
HAL Id: hal-01181345
https://hal.science/hal-01181345

Preprint submitted on 30 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New results for tails of probability distributions
according to their asymptotic decay

Meitner Cadena, Marie Kratz

To cite this version:
Meitner Cadena, Marie Kratz. New results for tails of probability distributions according to their
asymptotic decay. 2015. �hal-01181345�

https://hal.science/hal-01181345
https://hal.archives-ouvertes.fr


New results for tails of probability distributions
according to their asymptotic decay
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Abstract

This paper provides new properties for tails of probability distributions belonging to
a class defined according to the asymptotic decay of the tails. This class contains the
one of regularly varying tails of distributions. The main results concern the relation
between this larger class and the maximum domains of attraction of Fréchet and
Gumbel.
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1 Introduction

An extension of the class RV of regularly varying (RV) functions has been introduced and
analyzed in details in a recent study ([3]). The characteristic properties of this new larger
class allow one, not only to extend main RV properties, as described in [3], but also to
deepen the understanding of some Tauberian theorems ([4]) and to build in a simple way
an estimator of the tail index on this class, and consequently on the class RV, with a good
rate of convergence ([5]).

In this paper, we focus on the probabilistic side of this large class, providing new results
for tails of distributions belonging to it, according to the asymptotic decay of the tails.

Let us briefly introduce the definition of the sets that will be considered and recall their
characteristic properties.

Let M be the class of measurable functions U :R+ →R+ satisfying

∃ρ ∈R, ∀ε> 0, lim
x→∞

U (x)

xρ+ε
= 0 and lim

x→∞
U (x)

xρ−ε
=∞ (1)

where ε may be taken arbitrarily small. It can be proved that, for any U ∈M, ρ defined in
(1) is unique; it is denoted by ρU and called the M -index of U .
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Any function U of M , bounded on finite intervals, satisfies the following ([3], Theorem
1.1, with a minor modification in the notation):

U ∈M withρU = τ ⇐⇒ lim
x→∞

log(U (x))

log(x)
= τ (2)

where ρU is defined in (1).

Combining this characterization (2) with Theorem 1 in [13] provides ([3], Proposition 2.1)
that

RV (M

and that for any RV function U ∈ RVα, its tail index α coincides with its M -index ρU de-
fined in (1):

U ∈ RVα ⇒ U ∈M withM − indexα . (3)

Recall, for completeness, that a measurable function U :R+ →R+ is RVα (see [12] and e.g.
[2]) if, for some α ∈R called the tail index of U , and for any t > 0,

lim
x→∞

U (t x)

U (x)
= tα. (4)

We also introduce a natural extension of M defined in [3] (with a small modification in
the notation) by

M−∞ =
{

U :R+ →R+ : ∀ρ ∈R, lim
x→∞

U (x)

xρ
= 0

}
.

As for M , we have a characterization for M−∞, namely ([3], Theorem 1.4)

U ∈M−∞ ⇐⇒ lim
x→∞

log(U (x))

log(x)
=−∞ (5)

for any positive measurable function U with support R+.

In view of (2) and (5), we see that M and M−∞ allow one to sort the tails of distributions
F by their behavior as x →∞, M including the tails of distributions with an asymptotic
polynomial decay and M−∞ the ones with an asymptotic exponential behavior.

For the tails of distributions which have neither a polynomial nor an exponential behav-
ior, we introduce another class O , namely ([3])

O := {U :R+ →R+ :µ(U ) < ν(U )} (6)

where µ(U ), ν(U ) correspond to the lower order of U and upper order of U , respectively,
defined by (see for instance [2], pp. 73)

µ(U ) = lim
x→∞

log(U (x))

log(x)
and ν(U ) = lim

x→∞
log(U (x))

log(x)
.

The class O is non empty, as shown in [3] where we provided explicit examples. Moreover
M , M−∞, and O are disjoint sets.
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In this study, our main object of interest is tails of distributions F satisfying x∗ = sup
{

x :
F (x) < 1

}=∞. We denote F = 1−F and will use abusively this notation when referring to
tails of distributions.

The paper is organized as follows. Section 2 provides the main properties for tails of distri-
butions belonging to M and M−∞. The results given in Section 3 concern the maximum
domains of attraction to M and M−∞, followed by conclusions in the last section.

All along the paper, we will denote: min(a,b) = a ∧b, max(a,b) = a ∨b, bxc for the largest
integer not greater than x, dxe for the lowest integer greater or equal than x, and log(x) for
the natural logarithm of x.

2 Properties for tails of distributions belonging to M and M−∞

Let us summarize the main properties ([3], Properties 1.1 to 1.4, and Remark 1.1) when
considering tails of distribution belonging to the two classes M or M−∞. We refer also to
[3] for the proofs.

Let F and G be two distributions.

1. For (F ,G) ∈M ×M s.t. ρF > ρG , or (F ,G) ∈ M ×M−∞, we have lim
x→∞

G(x)

F (x)
= 0.

2. Let F ∈ M . If ρF < −1, then F is integrable on R+, whereas, if ρF > −1, F is not
integrable on R+. Note that in the case ρF =−1, we can find examples of functions

F which are integrable or not.

3. Linear combination of tails of distribution in M or M−∞.
For any a ≥ 0, F ∈ M , G ∈ M ∪M−∞, we have aF +G ∈ M with ρaF+G = ρF ∨ρG ,

setting ρG =−∞ when G ∈M−∞. If F , G ∈M−∞, then F +G ∈M−∞.

4. Product of tails of distribution in M or M−∞.
If F ,G ∈ M , then F .G ∈ M with ρF .G = ρF +ρG . If F ∈ M and G ∈ M ∪M−∞, or

F ,G ∈M ∪M−∞, then F .G ∈M−∞.

5. Convolution on M and M−∞.

(a) Let F ,G ∈M . If −1 < ρF ≤ ρG , then F ∗G ∈M with ρF∗G = ρF +ρG +1.

If ρF ≤ ρG <−1 or ρF <−1 < ρG = 0, then F ∗G ∈M with ρF∗G = ρF .

(b) If (F ,G) ∈ M−∞×M with ρG <−1 or ρG = 0, then F ∗G ∈M with ρF∗G = ρG .

(c) If (F ,G) ∈M−∞×M−∞, then F ∗G ∈M−∞.

6. Link to the notion of stochastic dominance.
Let X and Y be rv’s with distributions FX and FY , respectively, having R+ support.
X is said to be smaller than Y in the usual stochastic order (see e.g. [14], pp. 3) if

F X (x) ≤ F Y (x) for all x ∈R+. (7)
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This relation is also interpreted as the first-order stochastic dominance of X over Y ,
as FX ≥ FY (see e.g. [11], pp. 289).

We can deduce from property (i) that for X , Y such that F X and F Y belong to M

with ρF X
> ρF Y

, (7) is satisfied at infinity, which means that X strictly dominates Y
at infinity.

The properties (1)-(5) also hold when considering probability density functions instead of
tails of distributions. Notice that if a probability density function belongs to M , then its
M -index is less or equal to −1.

Property 5-(a) generalizes a result by Bingham, Goldie and Omey ([1]) proved for RV prob-

ability density functions f and g , where they first had to show that lim
x→∞

f ∗ g (x)

f (x)+ g (x)
= 1

([1], Theorem 1.1). To prove the property for general functions of M , we proceed in a di-
rect way, under the condition of integrability of the function having the lowest M -index
([3]).

3 Maximum domains of attraction

Let (Xn ,n ∈ N) be a sequence of iid rv’s with distribution F and Mn := max
1≤i≤n

Xi . If there

exist numerical sequences (an ,n ∈N) and (bn ,n ∈N), with an > 0 and bn ∈R, such that

P

(
Mn −bn

an
≤ x

)
= F n(an x +bn) →

n→∞ G(x), (8)

with G a non degenerate distribution function, then we say that F belongs to the maxi-
mum domain of attraction of G , which is denoted by F ∈ MD A(G).

We will focus on MD A(G) when G is one of the two distributions:

Gumbel : Λ(x) := exp
{
e−x}

, ∀x ∈R,

Fréchet : Φα(x) := exp
{−x−α}

, ∀x ≥ 0, for some α> 0.

Recall the following characterization in the Fréchet case (see e.g. [7], Theorem 1.2.1):

F ∈ MD A(Φα) if and only if F ∈ RV−α and x∗ = sup{x : F (x) < 1} =∞. (9)

In the Gumbel case, we will consider distributions F ∈ MD A(Λ) having infinite endpoint
x∗ =∞ only, denoting by MD A(Λ∞) the associated maximum domain of attraction, for
which we have the following relation from Gnedenko ( see [9], Theorem 7):

F ∈ MD A(Λ∞) if and only if there exists a continuous function A such that A(z) →
z→∞ 0, and

∀x ∈R, lim
z→∞

1−F (z (1+ A(z) x))

1−F (z)
= e−x , (10)

and the sufficient condition from de Haan (see [6], Corollary 2.5.3)

F ∈ MD A(Λ∞) ⇒ lim
x→∞

log
(
F (x)

)
log(x)

=−∞. (11)
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Our main goal is to study the relation between M or M−∞ and the maximum domains of
attraction MD A(Φα) and MD A(Λ∞). We can prove the following:

Proposition 3.1.

(i) ∀α> 0, if F ∈ MD A(Φα), then F ∈M with M -index (−α), but the converse does not
hold: {

F ∈ MD A(Φα), α> 0
}
(

{
F : F ∈M

}
.

(ii) MD A(Λ∞) (
{
F : F ∈M−∞

}
.

Proof of Proposition 3.1.

(i) Let F ∈ MD A(Φα), α > 0. Applying (9) then (3) gives immediately that F ∈ M with
M -index (−α).
To prove that the converse does not hold, it is enough to consider a typical example
of a non RV function (see [10], or e.g. [8]), the Peter and Paul distribution, defined for
x > 0 by FP (x) = 1− ∑

k≥1: 2k>x

2−k . It is straightforward to check ([3]) that F P satisfies

lim
x→∞

log
(
F P (x)

)
log(x)

=−1, hence, using (2), that F P ∈M with M -index −1.

(ii) Assume F ∈ MD A(Λ∞). Applying (11) then (5) implies that F ∈ M−∞.
To show that it is a strict subset inclusion, we consider the distribution F defined in
a left neighborhood of ∞ by

F (x) := 1−exp
{−bxc log(x)

}
(12)

and prove that F ∈M−∞ but F 6∈ MD A(Λ∞).

To verify that F ∈M−∞ is immediate using (5), since F satisfies lim
x→∞

bxc log(x)

log(x)
=∞.

It remains to check that F 6∈ MD A(Λ∞). We proceed by contradiction and so assume
that F belongs to MD A(Λ∞). It comes back to say that there exists a function A such
that A(x) → 0 as x →∞ and (10) holds, which gives, ∀x ∈R,

lim
z→∞

(
bz (1+ A(z) x)c log

(
z (1+ A(z) x)

)−bzc log(z)
)
=

lim
z→∞

((bz (1+ A(z) x)c−bzc) log(z)+bz (1+ A(z) x)c log
(
1+ A(z) x

))= x . (13)

We are going to see that the assumption of the existence of such function A leads to
a contradiction for some x, when considering all possible values of lim

z→∞z A(z).

- Suppose lim
z→∞z A(z) = c 6= 0, and choose x ≥ 2/|c|.

On one hand, if c > 0, for z large enough such that z A(z) ≥ c/2 , we have
bz (1+ A(z) x)c−bzc > 0

(
since z (1+ A(z) x) ≥ z + cx/2 ≥ z +1

)
, which implies that

lim
z→∞

(bz (1+ A(z) x)c−bzc) log(z) =∞,

whereas, if c < 0, for z large enough such that z A(z) ≤ c/2, we have
bz (1+ A(z) x)c−bzc < 0

(
since z (1+ A(z) x) ≤ z −1

)
, which implies that
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lim
z→∞

(bz (1+ A(z) x)c−bzc) log(z) =−∞.

On the other hand, for z large enough so that log
(
1+A(z) x

)≈A(z)x and z A(z)≤ 2|c|,
we have bz (1+ A(z) x)c log

(
1+ A(z) x

) ≤ z (1+ A(z) x) log
(
1+ A(z) x

)≈
z (1+ A(z) x) A(z) x ≤ 2|c|(1+ A(z) x) x <∞ .

Combining both results and taking z →∞ contradict (13).

- Suppose lim
z→∞z A(z) = 0 and take x > 0.

On one hand, lim
z→∞

(bz (1+ A(z) x)c− bzc) log(z) could be 0 or ∞, depending on the

asymptotic behavior of z A(z) as z →∞.

On the other hand, we have for z large enough such that log
(
1+ A(z) x

)≈ A(z) x,

bz (1+A(z) x)c log
(
1+A(z) x

)≤ z (1+A(z) x) log
(
1+A(z) x

)≈ z (1+A(z) x) A(z) x →
z→∞ 0.

Combining these results contradicts (13).

- Suppose lim
z→∞z A(z) = ∞ and take x > 0. Note that the function bxc log(x) is in-

creasing for x > 1 and bxc log(x) →
x→∞ ∞. Then taking z > 1 such that u = z (1 +

A(z) x) > 1 and buc log(u) > x, shows that (13) does not hold for any x.

- Suppose lim
z→∞z A(z) =−∞. Then ∃z0 > 0 s.t. z0 A(z0) < 0. Taking x >−z0

/
(z0 A(z0))

leads also to an immediate contradiction of (13).

Remark 3.1.

De Haan ([6], Lemma 2.4.3) proved that if F ∈ MD A(Λ∞), then there exists a continuous
and increasing distribution function G satisfying

lim
x→∞

F (x)

G(x)
= 1. (14)

Is it possible to extend this result to M ? The answer is no. To see that, it is enough to consider
the distribution F defined in (12) which satisfies F ∈M \ MD A(Λ∞).

Indeed, suppose that, for F defined in (12), there exists a continuous and increasing distri-
bution function G satisfying (14), which comes back to suppose that there exits a positive
and continuous function h such that G(x) = 1−exp

(−h(x) log(x)
)

(x > 0), in particular in
a neighborhood of ∞. So (14) may be rewritten as

lim
x→∞

F (x)

G(x)
= lim

x→∞exp
(− (bxc−h(x)) log(x)

)= lim
x→∞xh(x)−bxc = 1.

However, since bxc cannot be approximated for any continuous function, the previous limit
does not hold.

Now let us turn to the tails of distributions which belong to O defined in (6).

A natural question is whether the Pickands-Balkema-de Haan theorem (see e.g. [8], The-
orem 3.4.5) applies when restricting O to tails of distributions. The answer follows.
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Theorem 3.1.

Any distribution of a rv having a tail in O does not satisfy Pickands-Balkema-de Haan the-
orem.

Proof of Theorem 3.1.

Let us prove this theorem by contradiction, assuming that F satisfies µ(F ) < ν(F ) and the
Pickands-Balkema-de Haan theorem that we recall here for completeness.

Pickands-Balkema-de Haan theorem :
For ξ ∈ R, Gξ denoting the Generalized Pareto Distribution, the following assertions are
equivalent.

(i) F ∈ MD A(exp(−Gξ)),

(ii) There exists a positive function a > 0 such that for 1+ξx > 0,

lim
u→∞

F (u +x a(u))

F (u)
=Gξ(x).

We consider the two possibilities (i) and (ii) given in the Pickands-Balkema-de Haan the-
orem. Recall that x∗ =∞.

• Assume that F satisfies (i) in the Pickands-Balkema-de Haan theorem with ξ ≥ 0 (since
x∗ =∞). Let ε> 0. By (ii) in Pickands-Balkema-de Haan theorem , there exists u0 > 0 such
that, for u ≥ u0 and x ≥ 0,

F (u +x)

F (u)Gξ(x/a(u))
≤ 1+ε. (15)

By the definition of upper order, we have that there exists a sequence (xn)n∈N satisfying
xn →∞ as n →∞ such that

ν(F ) = lim
xn→∞

log
(
F (u +xn)

)
log(u +xn)

≤ lim
xn→∞

log
(
(1+ε)F (u)Gξ(xn/a(u))

)
log(xn)

by (15)

= lim
xn→∞

log
(
F (u)

)
log(xn)

+ lim
xn→∞

log
(
Gξ(xn/a(u))

)
log(xn)

=


−1

ξ
lim

xn→∞
log(1+ξxn/a(u))

log(xn)
if ξ> 0

− lim
xn→∞

xn/a(u)

log(xn)
if ξ= 0

=
{ −1

ξ if ξ> 0

−∞ if ξ= 0.

If ξ> 0, we conclude that ν(F ) ≤−1/ξ. A similar procedure provides µ(F ) ≥−1/ξ. There-
fore we obtain µ(F ) = ν(F ), which contradicts µ(F ) < ν(F ).

If ξ = 0, we conclude that −∞ ≤ µ(F ) ≤ ν(F ) ≤ −∞. Hence µ(F ) = ν(F ) = −∞, which
contradicts µ(F ) < ν(F ).

•Assuming that F satisfies the Pickands-Balkema-de Haan theorem , (ii), and following the
previous proof (done when assuming (i)), we deduce that µ(F ) = ν(F ) which contradicts
µ(F ) < ν(F ).
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4 Conclusion

This paper is a contribution to the study of tails of distributions according to their asymp-
totic decay. First it extends some properties known for regularly varying tails, to tails
belonging to the larger class M ∪M−∞. Then it shows that the maximum domains of
attraction of Fréchet and Gumbel (with infinite endpoint) are properly included in M

and M−∞, respectively. Finally tails of distribution having neither an exponential nor a
polynomial asymptotic behavior are proved not to satisfy the Pickands-Balkema-de Haan
theorem, which is worth knowing in view of the importance of this theorem.
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