtain similar properties for M ∞ and M -∞ , as the ones given for M , namely:

Properties 1.3. (i) U ∈ M ∞ ⇐⇒ 1/U ∈ M -∞ . (ii) If (U ,V ) ∈ M -∞ × M or M -∞ × M ∞ or M × M ∞ , then lim x→∞ V (x) U (x) = 0. (iii) If U ,V ∈ M ∞ (M -∞ respectively), then U + V ∈ M ∞ (M -∞ respectively).
The index κ U defined in (4) may also be used to analyze M ∞ and M -∞ . It can take infinite values, as can be seen in the following example.

Example 1.4. Consider U defined on R + by U (x) := e -x . Then U ∈ M ∞ with κ U = ∞.

Choosing U (x) = e x leads to U ∈ M -∞ with κ U = -∞.
A first characterization of M ∞ and M -∞ can be provided, as done for M in Theorem 1.1.

Theorem 1.4. First characterization of M ∞ and M -∞

Let U be a positive measurable function with support R + , bounded on finite intervals. Then

we have U ∈ M ∞ ⇐⇒ lim x→∞ log (U (x)) log(x) = -∞ (12) 
and

U ∈ M -∞ ⇐⇒ lim x→∞ log (U (x)) log(x) = ∞. (13) 
Remark 1.5. Link to a result from Daley and Goldie.

If we restrict M ∪ M ±∞ to tails of distributions, then combining Theorems 1.1 and 1.4 and Theorem 2 in [START_REF] Daley | The moment index of minima (II)[END_REF] provides another characterization, namely

U ∈ M ∪ M ±∞ ⇐⇒ X U ∈ M DG ,
where X U is a rv with tail U and M DG is the set of non-negative rv's X having the property introduced by Daley and Goldie (see [START_REF] Daley | The moment index of minima (II)[END_REF], Definition 1.(a)) that

κ(X ∧ Y ) = κ(X ) + κ(Y )
for independent rv's X and Y . We notice that κ(X ) defined in [START_REF] Daley | The moment index of minima (II)[END_REF] (called there the moment index) and applied to rv's, coincides with the M -index of U , when U is the tail of the distribution of X .

An application of Theorem 1.4 provides properties as in Properties 1.2, namely:

Properties 1.4. (i) If (U ,V ) ∈ M ∞ × M ∞ or M ±∞ × M or M -∞ × M -∞ , then U • V ∈ M ∞ or M ±∞ or M -∞ , respectively. (ii) If (U ,V ) ∈ M ∞ × M with ρ V ≥ 0 or ρ V < -1, then U * V ∈ M with ρ U * V = ρ V . If (U ,V ) ∈ M ∞ × M ∞ , then U * V ∈ M ∞ . If (U ,V ) ∈ M -∞ × M or M -∞ × M ±∞ , then U * V ∈ M -∞ . (iii) If U ∈ M ±∞ and V ∈ M such that lim x→∞ V (x) = ∞ or V ∈ M -∞ , then U • V ∈ M ±∞ .
Looking for extending Theorems 1.2-1.3 to M ∞ and M -∞ provides the next results.

Theorem 1.5.

Let U be a positive measurable function with support R + , bounded on finite intervals, with κ U defined in [START_REF] Bingham | Regularly varying probability densities[END_REF].

(i) (a) U ∈ M ∞ =⇒ κ U = ∞. (b) U continuous, lim x→∞ U (x) = 0, and κ U = ∞ =⇒ U ∈ M ∞ . (ii) (a) U ∈ M -∞ =⇒ κ U = -∞.
(b) U continuous and non-decreasing, and

κ U = -∞ =⇒ U ∈ M -∞ .
Remark 1.6.

In (i)-(b)

, the condition κ U = ∞ might appear intuitively sufficient to prove that U ∈ M ∞ . This is not true, as we can see with the following example showing for instance that the continuity assumption is needed. Indeed, we can check that the function U

defined on R + by U (x) := 1/x if x ∈ n∈N\{0} (n; n + 1/n n ) e -x otherwise,
satisfies κ U = ∞ and lim x→∞ U (x) = 0, but is not continuous and does not belong to M ∞ .

The proof of (i)-(b) is based on an integration by parts, isolating the term t r U (t ).

The continuity of U is needed, otherwise we would end up with an infinite number of jumps of the type U (t + ) -U (t -)( = 0) on R + .

Theorem 1.6. Representation Theorem of Karamata Type for M ∞ and M -∞

(i) If U ∈ M ∞ , then there exist b > 1 and a positive measurable function α satisfying α(x)/ log(x) → x→∞ ∞, ( 14 
)
such that, ∀x ≥ b, U (x) = exp {-α(x)} . ( 15 
) (ii) If U ∈ M -∞ , then there exist b > 1 and a positive measurable function α satisfying (14) such that, ∀x ≥ b, U (x) = exp {α(x)} . ( 16 
)
(iii) Conversely, if there exists a positive function U with support R + , bounded on finite intervals, satisfying [START_REF] Haan | Extreme Value Theory. An Introduction[END_REF] or [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF], respectively, for some positive function α satisfying [START_REF] Haan | On regular variation and its applications to the weak convergence of sample extremes[END_REF], then U ∈ M ∞ or U ∈ M -∞ , respectively.

On the complement set of M ∪ M ±∞

Considering measurable functions U : R + → R + , we have, applying Theorems 1.1 and 1.4,

that U belongs to M , M ∞ or M -∞ if and only if lim x→∞ log (U (x)) log(x)
exists, finite or infinite.

Using the notions (see for instance [START_REF] Bingham | Regular Variation[END_REF], pp. 73) of lower order of U , defined by

µ(U ) := lim x→∞ log (U (x)) log(x) , (17) 
and upper order of U , defined by

ν(U ) := lim x→∞ log (U (x)) log(x) , (18) 
we can rewrite this characterization simply by µ(U ) = ν(U ).

Hence, the complement set of M ∪ M ±∞ in the set of functions U : R + → R + , denoted by O , can be written as

O := {U : R + → R + : µ(U ) < ν(U )}.
This set is nonempty: O = , as we are going to see through examples.

Examples of functions U satisfying µ(U ) < ν(U ) are not well-known. A non explicit one was given by Daley (see [START_REF] Daley | The Moment Index of Minima[END_REF], pp. 34) when considering rv's with discrete support (see [START_REF] Daley | The moment index of minima (II)[END_REF], pp. 831). We will provide a couple of explicit parametric examples of functions in O which include tails of distributions with discrete support. These functions can be extended easily to continuous positive functions not necessarily monotone, for instance adapting polynomials given by Karamata (see [START_REF] Karamata | Sur le rapport entre les convergences d'une suite de fonctions et de leurs moments avec application à l'inversion des procédés de sommabilité[END_REF], pp. 70-71). These examples are more detailed in Appendix A.3.

Example 1.5.

Let α > 0, β ∈ R such that β = -1, and x a > 1. Let us consider the increasing series defined by

x n = x (1+α) n a , n ≥ 1, well-defined because x a > 1. Note that x n → ∞ as n → ∞.
The function U defined by

U (x) := 1, 0 ≤ x < x 1 x α(1+β) n , x ∈ [x n , x n+1 ), ∀n ≥ 1, ( 19 
)
belongs to O , with

         µ(U ) = α(1 + β) 1 + α and ν(U ) = α(1 + β), if 1 + β > 0 µ(U ) = α(1 + β) and ν(U ) = α(1 + β) 1 + α , if 1 + β < 0.
Moreover, if 1+β < 0, then U is a tail of distribution whose associated rv has moments lower than -α(1

+ β) (1 + α). Example 1.6. Let c > 0 and α ∈ R such that α = 0. Let (x n ) n∈N be defined by x 1 = 1 and x n+1 = 2 x n /c , n ≥ 1, well-defined for c > 0. Note that x n → ∞ as n → ∞.
The function U defined by

U (x) := 1 0 ≤ x < x 1 2 αx n x n ≤ x < x n+1 , ∀n ≥ 1, belongs to O , with    µ(U ) = αc and ν(U ) = ∞, if α > 0 µ(U ) = -∞ and ν(U ) = αc, if α < 0.
Moreover, if α < 0, then U is a tail of distribution whose associated rv has moments lower than -αc.

Extension of RV results

In this section, well-known results and fundamental in Extreme Value Theory, as Karamata's relations and Karamata's Tauberian Theorem, are discussed on M . A key tool for the extension of these standard results to M is the characterizations of M given in Theorems 1.1 and 1.2.

First notice the relation between the class M introduced in the previous section and the class RV defined in (1).

Proposition 2.1. RV ρ (ρ ∈ R) is a strict subset of M .
The proof of this claim comes from the Karamata relation (see [START_REF] Karamata | Sur un mode de croissance régulière[END_REF]) given, for all RV func-

tion U with index ρ ∈ R, by lim x→∞ log (U (x)) log(x) = ρ, (20) 
which implies, using Properties 1.1, (vi), that

U ∈ M with M -index κ U = -ρ. Moreover, RV = M , noticing that, for t > 0, lim x→∞ U (t x) U (x)
does not necessarily exist, whereas it does for a RV function U . For instance the function defined on

R + by U (x) = 2 + sin(x), is not RV, but lim x→∞ log (U (x)) log(x) = 0, hence U ∈ M .

Karamata's Theorem

We will focus on Karamata's well-known theorem developed for RV (see [START_REF] Karamata | Sur un mode de croissance régulière des fonctions[END_REF] and e.g. [START_REF] Haan | On regular variation and its applications to the weak convergence of sample extremes[END_REF], Theorem 1.2.1) to analyze its extension to M . Let us recall it, borrowing the version given in [START_REF] Haan | On regular variation and its applications to the weak convergence of sample extremes[END_REF].

Theorem 2.1. Karamata's Theorem ([23]; e.g. [14], Theorem 1.2.1)

Suppose U : R + → R + is Lebesgue-summable on finite intervals. Then (K1) U ∈ RV ρ , ρ > -1 ⇐⇒ lim x→∞ xU (x) x 0 U (t )d t = ρ + 1 > 0. (K2) U ∈ RV ρ , ρ < -1 ⇐⇒ lim x→∞ xU (x) ∞ x U (t )d t = -ρ -1 > 0. (K3) (i) U ∈ RV -1 =⇒ lim x→∞ xU (x) x 0 U (t )d t = 0. (ii) U ∈ RV -1 and ∞ 0 U (t )d t < ∞ =⇒ lim x→∞ xU (x) ∞ x U (t )d t = 0.
Remark 2.1. The converse of (K3), (i), is false in general. A counterexample can be given by the Peter and Paul distribution which satisfies lim

x→∞ xU (x) ∞ x U (t )d t = 0 but is not RV -1 . We return to this in more detail in § 2.1.2.
Theorem 2.1 is based on the existence of certain limits. We can extend some of the results to M , even when theses limits do not exist, replacing them by more general expressions.

Karamata's Theorem on M

Let us introduce the following conditions, in order to state the generalization of the Karamata Theorem to M :

(C 1r ) x r U (x) x b t r -1 U (t )d t ∈ M with M -index 0, i .e. lim x→∞ log x b t r -1 U (t )d t log(x) - log (U (x)) log(x) = r. (C 2r ) x r U (x) ∞ x t r -1 U (t )d t ∈ M with M -index 0, i .e. lim x→∞ log ∞ x t r -1 U (t )d t log(x) - log (U (x)) log(x) = r.

Theorem 2.2. Generalization of the Karamata Theorem to M

Let U : R + → R + be a Lebesgue-summable on finite intervals, and b > 0. We have, for r ∈ R,

(K1 * ) U ∈ M with M -index (-ρ) such that ρ + r > 0 ⇐⇒          lim x→∞ log x b t r -1 U (t )d t log(x) = ρ + r > 0 U satisfies (C 1r ). (K2 * ) U ∈ M with M -index (-ρ) such that ρ + r < 0 ⇐⇒          lim x→∞ log ∞ x t r -1 U (t )d t log(x) = ρ + r < 0 U satisfies (C 2r ). (K3 * ) U ∈ M with M -index (-ρ) such that ρ + r = 0 ⇐⇒          lim x→∞ log x b t r -1 U (t )d t log(x) = ρ + r = 0 U satisfies (C 1r ).
This theorem provides then a fourth characterization of M .

Note that if r = 1, we can assume b ≥ 0, as in the original Karamata's Theorem.

Remark 2.2.

1. Note that (K3 * ) provides an equivalence contrarily to (K3).

2. Assuming that U satisfies the conditions (C 2r ) and

∞ 1 t r U (t )d t < ∞, (21) 
we can propose a characterization of U ∈ M with M -index (r + 1), namely

U ∈ M with M -index (r + 1) ⇐⇒ lim x→∞ log ∞ x t r U (t )d t log(x) = 0.
This is the generalization of (K3) in Theorem 2.1, providing not only a necessary condition but also a sufficient one for U to belong to M , under the conditions (C 2r ) and (21).

Illustration using Peter and Paul distribution

The Peter and Paul distribution is a typical example of a function which is not RV. It is defined by (see e.g. [START_REF] Goldie | Subexponential distributions and dominated-variation tails[END_REF], pp. 440, [START_REF] Embrechts | A property of longtailed distributions[END_REF], pp. 50, [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF], pp. 82, or [START_REF] Mikosch | Non-Life Insurance Mathematics[END_REF], pp. 101)

F (x) := 1 - k≥1: 2 k >x 2 -k , x > 0. ( 22 
)
Let us illustrate the characterization theorems when applied to the Peter and Paul distribution; we do it for instance for Theorems 1.1 and 2.2, proving that this distribution belongs to M .

Proposition 2.2.

The Peter and Paul distribution does not belong to RV, but to M with M -index 1.

This proposition can be proved using Theorem 1.1 or Theorem 2.2. To illustrate the application of these two theorems, we develop the proof here and not in the appendix.

(i) Application of Theorem 1.1

For x ∈ [2 n ; 2 n+1 ) (n ≥ 0), we have, using [START_REF] Hadar | Stochastic Dominance and Diversification[END_REF],

F (x) = k≥n+1 2 -k = 2 -n , from which we deduce that n n + 1 ≤ - log F (x) log(x) < 1, hence lim x→∞ log F (x) log(x) = -1, which by The- orem 1.1 is equivalent to F ∈ M with M -index 1.
(ii) Application of Theorem 2.2

Let us prove that

lim x→∞ log x b F (t )d t log(x) = 0. Suppose 2 n ≤ x < 2 n+1 and consider a ∈ N such that a < n. Choose w.l.o.g. b = 2 a .
Then the Peter and Paul distribution [START_REF] Hadar | Stochastic Dominance and Diversification[END_REF] satisfies

x b F (t )d t = n-1 k=a 2 k+1 2 k F (t )d t + x 2 n F (t )d t = n-1 k=a 2 -k (2 k+1 -2 k )+(x-2 n )2 -n = n-a+x2 -n -1. Hence log(n -a + x2 -n -1) (n + 1) log(2) ≤ log x b F (t )d t log(x) ≤ log(n -a + x2 -n -1)
n log(2) , and, since 1 ≤ 2 -n x < 2, we obtain lim

x→∞ log x b F (t )d t log(x) = 0.
Moreover, we have

lim x→∞ log xF (x) x b F (t )d t log(x) = 1 + lim x→∞ log F (x) log(x) -lim x→∞ log x b F (t )d t log(x) = 1.
Theorem 2.2 allows one then to conclude that F ∈ M with M -index 1.

2

Note that the original Karamata Theorem (Theorem 2.1) does not allow one to prove that the Peter and Paul distribution is RV or not, since the converse of (i) in (K3) does not hold, contrarily to Theorem 2.2. Indeed, although we can prove that

lim x→∞ x F (x) x b F (t )d t = lim x,n→∞ x 2 -n n -a + x2 -n -1 = 0, Theorem 2.1 does not imply that F is RV -1 .

Karamata's Tauberian Theorem

Let us recall Karamata's well-known Tauberian Theorem which deals on Laplace-Stieltjes (L-S) transforms and RV functions.

The L-S transform of a positive, right continuous function U with support R + and with local bounded variation, is defined by

U (s) := (0;∞) e -xs dU (x), s > 0. ( 23 
)
Theorem 2.3. Karamata's Tauberian Theorem (see [START_REF] Karamata | Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche und Stieltjessche Transformation betreffen[END_REF])

If U is a non-decreasing right continuous function with support R + and satisfying U (0 + ) = 0, with finite L-S transform U , then, for α > 0,

U ∈ RV α at infinity ⇐⇒ U ∈ RV α at 0 + .
Now we present the main result of this subsection which extends only partly the Karamata Tauberian Theorem to M .

Theorem 2.4.

Let U be a continuous function with support R + and local bounded variation, satisfying U (0 + ) = 0. Let g be defined on R + by g (x) = 1/x. Then, for any α > 0,

(i) U ∈ M with M -index (-α) =⇒ U • g ∈ M with M -index (-α). (ii) U • g ∈ M with M -index (-α) and ∃ η ∈ [0; α) : x -η U (x) concave =⇒ U ∈ M with M -index (-α).

Conclusion

We introduced a new class of positive functions with support R + , denoted by M , strictly larger than the class of RV functions at infinity. We extended to M some well-known results given on RV class, which in particular will help to expand EVT beyond RV. This class satisfies a number of algebraic and characteristic properties, and its members U are characterized by a unique real number, called the M -index κ U . Extensions to M of the Karamata Theorems were discussed. Four characterizations of M were provided, one of them being the extension to M of Karamata's well-known theorem restricted to RV class. Furthermore, the cases κ U = ∞ and κ U = -∞ were analyzed and their corresponding classes, denoted by M ∞ and M -∞ respectively, were identified and studied, as done for M . The three sets M ∞ , M -∞ and M are disjoint. Explicit examples of functions not belonging to M ∪ M ±∞ were given.

Note that any result obtained here can be applied to functions with finite support, i.e. finite endpoint x * , by using the change of variable y = 1/(x *x) for x < x * .

This new class seems promising in terms of applications. Several have already been developed, as the ones mentioned in the introduction (see [START_REF] Cadena | New results for tails of probability distributions according to their asymptotic decay[END_REF], [START_REF] Cadena | A simple estimator for the M -index of functions in M[END_REF]). Note also a study comparing the various extensions of the RV class, including this new class (see [START_REF] Cadena | Revisiting extensions of the class of regularly varying functions[END_REF]).

Further investigation will concern a multivariate version of M .

A Proofs of results given in Section 1

A. 

- log (U (x)) log(x) = -ρ U , (24) 
for U ∈ M with finite ρ U defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF].

Let > 0 and define V by

V (x) = 1, 0 < x < 1 x ρ U + , x ≥ 1 Applying Example 1.1 with α = ρ U + with > 0 implies that ρ V = ρ U + , hence ρ V > ρ U . Using Properties 1.1, (ii), provides then that lim x→∞ U (x) V (x) = lim x→∞ U (x)
x ρ U + = 0, so, for n ∈ N * , there exists x 0 > 1 such for all x ≥ x 0 ,

U (x) x ρ U + ≤ 1 n , i.e. n U (x) ≤ x ρ U + .
Applying the logarithm function to this last inequality and dividing it by

-log(x), x ≥ x 0 , gives - log(n) log(x) - log(U (x)) log(x) ≥ -ρ U -, hence - log(U (x)) log(x) ≥ -ρ U -, and then lim x→∞ - log(U (x)) log(x) ≥ -ρ U -.
We consider now the function

W (x) = 1, 0 < x < 1 x ρ U -, x ≥ 1
with > 0 and proceed in the same way to obtain that, for any > 0, lim

x→∞ - log(U (x)) log(x) ≤ -ρ U + . Hence, ∀ > 0, we have -ρ U -≤ lim x→∞ - log(U (x)) log(x) ≤ lim x→∞ - log(U (x)) log(x) ≤ -ρ U +
from which the result follows taking arbitrary. Now we introduce a lemma, on which the proof of Theorem 1.2 will be based.

Lemma A.1. Let U ∈ M with associated M -index κ U defined in [START_REF] Bingham | Regularly varying probability densities[END_REF]. Then necessarily κ U = -ρ U , where ρ U is defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF].

Proof of Lemma A.1. Let U ∈ M with M -index κ U given in (4) and ρ U defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF]. By Theorem 1.1, we have lim

x→∞ log(U (x)) log(x) = ρ U .
Hence, for all > 0 there exists

x 0 > 1 such that, for x ≥ x 0 , U (x) ≤ x ρ U + .
Multiplying this last inequality by x r -1 , r ∈ R, and integrating it on [x 0 ; ∞), we obtain

∞ x 0 x r -1 U (x)d x ≤ ∞ x 0 x ρ U + +r -1 d x
which is finite if r < -ρ U -. Taking ↓ 0 then the supremum on r leads to κ U = -ρ U .

Proof of Theorem 1.2.

The necessary condition is proved by Lemma A.1. The sufficient condition follows from the assumption that ρ U satisfies (2).

Proof of Theorem 1.3.

• Proof of (i)

For U ∈ M , Theorems 1.1 and 1.2 give that lim

x→∞ - log(U (x)) log(x) = -ρ U = κ U with ρ U defined in (2) and κ U in (4). ( 25 
)
Introducing a function γ such that

lim x→∞ γ(x) = 0, (26) 
we can write, for some b > 1, applying the L'Hôpital's rule to the ratio,

lim x→∞   γ(x) + x b log(U (t )) log(t ) d t t log(x)   = lim x→∞ log(U (x)) log(x) = -κ U . ( 27 
)
Suppose κ U = 0. Then we deduce from ( 25) and [START_REF] Karamata | Bemerkung über die vorstehende Arbeit des Herrn Avakumović mit, näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen[END_REF], that

lim x→∞ log(U (x)) γ(x) log(x) + x b log(U (t )) t log(t ) d t = 1. ( 28 
)
Hence, defining the function U (x) := log(U (x))

γ(x) log(x) + x b log(U (t )) t log(t ) d t
, for x ≥ b, we can express U , for x ≥ b, as

U (x) = exp α U (x) + U (x) x b β U (t ) t d t where α U (x) := U (x) γ(x) log(x) and β U (x) := log(U (x)) log(x) . ( 29 
)
It is then straightforward to check that the functions α U , β U and U satisfy the conditions given in Theorem 1.3. Indeed, by ( 26) and ( 28 We want to prove (8) for some functions α, β, and satisfying [START_REF] Bojanic | On a Class of Functions of Regular Asymptotic Behavior[END_REF].

Notice that [START_REF] Karamata | Sur le rapport entre les convergences d'une suite de fonctions et de leurs moments avec application à l'inversion des procédés de sommabilité[END_REF] with κ U = 0 allows one to write that lim

x→∞ log(x U (x)) log(x) = 1.
So applying Theorem 1.1 to the function V defined by V (x) = xU (x), gives that V ∈ M with ρ V = -κ V = 1. Since κ V = 0, we can proceed in the same way as previously, and obtain a representation for V of the form (8), namely, for

d > 1, ∀x ≥ d , V (x) = exp α V (x) + V (x) x d β V (t ) t d t
where α V , β V , V satisfy the conditions of Theorem 1.3 and β V = log(V (x)) log(x) (see [START_REF] Matuszewska | A remark on my paper 'Regularly increasing functions in connection with the theory of L * φ -spaces[END_REF]). Hence we have, for x ≥ d ,

U (x) = V (x) x = exp -log(x) + α V (x) + V (x) x d log(t U (t )) t log(t ) d t = exp α V (x) + ( V (x) -1) log(x) -V (x) log(d ) + V (x) x d log(U (t )) t log(t ) d t .
Noticing that lim

x→∞ α V (x) + ( V (x) -1) log(x) -V (x) log(d ) log(x) = 0, we obtain that U satisfies (8) when setting, for x ≥ d , α U (x) := α V (x) + ( V (x) -1) log(x) - V (x) log(d ), β U (x) := log(U (x)) log(x)
and U := V .

• Proof of (ii)

Let U be a positive function with support R + , bounded on finite intervals. Assume that U can be expressed as [START_REF] Cadena | Revisiting extensions of the class of regularly varying functions[END_REF] for some functions α, β, and satisfying [START_REF] Bojanic | On a Class of Functions of Regular Asymptotic Behavior[END_REF]. We are going to check the sufficient condition given in Properties 1.1, (vi), to prove that

U ∈ M . Since log(U (x)) log(x) = α(x) log(x) + (x) x b β(t ) t d t log(x)
and that, via L'Hôpital's rule,

lim x→∞ x b β(t ) t d t log(x) = lim x→∞ β(x)/x 1/x = lim x→∞ β(x),
then using the limits of α, β, and allows one to conclude.

Proof of Properties 1.1.

• Proof of (i)

Let us prove this property by contradiction.

Suppose there exist ρ and ρ , with ρ < ρ, both satisfying (2), for U ∈ M . Choosing = (ρ -ρ )/2 in (2) gives lim x→∞ U (x)

x ρ + = 0 and lim

x→∞ U (x) x ρ-= lim x→∞ U (x)
x ρ + = ∞, hence the contradiction.

• Proof of (ii)

Choosing = (ρ U -ρ V )/2, we can write V (x) U (x) = V (x) x ρ V + x ρ V + U (x) = V (x) x ρ V + U (x) x ρ U - -1
, from which we deduce (ii).

• Proof of (iii)

Let U ,V ∈ M , a > 0, > 0 and suppose w.l.o.g. that ρ U ≤ ρ V . Since ρ V -ρ U > 0, writing aU (x) x ρ V ± = a ρ V -ρ U U (x) x ρ U ± gives lim x→∞ aU (x) + V (x)
x ρ V + = 0 and lim x→∞ aU (x) + V (x)

x ρ V - = ∞, we conclude thus that ρ aU +V = ρ U ∨ ρ V .

• Proof of (iv)

It is straightforward since (2) can be rewritten as

lim x→∞ 1/U (x)
x -ρ U -= ∞ and lim x→∞ 1/U (x)

x -ρ U + = 0.

• Proof of (v)

First, let us consider U ∈ M with ρ U < -1.

Choosing 0 = -(ρ U + 1)/2 (> 0) in (2) implies that there exist C > 0 and

x 0 > 1 such that, for x ≥ x 0 , U (x) ≤ C x ρ U + 0 = C x (ρ U -1)/2
, from which we deduce that

∞ x 0 U (x) d x < ∞.
We conclude that

∞ 0 U (x) d x < ∞ because U is bounded on finite intervals. Now suppose that ρ U > -1.
Choosing 0 = (ρ U +1)/2 (> 0) in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF] gives that for C > 0 there exists x 0 > 1 such that,

for x ≥ x 0 , U (x) ≥ C x (ρ U -1)/2 ∞ 0 U (x) d x ≥ ∞ x 0 U (x) d x ≥ ∞.
• Proof of (vi)

Assuming -∞ < lim x→∞ log (U (x)) log(x)
< ∞, we want to prove that U satisfies (2), which implies that U ∈ M .

So let us prove (2).

Consider ρ = lim x→∞ log (U (x)) log(x) well defined under our assumption, and from which we can deduce that,

∀ > 0, ∃x 0 > 1 such that, ∀x ≥ x 0 , - 2 ≤ log (U (x)) log(x) -ρ ≤ 2 .
Therefore we can write that, for x ≥ x 0 , on one hand,

0 ≤ U (x) x ρ+ = exp log (U (x)) log(x) -ρ -log(x) ≤ exp - 2 log(x) -→ x→∞ 0,
and on the other hand,

U (x) x ρ-= exp log (U (x)) log(x) -ρ + log(x) ≥ exp 2 log(x) -→ x→∞ ∞,
hence the result.

Proof of Properties 1.2.

Let U , V ∈ M with ρ U and ρ V respectively, defined in (2).

• Proof of (i)

It is immediate since lim x→∞ log (U (x)V (x)) log(x) = lim x→∞ log (U (x)) log(x) + log (V (x)) log(x) = ρ U + ρ V • Proof of (ii)
First notice that, since U ,V ∈ M , via Theorems 1.1 and 1.2, for > 0, there exist

x U > 0, x V > 0, such that, for x ≥ x 0 = x U ∨ x V , x ρ U -/2 ≤ U (x) ≤ x ρ U + /2 and x ρ V -/2 ≤ V (x) ≤ x ρ V + /2 . Assume ρ U ≤ ρ V < -1. Hence, via Properties 1.1, (v), both U and V are inte- grable on R + . Choose ρ = ρ V .
Via the change of variable s = xt , we have, ∀ x ≥ 2x 0 > 0,

U * V (x) x ρ+ = x/2 0 U (t ) V (x -t ) x ρ+ d t + x x/2 U (t ) V (x -t ) x ρ+ d t ≤ 1 x /2 x/2 0 U (t ) 1 - t x ρ V + /2 d t + 1 x ρ V -ρ U + /2 x/2 0 V (s) 1 - s x ρ U + /2 d s ≤ max 1, c ρ V + /2 x /2 x/2 0 U (t )d t + max 1, c ρ U + /2 x ρ V -ρ U + /2 x/2 0 V (s)d s, since, for 0 ≤ t ≤ x/2, i.e. 0 < c < 1 2 ≤ 1 - t x ≤ 1, 1 - t x ρ V + /2 ≤ max 1, c ρ V + /2 and 1 - t x ρ U + /2 ≤ max 1, c ρ U + /2 .
Hence we obtain, U and V being integrable, and since ρ

V -ρ U + /2 > 0, lim x→∞ max 1, c ρ V + /2
x /2

x/2 0 U (t )d t = 0 and lim

x→∞ max 1, c ρ U + /2 x ρ V -ρ U + /2 x/2 0 V (s)d s = 0,
from which we deduce that, for any > 0, lim

x→∞ U * V (x) x ρ+ = 0.
Applying Fatou's Lemma, then using that V ∈ M with ρ V = ρ, gives, for any ,

lim x→∞ U * V (x) x ρ- ≥ lim x→∞ 1 0 U (t ) V (x -t ) x ρ-d t ≥ lim x→∞ 1 0 U (t ) V (x -t ) x ρ-d t ≥ 1 0 U (t ) lim x→∞ V (x -t ) x ρ- d t = ∞.
We can conclude that

U * V ∈ M with ρ U * V = ρ V . Assume ρ U < -1 < 0 ≤ ρ V . Therefore U is integrable on R + , but not V (Proper- ties 1.1, (v)). Choose ρ = ρ V . Using the change of variable s = x -t , we have, ∀ x ≥ 2x 0 > x 0 (> 0), U * V (x) x ρ+ = x-x 0 0 U (t ) V (x -t ) x ρ+ d t + x x-x 0 U (t ) V (x -t ) x ρ+ d t = x-x 0 0 U (t ) V (x -t ) x ρ+ d t + x 0 0 V (s) U (x -s) x ρ+ d s ≤ x-x 0 0 U (t ) (x -t ) ρ V + /2
x ρ+ d t +

x 0 0 V (s) (x -s) ρ U + /2 x ρ+ d s = 1 x /2 x-x 0 0 U (t ) 1 - t x ρ V + /2 d t + 1 x ρ V -ρ U + /2 x 0 0 V (s) 1 - s x ρ U + /2 d s.
Noticing that for 0 ≤ t ≤ x-x 0 , so 1 -

t x ρ V + /2
≤ 1, and for 0

≤ s ≤ x 0 < 2x 0 ≤ x, 0 < c < 1 2 ≤ 1 - x 0 x ≤ 1 - s x ≤ 1, so 1 - s x ρ U + /2
≤ max 1, c ρ U + /2 , we obtain

U * V (x) x ρ+ ≤ 1 x /2 x-x 0 0 U (t )d t + max 1, c ρ U + /2 x ρ V -ρ U + /2 x 0 0 V (s)d s .
Since U is integrable, V bounded on finite intervals, and ρ V -ρ U + /2 > 0, we have

lim x→∞ 1 x /2 x-x 0 0 U (t )d t = 0 and lim x→∞ max 1, c ρ U + /2 x ρ V -ρ U + /2 x 0 0 V (t )d t = 0.
therefore, for any > 0, we have lim

x→∞ U * V (x) x ρ+ = 0.
Applying Fatou's Lemma, then using that V ∈ M with ρ V = ρ, gives, for any ,

lim x→∞ U * V (x) x ρ- ≥ lim x→∞ 1 0 U (t ) V (x -t ) x ρ-d t ≥ lim x→∞ 1 0 U (t ) V (x -t ) x ρ-d t ≥ 1 0 U (t ) lim x→∞ V (x -t ) x ρ- d t = ∞.
We can conclude that

U * V ∈ M with ρ U * V = ρ V . Assume -1 < ρ U ≤ ρ V . Then both U and V are not integrable on R + (Proper- ties 1.1, (v)). Choose ρ = ρ U + ρ V + 1. Let 0 < < ρ U + 1. Since V is not integrable on R + , we have x 0 V (t )d t → x→∞ ∞.
So we can apply the L'Hôpital's rule and obtain

lim x→∞ x 0 V (t )d t x ρ V +1+ = lim x→∞ x 0 V (t )d t x ρ V +1+ = lim x→∞ V (x) (ρ V + 1 + )x ρ V + = 0 and lim x→∞ x 0 V (t )d t x ρ V +1-= lim x→∞ x 0 V (t )d t x ρ V +1- = lim x→∞ V (x) (ρ V + 1 -)x ρ V -= ∞, from which we deduce that W V (x) := x 0 V (t )d t ∈ M with M -index ρ V + 1.
We obtain in the same way that W U (x) :

= x 0 U (t )d t ∈ M with M -index ρ U +1.

We have, via the change of variable

s = x -t , ∀ x ≥ 2x 0 > 0, U * V (x) x ρ+ = x/2 0 U (t ) V (x -t ) x ρ+ d t + x x/2 U (t ) V (x -t ) x ρ+ d t ≤ 1 x ρ U +1+ /2 x/2 0 U (t ) 1 - t x ρ V + /2 d t + 1 x ρ V +1+ /2 x/2 0 V (s) 1 - s x ρ U + /2 d s ≤ max 1, c ρ V + /2 W U (x/2) x ρ U +1+ /2 + max 1, c ρ U + /2 W V (x/2) x ρ V +1+ /2 ,
and

U * V (x) x ρ- = x/2 0 U (t ) V (x -t ) x ρ-d t + x x/2 U (t ) V (x -t ) x ρ-d t ≥ 1 x ρ U +1-/2 x/2 0 U (t ) 1 - t x ρ V -/2 d t + 1 x ρ V +1-/2 x/2 0 V (s) 1 - s x ρ U -/2 d s ≥ min 1, c ρ V -/2 W U (x/2) x ρ U +1-/2 + min 1, c ρ U -/2 W V (x/2) x ρ V +1-/2 , since, for 0 ≤ t ≤ x/2, i.e. 0 < c < 1 2 ≤ 1 - t x ≤ 1, min 1, c ρ V -/2 ≤ 1 - t x ρ V -/2 ≤ 1 - t x ρ V + /2 ≤ max 1, c ρ V + /2 and min 1, c ρ U -/2 ≤ 1 - t x ρ U -/2 ≤ 1 - t x ρ U + /2 ≤ max 1, c ρ U + /2 .
Hence, for any 0 < < ρ U + 1, we have lim

x→∞ U * V (x) x ρ+ = 0 and lim x→∞ U * V (x) x ρ- = ∞. We can conclude that U * V ∈ M with ρ U * V = ρ U + ρ V + 1.
• Proof of (iii)

It is straightforward, since we can write, with y = V (x) → ∞ as x → ∞,

lim x→∞ log(U (V (x))) log(x) = lim y→∞ log(U (y)) log(y) × lim x→∞ log(V (x)) log(x) = ρ U ρ V Hence we obtain ρ U •V = ρ U ρ V .

A.2 Proofs of results concerning M ∞ and M -∞

Proof of Theorem 1.4.

It is enough to prove [START_REF] Daley | The Moment Index of Minima[END_REF] because by this equivalence and Properties 1.3, (i), one has

U ∈ M -∞ ⇐⇒ 1/U ∈ M ∞ ⇐⇒ lim x→∞ - log (1/U (x)) log(x) = ∞ ⇐⇒ lim x→∞ - log (U (x)) log(x) = -∞,
i.e. [START_REF] Daley | The moment index of minima (II)[END_REF].

• Let us prove that U ∈ M ∞ =⇒ lim x→∞ log (U (x)) log(x) = -∞.
Suppose U ∈ M ∞ . This implies that for all ρ ∈ R, one has lim x→∞ U (x) x ρ = 0, i.e. for all > 0 there exists

x 0 > 1 such that, for x ≥ x 0 , U (x) ≤ x ρ which implies log (U (x)) log(x) ≤ log( ) log(x) + ρ, hence lim x→∞ log (U (x)) log(x)
≤ ρ and the statement follows since the argument applies for all ρ ∈ R.

• Now let us prove that lim

x→∞ - log (U (x)) log(x) = ∞ =⇒ U ∈ M ∞ .
For any ρ ∈ R, we can write

lim x→∞ - log U (x) x ρ log(x) = lim x→∞ - log (U (x)) log(x) + ρ = ∞ under the hypothesis, which implies that U (x) x ρ < 1 and hence lim x→∞ U (x) x ρ = 0.
Proof of Theorem 1.5.

• Proof of (i)-(a)

Suppose U ∈ M ∞ . Then, by definition [START_REF] Cadena | New results for tails of probability distributions according to their asymptotic decay[END_REF], for any ρ ∈ R, lim x→∞ x ρ U (x) = 0, which implies that for c > 0, there exists x 0 > 1 such that, for all x ≥ x 0 , U (x) ≤ c x -ρ , from which we deduce that

∞ x 0 x r -1 U (x)d x ≤ c ∞ x 0 x r -1-ρ d x
which is finite whenever r < ρ. This result holds also on (1; ∞) since U is bounded on finite intervals.

Thus we conclude that κ U = ∞, ρ being any real number.

• Proof of (i)-(b)

Note that U is integrable on R + since ∞ 1

x r -1 U (x)d x < ∞, for any r ∈ R, in particular for r = 1. Moreover U is bounded on finite intervals.

For r > 0, we have, via the continuity of U ,

∞ 0 x r +1 dU (x) = (r + 1) ∞ 0 x 0 y r d y dU (x) = (r + 1) ∞ 0 y r ∞ y dU (x) d y, which implies, since lim x→∞ U (x) = 0, that - ∞ 0 x r +1 dU (x) = (r + 1) ∞ 0 y r U (y)d y, (30) 
which is positive and finite. Now, for t > 0, we have, integrating by parts and using again the continuity of U ,

t r +1 U (t ) = (r + 1) t 0 x r U (x)d x + t 0 x r +1 dU (x)
where the integrals on the right hand side of the equality are finite as t → ∞ and their sum tends to 0 via [START_REF] Mikosch | Non-Life Insurance Mathematics[END_REF]. This implies that, ∀r > 0, t r +1 U (t ) → 0 as t → ∞.

For r ≤ 0, we have, for t ≥ 1, using the previous result,

t r +1 U (t ) ≤ t 2 U (t ) → 0 as t → ∞.
This completes the proof that U ∈ M ∞ .

• Proof of (ii)-(a)

Suppose U ∈ M -∞ . Then, by definition [START_REF] Cline | Intermediate Regular and Π Variation[END_REF], for any ρ ∈ R, we have lim

x→∞ U (x)
x ρ = ∞, which implies that for c > 0, there exists x 0 > 1 such that, for all x ≥ x 0 , U (x) ≥ c x ρ , from which we deduce that, U being bounded on finite intervals,

∞ 1 x r -1 U (x)d x ≥ c ∞ x 0 x r -1+ρ d x which is infinite whenever r ≥ -ρ.
The argument applying for any ρ, we conclude that κ U = -∞.

• Proof of (ii)-(b)

Let r ≥ 0. We can write, for s + 2 < 0 and t > 1, 0 ≥ -

t 1 x s+1 d x r U (x) (x r U (x) being non-decreasing) = t 1 t x d y s+1 -t s+1 d x r U (x) = t 1 y s+1 y 1 d x r U (x) d y -t s+1 t 1 d x r U (x) = t 1 y s+r +1 U (y)d y - t s+2 -1 s + 2 U (1) -t s+1 t r U (t ) -U (1) ( U being continue).
Hence we obtain, as t → ∞, t s+r +1 U (t ) → ∞ since t 1 y s+r +1 U (y)d y → ∞ and t s+2 s + 2 + t s+1 → 0 (under the assumption s < -2).

This implies that U ∈ M -∞ since s + r + 1 ∈ R.
Proof of Remark 1.6 -1.

Set A = ∞ 1 e -x d x = e -1 and let us prove that U ∈ M ∞ . If r > 0, then ∞ 1 x r U (x)d x ≤ A + ∞ n=1 n+1/n n n x r U (x)d x = A + ∞ n=1 n+1/n n n x r -1 d x ≤ A + ∞ n=1 n+1/n n n x r -1 d x = A + 1 r ∞ n=1 (n + 1/n n ) r -n r d x = A + 1 r ∞ n=1 n -(n-1) r -1 r -1 k=0 (1 + 1/n n-1 ) k < ∞ .
If r ≤ 0, then we can write

∞ 1 x r U (x)d x ≤ ∞ 1 xU (x)d x, which is finite using the previ- ous result with r = 1. Now, let us prove U ∈ M ∞ by contradiction. Suppose U ∈ M ∞ . Then Theorem 1.4 implies that lim x→∞ log (U (x)) log(x) = -∞, which contra- dicts lim n→∞ log (U (n)) log(n) = lim n→∞ log (1/n) log(n) = -1 > -∞.
Proof of Theorem 1.6.

• Proof of (i)

Suppose U ∈ M ∞ . By Theorem 1.4, we have lim x→∞ - log(U (x)) log(x) = ∞. It implies that there exists b > 1 such that, for x ≥ b, β(x) := - log(U (x)) log(x) > 0. Defining, for x ≥ b, α(x) := β(x) log(x), gives (i). 
• Proof of (ii)

Suppose U ∈ M -∞ . By Properties 1.3, (i), 1/U ∈ M ∞ .
Applying the previous result to 1/U implies that there exists a positive function α satisfying α(x)/ log(x)

→ x→∞ ∞ such that 1/U (x) = exp(-α(x)), x ≥ b for some b > 1. Hence we get U (x) = exp(-α(x)), x ≥ b, as required.
• Proof of (iii)

Assume that U satisfies, for x ≥ b, U (x) = exp(-α(x)), for some b > 1 and α satis-

fying α(x)/ log(x) → x→∞ ∞. A straightforward computation gives lim x→∞ - log(U (x)) log(x) = lim x→∞ α(x) log(x) = ∞. Hence U ∈ M ∞ .
We can proceed exactly in the same way when supposing that U satisfies, for x ≥ b, U (x) = exp(α(x)) for some b > 1 and α satisfying α(x)/ log(x)

→ x→∞ ∞, to conclude that U ∈ M -∞ .
Proof of Properties 1.3.

• Proof of (i)

It is straightforward since, for ρ ∈ R, lim x→∞ U (x) x ρ = 0 ⇐⇒ lim x→∞ 1/U (x)
x -ρ = ∞.

• Proof of (ii)

Suppose (U ,V ) ∈ M -∞ × M with ρ V defined in (2). Let > 0. Writing V (x) U (x) = V (x) x ρ V + U (x) x ρ V + -1
, we obtain lim

x→∞ V (x) U (x) = 0 since V ∈ M with ρ V satisfying (2) and U satisfies (11) with ρ U = ρ V + ∈ R. Suppose (U ,V ) ∈ M -∞ × M ∞ . Let ρ > 0. We have lim x→∞ V (x) U (x) = lim x→∞ V (x) x ρ U (x) x ρ -1
= 0 since V satisfies [START_REF] Cadena | New results for tails of probability distributions according to their asymptotic decay[END_REF] and U [START_REF] Cline | Intermediate Regular and Π Variation[END_REF].

Suppose (U ,V ) ∈ M × M ∞ with ρ U defined in [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF].

By Properties 1.1, (iv), and Properties 1.3, (i), we have

(1/U , 1/V ) ∈ M × M -∞ .
The result follows because lim

x→∞ V (x) U (x) = lim x→∞ 1/U (x) 1/V (x) = 0.
• The proof of (iii) is immediate.

Proof of Properties 1.4. Let U , V ∈ M with M -index κ U and κ V respectively.

• Proof of (i)

It is straightforward as lim x→∞ log (U (x)V (x)) log(x) = lim x→∞ log (U (x)) log(x) + log (V (x)) log(x) .
• Proof of (ii)

We distinguish the next three cases.

(a) Let U ∈ M ∞ and V ∈ M with ρ V ∉ [-1, 0). Let W (x) = x η 1 (x≥1) + 1 (0<x<1) , with η = -2 if ρ V ≥ 0, or η = ρ V -1 if ρ V < -1. Note that W ∈ M with ρ W = η < ρ V .
By Properties 1.3, (ii), lim x→∞ U (x) W (x) = 0, so for 0 < δ < 1, there exists x 0 ≥ 1 such that, for all x ≥ x 0 , U (x) ≤ δW (x).

Consider Z defined by Z (x) = U (x)1 (0<x<x 0 ) +W (x)1 (x≥x 0 ) , which satisfies Z ≥ U and

Z ∈ M with ρ Z = ρ W = η < ρ V . Applying Properties 1.2, (ii), gives Z * V ∈ M with ρ Z * V = ρ Z ∨ ρ V = ρ V (
note that the restriction on ρ v corresponds to the condition given in Properties 1.2, (ii)).

We deduce that, for any x > 0, U * V (x) ≤ Z * V (x), and, for > 0,

U * V (x) x ρ V + ≤ Z * V (x) x ρ V + → x→∞ 0 .
Moreover, applying Fatou's Lemma gives

lim x→∞ U * V (x) x ρ V -≥ lim x→∞ 1 0 U (t ) V (x -t ) x ρ V -d t ≥ lim x→∞ 1 0 U (t ) V (x -t ) x ρ V -d t ≥ 1 0 U (t ) lim x→∞ V (x -t ) x ρ V - d t = ∞. Therefore, U * V ∈ M with M -index ρ U * V = ρ V . (b) (U ,V ) ∈ M ∞ × M ∞ , then U * V ∈ M ∞ Let ρ ∈ R.
Consider U ∈ M ∞ . We have, applying Theorem 1.4, lim x→∞ log(U (x)) log(x) = -∞. Rewriting this limit as

lim x→∞ log(U (x)) log(1/x) = ∞
we deduce that, for c ≥ |ρ|+1 > 0, there exists x U > 1 such that, for x ≥ x U , log(U (x)) ≤ c log(1/x), i.e. U (x) ≤ x -c . On V ∈ M ∞ , a similar reasoning leads to that there exists

x V > 1 such that, for x ≥ x V , V (x) ≤ x -c .
Using the change of variable s = xt , we have,

∀ x ≥ 2 max(x U , x V ) > 0, U * V (x) x ρ = x/2 0 U (t ) V (x -t ) x ρ d t + x x/2 U (t ) V (x -t ) x ρ d t ≤ 1 x ρ+c x/2 0 U (t ) 1 - t x -c d t + 1 x ρ+c x/2 0 V (s) 1 - s x -c d s ≤ 2 c x ρ+c x/2 0 U (t )d t + 2 c x ρ+c x/2 0 V (s)d s, since, for 0 ≤ t ≤ x/2, i.e. 0 < 1 2 ≤ 1 - t x ≤ 1, 1 - t x -c ≤ 2 c .
This implies, via the integrability of U and V , for ρ ∈ R,

lim x→∞ U * V (x) x ρ = 0. Hence U * V ∈ M ∞ . (c) Let U ∈ M -∞ and V ∈ M or M ±∞ .
We apply Fatou's Lemma, as in (a), to obtain, for any ρ ∈ R,

lim x→∞ U * V (x) x ρ ≥ lim x→∞ 1 0 V (t ) U (x -t ) x ρ d t ≥ 1 0 V (t ) lim x→∞ U (x -t ) x ρ d t = ∞.
We conclude that U * V ∈ M -∞ .

• Proof of (iii)

First, note that if V ∈ M -∞ , then lim x→∞ V (x) = ∞. Hence writing log (U (V (x))) log(x) = log U (y) log(y) × log (V (x)) log(x) , with y = V (x)
allows one to conclude.

A.3 Proofs of results concerning O

Proof of Example 1.5.

Let x ∈ [x n , x n+1 ), n ≥ 1. We can write log (U (x)) log(x) = log x α(1+β) n log(x) = α(1 + β) log (x n ) log(x) . ( 31 
) Since log(x n ) ≤ log(x) < log(x n+1 ) = (1 + α) log(x n ), we obtain α(1 + β) 1 + α < log (U (x)) log(x) ≤ α(1 + β), if 1 + β > 0,
and

α(1 + β) ≤ log (U (x)) log(x) < α(1 + β) 1 + α , if 1 + β < 0, from which we deduce µ(U ) ≥ α(1 + β) 1 + α and ν(U ) ≤ α(1 + β), if 1 + β > 0,
and

µ(U ) ≥ α(1 + β) and ν(U ) ≤ α(1 + β) 1 + α , if 1 + β < 0.
Moreover, taking x = x n in (31) leads to

lim n→∞ log (U (x n )) log(x n ) = α(1 + β) which implies ν(U ) ≥ α(1 + β), if 1 + β > 0 and µ(U ) ≤ α(1 + β), if 1 + β < 0.
Hence, to conclude, it remains to prove that

µ(U ) ≤ α(1 + β) 1 + α , if 1 + β > 0, and ν(U ) ≥ α(1 + β) 1 + α , if 1 + β < 0.
If 1 + β > 0, the function log (U (x)) / log(x) is strictly decreasing continuous on (x n ; x n+1 ) reaching the supremum value α(1 + β) and the infimum value α(1 + β)/(1 + α). Hence, for δ > 0 such that α(1 + β)

1 + α < α(1 + β) 1 + α + δ < α(1 + β), there exists x n < y n < x n+1 satisfying log U (y n ) log(y n ) = α(1 + β) 1 + α + δ. Since y n → ∞ as n → ∞ because x n → ∞ as n → ∞, µ(U ) ≤ lim n→∞ log U (y n ) log(y n ) = α(1 + β) 1 + α +δ follows. Hence we conclude µ(U ) ≤ α(1 + β)
1 + α since δ is arbitrary.

If 1 + β < 0, a similar development to the case 1 + β > 0 allows proving ν(U ) ≥ α(1 + β)

1 + α .
Moreover, if 1+β < 0 we have that U is a tail of distribution. Let us check that the rv having a tail of distribution F = U has a finite sth moment whenver 0 ≤ s < -α(1 + β)/(1 + α).

Let s ≥ 0. We have

∞ 0 x s d F (x) = ∞ n=1 x s n U (x - n ) -U (x + n ) = ∞ n=2 x s n x α(1+β) n-1 -x α(1+β) n = ∞ n=2 x s n x α(1+β) 1+α n -x α(1+β) n ≤ ∞ n=2 x s+ α(1+β) 1+α n < ∞ because s < -α(1 + β)/(1 + α). Note that if s ≥ -α(1 + β)/(1 + α), ∞ 0 x s d F (x) = ∞.
Proof of Example 1.6.

If α > 0, ν(U ) = ∞ comes from ν(U ) = lim x→∞ log (U (x)) log(x) ≥ lim x n →∞ log (U (x n )) log(x n ) = lim x n →∞ αx n log(2) log(x n ) = ∞, and, if α < 0, µ(U ) = -∞ comes from µ(U ) = lim x→∞ log (U (x)) log(x) ≤ lim x n →∞ log (U (x n )) log(x n ) = lim x n →∞ αx n log(2) log(x n ) = -∞.
Next, let > 0 be small enough. Then, we have, if α > 0,

µ(U ) = lim x→∞ log (U (x)) log(x) ≤ lim x n →∞ log (U (x n -)) log(x n -) = lim x n →∞ log (2 αx n-1 ) log(2 x n-1 /c ) log(2 x n-1 /c ) log(2 x n-1 /c -) = lim x n →∞ log (2 αx n-1 ) log(2 x n-1 /c ) = αc, and, if α < 0, ν(U ) = lim x→∞ log (U (x)) log(x) ≥ lim x n →∞ log (U (x n -)) log(x n -) = lim x n →∞ log (2 αx n-1 ) log(2 x n-1 /c ) log(2 x n-1 /c ) log(2 x n-1 /c -) = lim x n →∞ log (2 αx n-1 ) log(2 x n-1 /c ) = αc.
It remains to prove that, if α > 0, µ(U ) ≥ αc, and, if α < 0, ν(U ) ≤ αc. It follows from the fact that, for

x n ≤ x < x n+1 , log (U (x)) log(x) = α x n log (2) log(x) = αc log (x n+1 ) log(x) > αc, if α > 0 < αc, if α < 0.
Next, if α < 0 we have that U is a tail of distribution. Let us check that the rv having a tail of distribution F = U has a finite sth moment whenever 0 ≤ s < -αc.

Let s > 0 and denote x 0 = 0. We have

∞ 0 x s d F (x) = ∞ n=1 x s n U (x - n ) -U (x + n ) = ∞ n=1 x s n 2 αx n-1 -2 αx n ≤ ∞ n=1 2 (s/c-α)x n-1 < ∞, because s < -αc.
If s = 0, let = -αc/2 (> 0) and the statement follows from

∞ 0 d F (x) = 1 0 d F (x)+ ∞ 1 d F (x) ≤ 1 0 d F (x) + ∞ 1 x α d F (x) < ∞. Note that if s ≥ -αc, ∞ 0 x s d F (x) = ∞.

B Proofs of results given in Section 2 B.1 Section 2.1

Let us introduce the following functions that will be used in the proofs.

We define, for some b > 0 and r ∈ R,

V r (x) = x b y r U (y)d y, x ≥ b 1, 0 < x < b ; W r (x) = ∞ x y r U (y)d y, x ≥ b 1, 0 < x < b. ( 32 
)
For the main result, we will need the following lemma which is of interest on its own. (i) Consider V r defined in [START_REF] Resnick | On the Foundations of Multivariate Heavy-Tail Analysis[END_REF] with r + 1 > κ U . Then V r ∈ M and its M -index κ V r satisfies κ V r = κ U -(r + 1).

(ii) Consider W r defined in [START_REF] Resnick | On the Foundations of Multivariate Heavy-Tail Analysis[END_REF] with r + 1 < κ U . Then W r ∈ M and its M -index κ W r satisfies κ W r = κ U -(r + 1).

Proof of Theorem 2.2.

• Proof of the necessary condition of (K1 * )

As an immediate consequence of Lemma B.1, (i), we have, assuming that ρ + r > 0:

U ∈ M with M -index κ U = -ρ such that (r -1) + 1 = r > -ρ = κ U =⇒ V r -1 (x) = x b t r -1 U (t )d t ∈ M with M -index κ V r -1 = κ U -r = -ρ -r
Hence, by applying Theorems 1.1 and 1.2 to V r -1 , the result follows:

lim x→∞ log x b t r -1 U (t )d t log(x) = lim x→∞ log (V r -1 (x)) log(x) = -κ V r -1 = ρ + r > 0.
• Proof of the sufficient of (K1 * )

Using (C 1r ) and lim

x→∞ log x b t r -1 U (t )d t log(x) = ρ + r gives lim x→∞ - log (U (x)) log(x) = lim x→∞ - log x r U (x) x b t r -1 U (t )d t + log x -r x b t r -1 U (t )d t log(x) = r + lim x→∞ - log x b t r -1 U (t )d t log(x) = r -(ρ + r ) = -ρ,
and the statement follows.

• Proof of the necessary condition of (K2 * )

As an immediate consequence of Lemma B.1, (ii), we have, assuming that ρ + r < 0:

U ∈ M with M -index κ U = -ρ such that (r -1) + 1 = r < -ρ = κ U =⇒ W r -1 (x) = ∞ x t r -1 U (t )d t ∈ M with M -index κ W r -1 = κ U -r = -ρ -r
Hence, by applying Theorems 1.1 and 1.2 to W r -1 , the result follows:

lim x→∞ log ∞ x t r -1 U (t )d t log(x) = lim x→∞ log (W r -1 (x)) log(x) = -κ W r -1 = ρ + r < 0.
• Proof of the sufficient of (K2 * )

Using (C 2r ) and lim

x→∞ log ∞ x t r -1 U (t )d t log(x) = ρ + r gives lim x→∞ - log (U (x)) log(x) = lim x→∞ - log x r U (x) ∞ x t r -1 U (t )d t + log x -r ∞ x t r -1 U (t )d t log(x) = r + lim x→∞ - log ∞ x t r -1 U (t )d t log(x) = r -(ρ + r ) = -ρ
and the statement follows.

• Proof of the necessary condition of (K3 * ); case

∞ b t r -1 U (t )d t = ∞ with b > 1.
On one hand, assumed ρ

+ r = 0, U ∈ M with M -index κ U = -ρ implies, for any > 0, lim x→∞ U (x) x ρ+ = 0 and lim x→∞ U (x) x ρ-= ∞ (33) 
On the other hand,

∞ b t r -1 U (t )d t = ∞ implies lim x→∞ x b t r -1 U (t )d t = ∞.
Hence we can apply the L'Hôpital's rule to the first limit of (33) to get, for any > 0,

lim x→∞ x b t r -1 U (t )d t x = lim x→∞ x r -1 U (x) x -1+ = lim x→∞ U (x)
x -r -1+ = lim A similar proof used to prove the sufficient condition of (K1 * ).

Proof of Lemma B.1.

• Proof of (i)

Let us prove that V r defined in [START_REF] Resnick | On the Foundations of Multivariate Heavy-Tail Analysis[END_REF] belongs to M with M -index κ V r = κ U -(r + 1).

Choose ρ = -κ U + r + 1 > 0 and 0 < < ρ. Note that x ρ± → ∞ as ρ ± > 0.

Combining, for x > 1, under the assumption r + 1 > κ U , and for U ∈ M , x ρ+δ = lim x→∞ (V r (x))

x ρ+δ = 0 if δ = ∞ if δ = -,
which implies that V r ∈ M with M -index κ V r = -ρ = κ U -(r + 1), as required.

• Proof of (ii)

First let us check that W r is well-defined. Let δ = (κ Ur -1)/2 (> 0 by assumption).

We have, for U ∈ M , lim x→∞ U (x)

x -κ U +δ = 0, which implies that for c > 0 there exists x 0 ≥ 1 such that for all x ≥ x 0 , U (x)

x -κ U +δ ≤ c. because of -κ U + r + 1 < 0. Then, we can conclude, U being bounded on finite intervals, that W r is well-defined.

Now choose ρ = -κ U + r + 1 < 0 and 0 < < -ρ. We have x ρ± → 0 as ρ ± < 0. We will proceed as in (i). x ρ+δ = lim x→∞ (W r (x))

x ρ+δ = 0 if δ = ∞ if δ = -,
which implies that W r ∈ M with M -index κ W r = -ρ = κ U -(r + 1).

B.2 Section 2.2

Proof of Theorem 2.4.

• Proof of (i)

Changing the order of integration in (23), using the continuity of U and the assumption U (0 + ) = 0, give, for s > 0, Let U ∈ M with M -index (-α) < 0. Let 0 < < α.

U (s) = s
We have, via Theorems 1.1 and 1.2, that there exists x 0 > 1 such that, for x ≥ x 0 ,

x α-≤ U (x) ≤ x α+ .
Hence, for s > 1, we can write The conclusion follows, applying Theorem 1.1, to get U • g ∈ M with g (s) = 1/s, (s > 0), and, Theorem 1.2, for the M -index.

• Proof of (ii) Let 0 < < α.

Since we assumed U (0 + ) = 0, we have, for s > 1,

e -1 U (s) ≤ (0;s) e -x s dU (x) ≤ (0;∞) e -x s dU (x) = U 1 s . ( 36 
)
Changing the order of integration in the last integral (on the right hand side of the previous equation), and using the continuity of U and the fact that U (0 + ) = 0, gives, for s > 0, From these last two limits, we obtain that U ∈ M with M -index (-α).

Definition 1 . 1 .

 11 M is the class of positive and measurable functions U with support R + , bounded on finite intervals, such that∃ ρ ∈ R, ∀ε > 0, lim x→∞ U (x) x ρ+ = 0 and lim x→∞ U (x) x ρ-= ∞ .

  ) γ(x) = 0. Using[START_REF] Karamata | Sur le rapport entre les convergences d'une suite de fonctions et de leurs moments avec application à l'inversion des procédés de sommabilité[END_REF], we obtain limx→∞ β U (x) = lim x→∞ log(U (x)) log(x) = -κ U = ρ U .Finally, by[START_REF] Maller | A note on Karamata's generalised regular variation[END_REF], we have limx→∞ U (x) = 1 .Now suppose κ U = 0.

Lemma B. 1 .

 1 Let U ∈ M with finite M -index κ U and let b > 0.

- 1 U•

 1 (t )d t lim x→∞ x = ∞ × ∞ = ∞(35)Defining V r -1 as in[START_REF] Resnick | On the Foundations of Multivariate Heavy-Tail Analysis[END_REF] we deduce from[START_REF] Shaked | Stochastic Orders[END_REF] and (35) that V r -1 ∈ M with M -index 0 = ρ + r . So, taking x ≥ b, the required result follows:lim x→∞ log x b t r -1 U (t )d t log(x) = lim x→∞ log (V r -1 (x)) log(x) = ρ + r = 0 Proof of the necessary condition of (K3 * ); case ∞ b t r -1 U (t )d t < ∞ with b > 1.Suppose U ∈ M with M -index κ U = -ρ. By a straightforward computation we havelim x→∞ log x b t r -1 U (t )d t log(x) = log ∞ b t r -1 U (t )d t lim x→∞ log(x) = 0 = ρ + r• Proof of the sufficient condition of (K3 * )

  δ)x -κ U +δ = 0 if δ = ∞ if δ = -, provides, applying the L'Hôpital's rule, lim x→∞ V r (x)

-κ U +r +1 2 - 1

 21 Hence, one has,∀ x ≥ x 0 , ∞ x y r U (y)d y ≤ c ∞ x y -κ U +δ+r d y = c ∞ x y d y < ∞

For x > 1 ,

 1 under the assumption r + 1 < κ U , for U ∈ M , we have lim x→∞ W r (x) = ∞ x y r U (y)d y = 0, and lim x→∞(W r (x)) δ)x -κ+δ = 0 if δ = ∞ if δ = -.Hence applying the L'Hôpital's rule gives lim x→∞ W r (x)

ee

  -xs U (x)d x ,or, with the change of variable y = x/s, -y U (s y)d y.

∞ x 0 e

 0 /s e -x (xs) α-d x ≤ ∞ x 0 /s e -x U (xs)d x ≤ ∞ x 0 /s e -x (xs) α+ d x so x 0 /s 0 e -x U (xs)d x + ∞ x 0 /s e -x x α--x U (xs)d x + ∞ x 0 /s e -x x α+ d x s -α- ,from which we deduce that-α -≤ lim s→∞ -log U (1/s) log(s) ≤ -α + .Then we obtain, being arbitrary, lim s→∞ -log U (1/s) log(s) = -α.

  e -x U (sx)d x.(37)SetI η = (0;∞) e -x x η d x, for η ∈ [0, α) (such that x -η U (x) concave, by assumption).Introducing the function V (x) := I η (sx) -η U (sx), which is concave, and the rv Z having the probability density function defined on R + by e -x x η I η , we can write(0;∞) e -x U (sx)d x = s η (0;∞) V (x) e -x x η I η d x = s η E [V (Z )] ≤ s η V (E [Z ]) ,applying Jensen's inequality. Hence we obtain, using that E [Z ] = I η+1 I η and the definition of V ,(0;∞) e -x U (sx)d x ≤ I η+1 I η s I η+1 I η α-.Therefore, since U • g ∈ M with g (s) = 1/s and M -index (-α), we obtain I U • g ∈ M with M -index (-α) also implies in (36) that e -1 U (s)

.2 Extension of the class M We extend the class M introducing two other classes of functions.

  

					)
	2. The function α defined in Theorem 1.3 is not necessarily bounded, contrarily to the
	case of Karamata representation for RV functions.	
	Example 1.3. Let U ∈ M with M -index κ U . If there exists c > 0 such that U < c, then
	κ U ≥ 0.				
	Indeed, since we have lim x→∞	log (1/U (x)) log(x)	≥ lim x→∞	log (1/c) log(x)	= 0, applying Theorem 1.1 allows
	one to conclude.				2
	1Definition 1.3. M ∞ and M -∞ are the classes of positive measurable functions U with sup-
	port R + , bounded on finite intervals, defined as		

Acknowledgments

Meitner Cadena acknowledges the financial support of SWISS LIFE through its ESSEC research program. Partial support from RARE-318984 (an FP7 Marie Curie IRSES Fellowship) is also kindly acknowledged.