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The distribution of “time of flight” in 3D stationary chaotic advection
Florence Raynal and Philippe Carrière
LMFA, UMR CNRS – Université de Lyon,
École Centrale de Lyon– Université Lyon 1 – INSA Lyon,
École Centrale de Lyon, 36 avenue Guy de Collongue,
69134 Écully cédex, France.

The distributions of “time of flight” (time spent by a single fluid particle between two crossings of the Poincaré
section) are investigated for five different 3D stationary chaotic mixers. Above all, we study the large tails of
those distributions, and show that mainly two types of behaviors are encountered. In the case of slipping walls,
as expected, we obtain an exponential decay, which, however, does not scale with the Lyapunov exponent.
Using a simple model, we suggest that this decay is related to the negative eigenvalues of the fixed points of
the flow. When no-slip walls are considered, as predicted by the model, the behavior is radically different,
with a very large tail following a power law with an exponent close to −3.

I. INTRODUCTION

Mixing in fluids comes with two mechanisms: stirring, which consists in moving the fluid particles as efficiently as
possible so as to create high gradients of concentration that are smoothed by molecular diffusion thereafter. Although
mixing generally implies turbulent flows, it is now very well-known that chaotic advection enables efficient stirring
even when the flow is laminar1,2.

Many recent studies, mostly in 2D flows, have shown how mixing in chaotic advection (and more especially the
variance decay of a diffusive tracer) is controlled by regions of low stretching rate: in the presence of walls3–6, an
algebraic decay of the variance, rather than the rapidly predominant exponential decay expected from early numerical
simulations is observed7–9 (associated with the notion of strange eigenmode introduced by Ray Pierrehumbert7, see
also Giona et al.10,11). More recently, in a 3D implementation of the randomized sine map7,12 (therefore without
walls), Ngan and Vanneste13 suggest that the exponential variance decay is controlled by a few small fluid blobs that
remain unstretched for long times.

When dealing with realistic geometries of chaotic three dimensional flows, solving the advection-diffusion equation
at high Péclet number is out of reach. Because purely Lagrangian measures are easier to obtain14, it is natural to
search for a characterization of the influence of those regions of poor stretching in the usual tools of dynamical systems.
The first idea which comes to mind is to consider Poincaré sections: since the velocity field vanishes at fixed walls, the
density of points is lower in the vicinity of the walls than in the bulk; but it is also lower in regions where the velocity
component perpendicular to the Poincaré section vanishes. The second simplest idea is to consider the Lyapunov
exponents, another classical tool of dynamical systems theory; but, as we will see in the paper, they fail to detect
the presence of walls. Jones & Young considered the axial dispersion of a perfect or diffusive tracer along a twisted
pipe15. For instance, they showed that in the case of the perfect tracer, the asymptotic (t→∞) shear dispersion σ(t)
varies like t ln t in the case of global chaos, whereas it varies like t2 in other cases (not global chaos, regular regime
or straight pipes); with a simple argument, they related this logarithmic behavior to the presence of walls. Then
this measure of chaos is interesting since it can “feel” the presence of walls, while the other tools cited previously
cannot. However, it has a major drawback when realistic geometries are under study: indeed, in order to detect the
logarithmic behavior, they averaged 10 runs over long times, each run consisting of ensembles of 105 particles. They
used an analytical solution of their flow, which made the calculation “affordable”. Otherwise, the computational cost
would be too high for this parameter to be used systematically. Lobe dynamics16–18 is a geometrical approach that
gives interesting insights on mass exchange between different regions of the chaotic flow, but is quite restricted to
2D flows. More recently, the linked twist map formalism19,20, available in 2 and 3D flows, has been proved to be a
useful theoretical tool for design principles of efficient mixers available in many technological applications, and was
extended for an idealized model of a class of fluid mixing devices of 2D flows to show how scalar decay is related
to the presence of boundaries21. Finally, the purely probabilistic transfer operator approach, available in 2D and 3D
flows, determines almost-invariant regions that minimally mix with their surroundings, and, unlike lobe dynamics, is
able to detect regions with very small mass leakage22; the connection with topological chaos was done by Stremler et
al.23.

In the present work, we propose to follow a simpler idea, that is to consider the time of flight, lapse of time spent by
a fluid particle between two consecutive crossings of Poincaré sections. Since a fluid particle has a very slow motion
when it is located in a region of low stretching, it spends more time between two crossings of the Poincaré section
than it would otherwise, resulting in very long times of flight. As a particle wanders almost everywhere in the chaotic
region, the histogram of times of flight may be considered as a global rather than local distribution; therefore an
expected salient feature is that a satisfactory convergence (especially for the tail of the histogram) is obtained with
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only a reasonable amount of Poincaré section points (of order 10000, say), much less than for the axial dispersion
discussed before. In practice, the histogram of times of flight may be smoothed by considering different initial points
in the chaotic region, so as to obtain a reasonable tail for the statistics; note however that the statistics (Lyapunov
exponents, Poincaré sections) of each unique trajectory have to be sufficiently converged so that they do not depend
on the choice of the initial point.

Using the time of flight is all the more interesting as it is already calculated in preparing the Poincaré section: once
a chaotic mixer is under numerical study, it is expected at least to obtain a Poincaré section and see if chaos is global,
so as to decide whether the mixer is efficient or not; the knowledge of the time of flight only requires to store the
times at which the Poincaré section is crossed, or directly the difference between two consecutive crossing times.

II. TIME OF FLIGHT AND RESIDENCE TIME DISTRIBUTIONS

The distribution of time of flight has some reminiscences with the distribution of residence time first introduced
by Danckwerts24,25, a very usual tool in chemical engineering sciences; however, as we explain thereafter, they are
definitively different.

A. Time of flight

As defined previously, the time of flight is the lapse of time between two crossings of Poincaré sections when following
a single fluid particle; it is directly connected to dynamical systems theory, since it is linked to the very definition of
the Poincaré section. Let P denote the Poincaré map: starting from an initial point located at x0 in the Poincaré
section, the ordered set of points is obtained as

xn = P (xn−1), n ≥ 0, (1)

where n denotes the ordinal number of the Poincaré section when following the given trajectory (orbit), with an
associated ordered set of times of first return, τP , in a time-continuous dynamical system (see Eckmann and Ruelle,
section II.H26):

tf(n) = τP (xn−1), n > 0 . (2)

tf is what we hereafter name “time of flight”, while tf denotes the time of flight averaged over n.
Note that we refer to a section in space. This may be contrasted with the time-periodic, 2D case, in which Poincaré

sections based on the time-period are often used. Time of flight is intended for steady, 3D flows and, unlike the
residence time (defined below), is a purely Lagrangian measure.

Let us calculate the time of flight in an elementary flow like a cylindrical Poiseuille laminar flow: we suppose that
two successive Poincaré sections are separated by a length L. Because the flow is parabolic, a fluid particle will travel
forever on the same straight streamline, at a velocity

v = vx(r)ex, with vx(r) = Umax (1− (r/R)2) (3)

where r is the radius at which the fluid particle is initially located, Umax = 2Umean is the (maximum) velocity at the
center of the pipe, and Umean the mean velocity in a transverse section. Then the lapse of time between two crossings
of Poincaré sections is always identical, equal to L/vx(r), and the corresponding time of flight distribution is a Dirac
function at t = L/vx(r), only depending on the initial location of the given fluid particle.

Finally, note that the notion of time of flight is close to that of waiting time27, used in other branches of dynamical
system community: the waiting time distribution ψD(t) over a domain D is the probability that a given particle
entering D remains inside for a duration t (waiting time); like the time of flight, it is a Lagrangian quantity, computed
by running a single long trajectory and recording waiting times. We will use the waiting time later in the paper.

B. Residence time

As defined by Danckwerts in his seminal paper of 195324:
“Suppose some property of the inflowing fluid undergoes a sudden change from one steady value to another: for
instance, let the color change from white to red. Call the fraction of red material in the outflow at time [t] later be
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F ([t]).” The residence time distribution (RTD) E(t) is the derivative of F (t), as defined in equation (3) of his paper.
Note that

∫ ∞

0

E(t) dt = 1, and that

∫ ∞

0

t E(t) dt = tmean = V/q, (4)

where V is the volume of the mixer and q is the flow-rate. Moreover, the residence time is an Eulerian quantity,
involving all the fluid (not just a single fluid particle) for the entire mixer (and not for a single slice of it).

Danckwerts calculates RTD for a slice of cylindrical Poiseuille flow of length L (in a non-diffusive case); for t >
L/Umax (minimal time needed by the fluid to appear at the outlet), we have:

E(t) =
L2

2U2
meant

3
. (5)

Note finally that

∫ ∞

tmin

E(t) dt = 1, and that

∫ ∞

tmin

t E(t) dt = tmean = L/Umean (6)

One could wonder how to evaluate it in practice in a numerical work: a rather simple idea would be to seed some
particles uniformly in the inlet section of the mixer28,29, as for a pulse of concentration. In his other paper cited
above25, Danckwerts shows, using a result from Spalding30, that computing the RTD as a response of a pulse at inlet
is only valid for a diffusive tracer. However, following numerically a diffusive particle near a wall is tricky, since the
particle is likely to end in the walls. . .

Residence time is sometimes used as a generic term for many different quantities; in order to avoid confusion, this
term will not be used in what follows.

III. MIXING SYSTEMS AND NUMERICAL APPROACH

In the following, we restrict our study to Stokes flows, and consider flows where chaos is global (no apparent regular
regions, i.e. the ergodic region covers the whole fluid domain), which are the cases of practical interest for efficient
mixing. In order to investigate the time of flight distribution, we consider five different chaotic mixers, described in
details later. The first one is the slipping wall cavity flow, for which an analytical solution exists. For all the other
ones (another confined model flow and three realistic open-flow mixers, including the well known Kenics®31), the
flow-field is solved numerically via finite element method (FEM hereafter).

The determination of time of flight distribution requires long asymptotic evaluations, which, in such complicated
geometries, is a hard task. For instance, the loss of particles (that may end in the walls due to intrinsically limited
numerical accuracy) must be as small as possible: indeed, particles with very long asymptotic time of flight are
those that spend a lot of time near the walls. Moreover, for the three open-flows, our results must not depend on the
boundary conditions imposed at the inlet and the outlet. Thus we checked our numerical results on two configurations:
first of all, we simulated the first flow (the slipping wall cavity flow) via FEM, and found a perfect match with the
results obtained with the analytical solution. In order to have more comparisons, we also used the Kenics®, for which
accurate numerical solutions are available in the literature. The numerical method, together with the method used
for computing the Lyapunov exponents, are detailed in Ref.32; comparisons with other results (pressure loss, particle
loss, etc.) for the Kenics® can be found in appendix A: our results agree reasonably well with the existing literature.

In the following, we briefly detail the different configurations and the results obtained in terms of Poincaré sections
and Lyapunov exponents. Note that, strictly speaking, “Poincaré section” is somewhat improperly used here, although
the extension is classical: for the cavity flows considered here, points with both positive or negative normal velocities
are taken into account. For the in-line mixers, intersections are considered at points at cross-sectional planes, spaced
according to the basic element, rather than following spatial periodicity, which would have twice this spacing. Except
when stated differently, hereafter, Lyapunov exponent means “asymptotic” Lyapunov exponents, by contrast with
the so-called “finite-time” Lyapunov exponent we also discuss in the following. We recall that, in a steady 3-D flow,
there are three ordered Lyapunov exponents of a Poincaré section λ1 ≥ λ2 ≥ λ3 satisfying

λ1 + λ2 + λ3 = 0, (7)

owing to incompressibility and

λ2 = 0, (8)
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FIG. 1. Sketch of the two confined flow-fields: (a) the slipping wall cavity flow (b) the no-slip wall cavity flow (with moving
upper and lower walls); the second mimics the first more realistically.

because the dynamical system corresponding to particle fluid trajectory is continuous in time. It is easily deduced
that:

λ3 = −λ1 = −λ, (9)

so that only the positive Lyapunov exponent (which may be zero) is required. The Lyapunov exponent of the map λ̂
is then given by

λ̂ =
λ

tf
. (10)

A. Slipping wall cavity flow

The velocity-field is that of stationary 3-D flow in a cube with slipping boundaries, a case we have used in the past
for numerical simulation of the advection-diffusion equation at high Péclet number8,33,34. We recall that it is the sum

of a steady main vortex, ~U1, of the Taylor kind whose axis is parallel to a side of the box, and of two counter-rotating

steady plane vortices (~U2) with equal amplitudes, see Figure 1a. The velocity field is:

vx = −U1 sinπx cosπz (11)

vy = −2U2 sinπy cos 2πz (12)

vz = U1 cosπx sinπz + U2 cosπy sin 2πz (13)

where the constants U1 and U2 satisfy the normalization condition U2
1 + 5U2

2 /2 = 1. We recall that this flow is
globally chaotic for U1 ≤ 0.25, and that values of U1 such that U1 ≤ 0.15 correspond to cases of global chaos with
transadiabatic drift35. The case U1 = 0.25 is the flow for which both chaos is global and the Lyapunov exponent is

maximum (λ̂ = ln 7.22). The corresponding Poincaré section (50,000 points here), calculated in a plane of constant x
passing through the center of the box, is reproduced in figure 2.a. The empty region near the middle plane corresponds
to vanishing of the velocity component perpendicular to the Poincaré section.

B. No-slip walls cavity flow

In order to check the effect of a no-slip velocity field on the behavior of the time of flight distribution, we propose
a second configuration, which mimics the preceding one, but in a more realistic manner: the flow is induced by the
stationary motion of the upper and lower walls (z defining the vertical coordinate), co-moving in the y-direction
and counter-moving in the x-direction32 (figure 1(b)). Somehow, it may be seen as a (stationary) three dimensional
implementation of the time-periodic 2D cavity flow studied by Leong and Ottino36. As for the flow of the preceding
section, Lagrangian properties depend on the relative amplitude of the velocity components in the x- and y-direction;
with the same ratio than herein, the chaotic region densely covers the whole domain. In this case, we expect an



5

(a) (b)

FIG. 2. Poincaré sections (plane (x = 0.5)) for: (a) the slipping wall cavity flow in the case of global chaos U1 = 0.25; (b) the
no-slip walls cavity flow: in this case, two Poincaré sections are superimposed, represented by two different colors in the online
version.

(b)(a)

FIG. 3. (a) A Kenics® KM static mixer supplied by Chemineer, Inc.; (b) Computational geometry.

additional empty region in the Poincaré section at the vicinity of the fixed vertical walls. However, as can be noticed
when looking at figure 2.b, some more empty regions are visible: two counter-recirculating vortices parallel to the
y-axis are present rather than the single vortex of the slipping-walls case. It may be inferred that the mixing efficiency

of such a flow is lower than for the first one, with a Lyapunov number λ̂ = ln 3.57. Note finally that the number of
section points we were able to calculate is lower than for the analytical flow: two sections are here superimposed, the
first one with 14,734 points, the second one with 10,850, that clearly overlay each other.

C. Kenics® Mixer

The Kenics® mixer is probably the most famous and widely used static mixer. It is composed of a series of internal
blades inside a circular pipe of diameter d, each blade consisting of a short helix of length L with a twist angle φ. The
series is a succession of right- and left-handed blades, arranged alternately so that the leading edge of a given blade is
at right angle of the trailing edge of the preceding blade, thus with a spatial period of length 2L. A commercial model
is shown in figure 3.a. Hobbs and Muzzio performed simulations in this configuration using a commercial code for
both flow simulation and particle tracking37 (see also Ref.38), while accurate numerical simulations for a large range
of Reynolds number were performed by Byrde and Sawley39–41. More references of experimental or numerical works
are also available in the recent article by Kumar et al.42. In order to use part of the existing results as a check for our
own calculations, we used the same parameters as O. Byrde39, i.e. L = 3d/2 and φ = 180o.

The geometry used for our FEM simulations is plotted in figure 3.b Although a real mixer would involve about 12
or 16 successive blades, this 6-blades configuration is a good compromise between a realistic mixer and reasonable
calculation time. The Poincaré section (figure 4.a) shows a quite homogeneous global chaos away from the walls:
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(a)

n

λ̂

(b)

FIG. 4. Kenics mixer: (a) Poincaré sections (four sections are superimposed); (b) convergence of the positive Lyapunov
exponent with the number of mixing elements n; the dot-dashed line is ln(2).

four Poincaré sections are superimposed on the plot, containing 2720, 3238, 3191 and 7737 points, respectively,
corresponding to different initial locations, which clearly overlay each other.

Note that the Lyapunov exponent converges towards 0.56 ≈ ln 1.75 (figure 4.b), that is, a quite lower value than for
the baker’s map. This is finally the point on which our result disagree the most with the existing literature. Byrde
and Sawley determined values slightly higher than ln 2; however, their calculations were performed in a context of
non-negligible inertial effects (Reynolds number 25 and 100) which may enhance the resulting stretching: incidentally,
the value they predict for R = 100 is largely higher than the one at R = 25. Also they dealt with finite time Lyapunov
exponents, that depend on the initial location of the particle, thus requiring some far from obvious averaging: At the
opposite, the present asymptotic Lyapunov exponents are naturally averaged over the domain and de facto include
the probability density function of each point in the Poincaré section. Note finally that our numerical simulations
predict a rapid and clear convergence towards ln(2) for the two following static mixers (figure 6). Thus the value of
ln 1.75 for a Stokes flow is indeed a measure of efficiency, and, in the case of creeping flows, mixing in this Kenics
configuration is not as efficient as for the baker’s map.

D. Multi-level laminating mixer and ”F” mixer

In a previous paper14, a three-dimensional flow configuration, which tries to mimic as close as possible the baker’s
map, was proposed and studied. The corresponding geometry, here in the more realistic variant of an open flow
composed of 6 basic “mixing elements”, is given in figure 5.a together with a plot of an iso-surface of velocity modulus
for illustrating the separation–stacking process. The design is close to the multi-level laminating mixer (MLLM)
proposed by Gray et al.43. The successive elements are inverted so as to break the symmetry of the flow and eliminate
small residual islands in the Poincaré section. Such a mixer configuration is sometimes named “baker’s flow”45,46.
Because the results, in the present context, are very similar, we present simultaneously the case of the “F” mixer of
Chen and Meiners44,47, whose geometry is given in figure 5.b. It may appear somewhat surprising to retrieve that, as
alluded before, the Lyapunov exponent is ln 2 within the accuracy of the numerical method (figures 6.c and 6.d). Thus,
despite the walls, these two mixers succeed in approaching the mean behavior of the baker’s map. Figure 6 shows
Poincaré sections for each mixer: four Poincaré sections having 8959, 8387, 8508 and 7716 points are superimposed
in Fig. 6.a and sections with 5000, 4989, 4877 and 4121 points in 6.b.

IV. TIME OF FLIGHT

As defined earlier, time of flight tf is the time spent by a single particle between two consecutive intersections with
the Poincaré plane. We denote by n the ordinal number of Poincaré section when following the given trajectory, and
by tf the time of flight averaged over n. Figure 7a shows a typical plot of the behavior of the “reduced time of flight”
tf/tf as a function of n in a mixer with fixed no-slip boundaries (here the multi-level laminating mixer). As expected
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(a) (b)

FIG. 5. Geometry and iso-surface of velocity modulus plot for a Stokes flow inside: (a) the Multi-level laminating mixer (6
elements); (b) the ”F” mixer of Chen and Meiners44 (8 elements).

(a)
n

λ̂

(c)

(b)
n

λ̂

(d)

FIG. 6. Left: Poincaré sections (four sections are superimposed) for (a) the Multi-level laminating mixer; (b) the “F” mixer.
Right: convergence of the positive Lyapunov exponent with the number of mixing elements n for (c) the Multi-level laminating
mixer; (d) the “F” mixer.
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FIG. 7. Non-dimensional time of flight, tf/tf , versus the ordinal number of Poincaré section points, n for a unique trajectory,
corresponding to: (a) one of the Poincaré sections in figure 6.a (multi-level laminating mixer); (b) the trajectory in figure 2.a
(slipping-walls cavity flow).
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FIG. 8. Distribution of reduced time of flight for: (a) the multi-level laminating mixer; (b) the slipping-walls cavity flow. In
the former case, four histograms corresponding to the four trajectories of figure 6.a are superimposed; the thick black solid line
represents the distribution averaged over these four histograms. In the second case, the distribution is shown at another scale,
so as to see clearly the exponential decay.

for a chaotic trajectory, it exhibits highly random behavior. Note the use of a logarithmic scale for the vertical axis,
so as to allow for extreme events (large departures from the mean), corresponding to situations where the particle is
trapped for a long time in the near vicinity of walls, before escaping to the core of the flow. In this respect, it is clear
that the statistics in cases a and b (respectively no-slip and slipping boundaries) are dissimilar. As a consequence,
the tails of the distributions of time of flight are expected to be quite different depending on the presence or not of
no-slip walls: in figure 8, we compare the probability density functions (pdf) of the reduced time of flight tf/tf for
the two preceding cases; the two pictures are plotted with the same lin-log scale. As one would expect in a globally
chaotic flow, the distribution of time of flight indeed reveals an exponential decay with tf/tf in the slipping wall cavity
flow, but the result is completely different concerning the no-slip walls flow. Thus we will consider those two cases
separately thereafter.
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FIG. 9. Poiseuille flow: the time of flight is calculated with Poincaré sections being separated by a length L.

A. No-slip boundaries

1. Theoretical model

In order to understand this non-exponential behavior in the presence of walls, we propose to mimic the trajectory
of a single fluid particle in such chaotic flows as follows:

� the flow in an element of the mixer is modeled by a non-chaotic flow, here possessing no-slip boundaries;

� the effect of global chaos on the trajectory of the fluid particle is modeled by random reinjection at the entry to
the next element with a non uniform probability distribution, that takes into account the fact that the particle
randomly samples the whole section, but less near the walls;

� in order to preserve mass conservation, the probability density function of the location of reinjection is taken
proportional to the velocity rate.

For instance, a mixing element of the Kenics® is replaced by a piece of cylindrical pipe, or the no-slip walls cavity flow
is modeled by a piece of plane Couette flow; in each element of the model, the trajectory is thus a straight segment
following a streamline of the flow, while the location of the particle changes at each new element. The shape of the
distribution can be further explained as follows: during a lapse of time dt, less particles of the flow cross the section
near the walls than in the core where the velocity is maximum; therefore the probability density for the single particle
to cross the section at a given point must also follow this flux of particles. This last property was also used in a
3D-model of chaotic flow with sources and sinks in a Hele-Shaw cell, where the flow was calculated first in 2D, and the
z-dependence was modeled by a parabolic reinjection rate from the source, with surprisingly good agreement between
the model and 3D-calculations48. Using these model flows, it is possible to obtain an analytical expression for the
distributions of time of flight. We present hereafter the calculations in a cylindrical pipe (Poiseuille flow, see figure
9), with velocity-field given by equation (3). The calculation for the plane Couette flow is developed in Appendix B.

Let G(t) be the probability density to have a time of flight of duration t for an element of length L; G(t)dt is
therefore the probability to have a time of flight in between t and t+ dt. Given

t = L/vx(r) , (14)

t depends only on r, so this probability is equal to that of having a particle between r and r + dr, with r the radius
related to time of flight t by equation (14). Thus the probability of having a particle reinjected in between r and
r + dr is such that

G(t)dt ∝ vx(r)2πrdr. (15)

From equations 3 and 14, we have:

1− (r/R)2 =
L

Umax t
(16)

that can be differentiated into

−2r/R2dr = − L

Umax t2
dt. (17)

We finally obtain:

G(t) ∝ t−3. (18)

We also obtain a t−3 tail in the case of plane Couette flow (see Appendix B), and plane Poiseuille flow (calculation
not given here).
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FIG. 10. Distribution of time of flight for: (a) the no-slip walls cavity flow; (b) the Kenics® mixer; (c) the multi-level laminating
mixer; (d) the ”F” mixer. The histogram is averaged over two trajectories (used to plot figure 2.b) in plot (a), and those in
plots (b–d) are averaged over four trajectories (similarly those used to plot the corresponding Poincaré sections); in all cases the
smallest count is the inverse of the number of times of flights calculated, of the order of: (a): 4 10−5; (b): 6 10−5; (c): 3 10−5;
(d): 5 10−5. The dotted line stands for the t−3 power law.

2. Time of Flight histograms

In order to compare the predictions from our model with our numerical results, we plot in figure 10 the histograms
of time of flights (calculated together with the Poincaré sections shown in figures 2b, 4.a, and 6.a-b respectively), in
log-log scales, for all the mixers with no-slip boundaries described in section III (namely, the no-slip walls cavity flow,
the multi-level laminating mixer, the “F” mixer, and the Kenics® mixer): even in the case of the no-slip walls cavity,
which may be considered as different from the three more realistic static mixers, the histograms exhibit a power law
with an exponent close to −3. Although the details of the flow may influence the short time statistics, and therefore,
because of mass conservation, the amplitude of the tail, note that those histograms have a very similar shape, with
close values of absolute amplitude of the algebraic tails. The fact that we recover the same type of behavior for the
distribution of time of flight from numerical results and with our model favors the hypothesis that the shape of the
distribution of time of flight is a signature of the presence (or not) of solid fixed walls inside the flow.

B. The slipping-walls (TCR) flow

As shown in figure 7.b, the tail of the histogram is clearly exponential, as one would expect in a fully chaotic flow;
however, it does not scale with the Lyapunov exponent. Indeed, the Lyapunov exponent can be seen as a “mean
stretching rate”, that takes into account regions of high or low stretching visited by the fluid particle, while the tails of
histograms correspond to long time of flights, connected to trapping of the particle in regions of low stretching rates.
Thus the reason for this exponential decay is not completely entangled in the chaotic nature of the flow, but rather
may be explained by the presence of hyperbolic fixed points: it requires infinite time for a point located exactly on the
stable manifold of an hyperbolic fixed point to reach this fixed point; thus it may take arbitrary long time for a fluid
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r

L

R

x

−L 0

FIG. 11. Flow in the vicinity of an hyperbolic point (located here at (x = r = 0)). We define a domain D = (−L ≤ x ≤
0)× (r ≤ R) around this fixed point; the waiting time in D, denoted by τ , is the time it takes to move from the plane (x = −L)
up to the cylinder (r = R).

particle very close to the stable manifold to reach the vicinity of the fixed point before escaping along the unstable
manifold. Those “trappings” along a stable manifold, although scarce, may lead to those rare long time events for
the time of flight. Simulations available as supplementary material49,50 support this hypothesis.

1. Theoretical model

If long times of flight are due to a trapping near a fixed point of the flow, then distributions of times of flight tf
have the same long time behavior as waiting times τ (defined at the end of paragraph II A) in a domain around this
fixed point. Similarly to the case of flows with walls, we propose a model flow that evaluates the waiting time in the
vicinity of a fixed point, constructed as follows:

� the flow around a fixed point is modeled by a non-chaotic flow in a domain D = (−L ≤ x ≤ 0)× (r ≤ R), here
possessing a hyperbolic fixed point, like depicted in figure 11;

� Chaos is modeled by a random reinjection in the plane (x = −L), with reinjection probability distribution
proportional to the local velocity rate.

Using this model, we can first calculate the waiting time of a given fluid particle, then obtain the corresponding
distribution.

Waiting time τ of a particle with given entrance location r = r0: in the domain D, the velocity field is well-
described by the equations

vx = −λx (19)

vr = λr/2 . (20)

Consider an individual particle that enters the domain D at t = 0 at point (x0, r0), and leaves it at t = τ at point
(x(τ), r(τ)). Using the boundary conditions x0 = −L and r(τ) = R, and equations (19) and (20), we obtain:

x(τ) = −L exp(−λ τ) (21)

R = r0 exp(λτ/2) (22)

so that τ is well defined by the knowledge of r0 using equation (22).
Distribution of waiting times in the domain D: let ψD(τ) be the probability density to have a waiting time τ , and

ψD(τ)dτ the probability to have a waiting time in between τ and τ+dτ . Thus ψD(τ) verifies, for all particles entering
the domain at x0 = −L through the circlet between r = r0 and r = r0 + dr0:

ψD(τ) dτ ∝ vx|x=−L
2πr0 dr0 ; (23)

from equation (19), and using dr = (λ/2) rdτ (from equation (20)), we obtain

ψD(τ) ∝ Lλ2π r20, (24)
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FIG. 12. (a): sketch of fixed points in the case of global chaos U1 = 0.25. Fixed points are marked with a filled circle and
stable/unstable manifolds are indicated with arrows; for“non-trivial” manifolds, not located on the sides of the cubes, only a
very small piece is drawn, ended by a dashed line. Fixed points belonging to the rear sides are omitted for sake of clarity, and
may be deduced from symmetry arguments. A fixed point denoted by (i) (i = 1, 2, 3 or 4) on the figure has eigenvalues named
λi,j thereafter. (b): absolute values of negative eigenvalues of fixed points for U1 ≤ 0.3 from appendix C, together with the
Lyapunov exponents of the flow. For sake of clarity, only those nearer to zero are shown in the figure. (N): Lyapunov exponent
λ; (×): λ3,1; (�): λ4,3; (O): λ3,2; (◦): λ2,3.

and finally, from equation (22)

ψD(τ) ∝ πR2 Lλ2 exp(−λτ). (25)

Note that the same analysis, carried on particles that leave D at r = R, changes equation (23) into

ψD(τ) dτ ∝ vr|r=R
2πRdx , (26)

which, using equations (21) and (19), naturally leads to the same result as in equation (25).
Times of flights: as explained before, we are mainly interested in the long-range decay of tf (long times of flights), for

which we can consider that tf ∼ τ . Thus the time of flight tf should also have an exponential probability distribution,
scaling with negative eigenvalue of fixed point:

G(t) ∝ exp(−λt) . (27)

2. Time of flight histograms

In the model above we have shown that the time of flight distribution in the presence of a single hyperbolic point
should decay exponentially, following the negative eigenvalue of this given fixed point. However, in the whole flow,
there are many different fixed points, associated with many different negative eigenvalues. We could wonder therefore
what the time of flight histograms will look like.

The locations and eigenvalues of the fixed points of the TCR flow are calculated in appendix C. A sketch showing
those stagnation points in the case of global chaos U1 = 0.25 is given in figure 12a: there are 18 stagnation points,
all located on the boundary of the cavity, each with one or two directions of stability (possibly of the spiral kind,
i.e. associated with complex conjugate eigenvalues). Note that those fixed points exist for all cases studied here
(U1 ≤ 0.25), although their location may change for points of type (3) and (4). For most of the cases studied here
(U1 ≤ 0.25), as seen in figure 12b, the negative eigenvalues nearer to zero are such that

0 > λ3,1 ≈ λ2,3 > λ4,3 > λ4,1 . (28)

In the case of global chaos U1 = 0.25 (without transadiabatic drift nor elliptic fixed points), if all hyperbolic points
give rise to an exponential decay, then at long times, only the decay with the negative eigenvalue nearer to zero (the
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FIG. 13. Distribution of time of flight for: (a) U1 = 0.02; (b) U1 = 0.05; (c) U1 = 0.15; (d) U1 = 0.25. The symbols correspond
to fits with negative eigenvalues; (×): λ3,1; (�): λ4,3; (O): λ4,1.

one with the slower decay) should be visible. This is exactly what is observed in figure 13d, where the decay scales
with λ3,1 (equation (28)).

When transadiabatic drift is present (here for U1 ≤ 0.15), the trajectory of a given particle is almost closed (because
the flow is almost regular), so that two successive intersection points xn−1 and xn in the Poincaré section, linked by
equation (1), are very near to each other. This means that a fluid particle remains for a long time in a given region of
the flow (where it “visits” some given fixed points), before visiting another region (associated with other fixed points).
After very long times it has visited the whole domain, and it is necessary to make statistics over a very large number
of Poincaré intersection points (here about 106) for a reasonable convergence. As seen in figures 13.a− c, in that case
the statistics are rather different than what is observed for U1 = 0.25 (figure 13.d): the decay is still exponential,
but not governed by a single eigenvalue (different slopes are visible in the log-lin plots). This particular behavior is
all the more pronounced as U1 is small (and the transadiabatic drift phenomenon is important). Moreover, the long
time decay does not scale with the smallest negative exponent λ3,1, but rather with λ4,3, even with λ4,1 for very small
values of U1. This could be explained by the fact that the particle spends longer time in regions visiting the spiraling
points of type (4) (figure (12.a)) than in the rest of the domain. Finally, note that the shortest times of flight seem
to be rather governed by the smallest eigenvalue λ3,1 for all histograms corresponding to U1 ≤ 0.2 (also on those not
shown here).

V. SUMMARY AND CONCLUSION

In this article we have studied different 3D chaotic stationary mixers with global chaos (no apparent regular regions
nor KAM tori), and characterized them in terms of Poincaré sections and Lyapunov exponents. In the case of real
mixers, the Lyapunov exponent fails in detecting the presence of solid walls, while the Poincaré sections do not allow
to decide between walls or lines of zero normal-velocity. We have proposed to use the histograms of time of flight



14

(lapse of time between two crossings of consecutive Poincaré sections) to study 3D chaotic systems; this tool costs
basically nothing more than the calculation of the Poincaré section of the flow. The time of flight results from a single
fluid particle that wanders in the whole chaotic region. However, the tail of the distribution (long times of flight)
results from regions where the fluid particle remains locally trapped for a while, like in the vicinity of fixed walls, or
in regions of poor stretching.

In our numerical investigations, the histograms of time of flight reveal two very different behaviors, depending on
whether the chaotic mixer possesses walls or not: whenever fixed solid boundaries are present, a very large tail with a
t−3 power law decay is observed, while we obtain an exponential law decay in the model case with slipping boundaries.
We have proposed a simple model which relates this power law behavior to the presence of walls in the first case; in
the case of slipping boundaries, the model shows that the exponential decay is governed by the negative eigenvalues
of fixed points of the flow nearer to zero, as shown also by the numerical simulations.

Note finally that, because mixing is also limited in the end by regions where stirring is poor, the shape of time of
flight distributions could be somehow related to mixing efficiency, with an algebraic tail when scalar variance decays
algebraically, and an exponential tail when scalar variance decays exponentially.
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Appendix A: Numerical details for the Kenics mixer

Because Lagrangian tracking requires great accuracy, we used 368,951 pressure nodes and 2,770,011 velocity nodes
(Eulerian quantities would be satisfactorily obtained with a much lower resolution).

1. Inlet and outlet boundary conditions

An important issue in open flows is the imposed boundary conditions at the inlet and the outlet. Firstly, instead
of the imposed pressure drop between inlet and outlet, we use a zero pressure drop and add a prescribed volume
forcing term to momentum equations in a small part of the domain near the inlet. This produces the same flow as
an imposed pressure drop (Ref.14). Secondly, rather than using periodic conditions on the velocity field, we imposed
zero azimuthal and radial components and a Neumann condition on the axial component at both inlet and outlet.
Then we checked that, owing to the short characteristic length for establishing a Stokes flow, the values obtained for
the axial components of the velocity at the outlet only slightly deviate from the ones at inlet: this is true to a relative
error less than 0.5 �, which is small enough to avoid negative effects on long time integration of trajectories.

2. Pressure drop

The pressure drop, or more properly speaking, the hydraulic resistance is an unavoidable point of comparison.
Kumar et al.42 give some review of experimental and numerical correlations with the Reynolds number from the
literature. Following the usual trend, we compute the ratio K between the hydraulic resistance of the mixer and
that of a circular pipe with equal diameter, flow rate and length. Even for vanishing Reynolds numbers, there is a
large scattering in the results, typically 4.86 in Ref.51 to 7 in Ref.52, while Byrde and Sawley obtained 3.59. Here we
obtained K = 4.67: given that the depth of the blade is 2 % of the pipe diameter (rather 5–10 % in the industrial
configuration and 0 for Byrde and Sawley simulations), this is in accordance with the discussion in Ref.39 on the
importance of the blade depth on the hydraulic resistance.
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FIG. 14. Fluid particles distribution in cross-planes located at, from left to right, the leading edge of the first elements and the
end of each of the six elements for the Kenics mixer (figure 3).
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FIG. 15. Plane Couette flow: the time of flight is calculated with Poincaré sections being separated by a length L.

3. Particle tracking

Figure 14 shows colored particle tracking, i.e. the distribution of marked particles in successive planes located
at the end of each six elements (together with the leading edge of the first element). The figure may be compared
favorably to the ones presented in Ref.39 for a Reynolds number value of 0.01 and also to experimental visualizations
by Grace51 (also reported in Ref.39 and53). The striation process appears well reproduced even if the comparison
is essentially qualitative, looking like a 2n process (where n is the number of mixing elements) as reported in the
literature37,51,53.

4. Loss of particles

As previously mentioned, numerical limitations are especially severe in the present case. In a few words (see Ref.32

for more details), usual formulations of the discrete pressure–velocity problem (the so-called P1-P2 element54 in the
present FEM method) in three dimensions require some smoothness properties for the pressure field (p ∈ H1(Ω) so
that its derivatives must be piecewise square integrable) which cannot be satisfied in the vicinity of a “corner”, for
instance. Here, this is obviously the case near the leading edge of a blade, where visualization of the pressure field
(not shown here) shows ripples of small amplitude; this is also the case along the entire surface of a blade (a succession
of triangles), although this appears less critical. This impacts the satisfaction of incompressibility, and explains why
following a trajectory for a sufficiently long time is indeed difficult.

Hobbs and Muzzio reported about 5% loss at the end of a 6-elements geometry, and Byrde and Sawley40 about 1-5 %
for the tracking of 20,000 and 262,656 particles, respectively. Here we computed the trajectory of 31,630 particles,
and obtained about 0.54 % loss (note however that it depends much on the choice of the initial location of particles).

Appendix B: Time of flight distribution in a plane Couette flow

Let us consider the laminar flow between two parallel planes, the upper one moving at constant speed U = U ex.
The velocity-field is such that (figure 15):

v = vx(z) ex, with vx(z) = Uz/h, with 0 ≤ z ≤ h (B1)

where h is the distance between the walls. As before, we let G(t) the probability density to have a time of flight of
duration t for a section of length L; G(t)dt is therefore the probability to have a time of flight in between t and t+dt,
which, since v depends only on z, is equal to the probability of being in between z and z + dz, with z the height
corresponding to time of flight t such that

t = L/vx(z). (B2)
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Since the reinjection rate is proportional to the velocity, we have

G(t)dt ∝ vx(z)dz (B3)

from equations (B2) and (B1), we finally obtain:

G(t) ∝ t−3. (B4)

Appendix C: Fixed points for the slipping wall cavity flow

1. location of the fixed points

The locations of the fixed points of the slipping wall cavity flow are given by:

dx

dt
= − U1 sinπx cosπz = 0 (C1)

dy

dt
= − 2U2 sinπy cos 2πz = 0 (C2)

dz

dt
=U1 cosπx sinπz + U2 cosπy sin 2πz= 0 (C3)

with

U2
1 +

25

4
U2
2 = 1. (C4)

Equations (C1) and (C2) lead to

x = 0 or x = 1 or z = 1/2 (C5)

y = 0 or y = 1 or z = 1/4 or z = 3/4. (C6)

hence:

1. 8 fixed points located each at a corner of the cube;

2. 2 fixed points located at the center of two opposite walls (x = 1/2, y = 0, z = 1/2 and x = 1/2, y = 1, z = 1/2);

3. If ξ0 = U1/(2U2) < 1, which is equivalent to U1 < 4/
√

41 ≈ 0.625, there are 4 additional points located on the
vertical sides, at x = 0, y = 0, z = 1 − z0 and x = 0, y = 1, z = z0 and x = 1, y = 1, z = 1 − z0 and x = 1,
y = 0, z = z0, with cosπz0 = ξ0;

4. If ξ1 = U1/(
√

2U2) < 1, which is equivalent to U1 < 4/
√

66 ≈ 0.492, there are four additional points on two
opposite sides of the cubes, at x = 0, y = 1 − y1, z = 1/4, and x = 0, y = y1, z = 3/4 and x = 1, y = 1 − y1,
z = 1/4 and x = 1, y = y1, z = 3/4, with cosπy1 = ξ1.

Fixed points of type i (i = 1, 2, 3 or 4) are indicated by (i) on figure 12. Their eigenvalues are denoted thereafter by
λi,j

2. Eigenvalues of the fixed points

a. Fixed points located at the corners (x = `, y = m, z = n, with `, m, and n equal to 0 or 1)

We let x = `+X, y = m+ Y and z = n+ Z. We obtain the following linearized system for small X, Y and Z:

dX

dt
= (−1)1+`+n U1πX (C7)

dY

dt
= (−1)1+m 2U2πY (C8)

dZ

dt
= (−1)`+n U1πZ + (−1)m2U2πZ (C9)
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and therefore, 3 real eigenvalues:

λ1,1 = (−1)1+`+n πU1 (C10)

λ1,2 = (−1)1+m 2πU2 (C11)

λ1,3 = (−1)`+n πU1 + (−1)m2πU2 (C12)

b. Fixed points located at the center of two opposite walls (x = 1/2, y = m, z = 1/2, with m = 0 or 1)

We let x = 1/2 +X, y = m+Y and z = 1/2 +Z. We obtain the following linearized system for small X, Y and Z:

dX

dt
= U1πZ (C13)

dY

dt
= (−1)m 2U2πY (C14)

dZ

dt
= −U1πX + (−1)m+1 2U2πZ (C15)

and therefore, 3 eigenvalues (2 of which whether real or complex depending on the sign of U2
2 − U2

1 ):

λ2,1 = (−1)m π2U2 (C16)

λ2,2 = (−1)1+m π
[
U2 + (U2

2 − U2
1 )

1
2

]
(C17)

λ2,3 = (−1)1+m π
[
U2 − (U2

2 − U2
1 )

1
2

]
(C18)

c. Fixed points located on the vertical sides of the cube (x = `, y = m, z = Z0, with ` or m = 0 or 1, and
cosπZ0 = (−1)1+`+mU1/(2U2)), which exist when U1 < 4/

√
41

We let x = `+X, y = m+ Y and z = Z0 + Z. We obtain the following linearized system for small X, Y and Z:

dX

dt
= (−1)m

[
U2
1 /(2U2)

]
πX (C19)

dY

dt
= (−1)m 2U2

[
1− U2

1 /(2U
2
2 )
]
πY (C20)

dZ

dt
= (−1)m+1 2U2

[
1− U2

1 /(4U
2
2 )
]
πZ (C21)

and therefore, 3 real eigenvalues:

λ3,1 = (−1)m πU2
1 /(2U2) (C22)

λ3,2 = (−1)m π2U2

[
1− U2

1 /(2U
2
2 )
]

(C23)

λ3,3 = (−1)1+m π2U2

[
1− U2

1 /(4U
2
2 )
]

(C24)

d. Fixed points located on two opposite sides of the cube, which exist when U1 < 4/
√

66

We let x = ` + X, y = Y1 + Y , z = Z1 + Z, with ` and n = 0 or 1, Z1 such that cosπZ1 = (−1)n
√

2/2 and

cosπY1 = (−1)1+`+n
√

2U1/(2U2). We obtain the following linearized system for small X, Y and Z:

dX

dt
= (−1)1+`+n

√
2/2U1 πX (C25)

dY

dt
= (−1)n 4U2 sinπY1 πZ (C26)

dZ

dt
= (−1)n+1 U2 sinπY1 πY + (−1)`+n U1

√
2/2πZ (C27)
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and therefore, 3 eigenvalues, two of which whether real or complex depending on the sign of 17/8U2
1 − 4U2

2 :

λ4,1 = (−1)1+`+n π
√

2/2U1 (C28)

λ4,2 = (−1)`+n π
[
U1

√
2/4 + (17/8U2

1 − 4U2
2 )

1
2

]
(C29)

λ4,3 = (−1)`+n π
[
U1

√
2/4− (17/8U2

1 − 4U2
2 )

1
2

]
(C30)

1H. Aref. Stirring by chaotic advection. J. Fluid Mech., 143:1–21, 1984.
2J.M. Ottino. The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press, New-York, 1989.
3M. Chertkov and V. Lebedev. Decay of scalar turbulence revisited. Phys. Rev. Lett., 90(3):034501, 2003.
4H. Salman and P. H. Haynes. A numerical study of passive scalar evolution in peripheral regions. Phys. Fluids, 19(6):067101, 2007.
5E. Gouillart, N. Kuncio, O. Dauchot, B. Dubrulle, S.Roux, and J.-L. Thiffeault. Walls Inhibit Chaotic Mixing. Phys. Rev. Let.,
99(11):114501, 2007.

6E. Gouillart, O. Dauchot, B. Dubrulle, S. Roux, and J.-L. Thiffeault. Slow decay of concentration variance due to no-slip walls in chaotic
mixing. Phys. Rev. E., 78:026211, 2008.

7R. Pierrehumbert. On tracer microstructure in the large-eddy dominated regime. Chaos, Solitons fractals, 4:1091–1110, 1994.
8V. Toussaint, Ph. Carrière, and F. Raynal. A numerical Eulerian approach to mixing by chaotic advection. Phys. Fluids, 7:2587–2600,
1995.

9T. M. Antonsen, Z. Fan, E. Ott, and E. Garcia-Lopez. The role of chaotic orbits in the determination of power spectra of passive scalars.
Phys. Fluids, 8(11):3094–3104, 1996.

10M. Giona, A. Adrover, S. Cerbelli, and V. Vitacolonna. Spectral properties and transport mechanisms of partially chaotic bounded
flows in the presence of diffusion. Phys. Rev. Lett., 92(11):114101–1–4, 2004.

11M. Giona, S. Cerbelli, and V. Vitacolonna. Universality and imaginary potentials in advection–diffusion equations in closed flows. J.
Fluid Mech., 513:221–237, 2004.

12R. T. Pierrehumbert. Lattice modes of advection-diffusion. Chaos, 10(1):61–73, 2000.
13K. Ngan and J. Vanneste. Scalar decay in a three-dimensional chaotic flow. Phys. Rev. E, 83:056306, May 2011.
14Ph. Carrière. On a three-dimensional implementation of the baker’s map. Phys. Fluids, 19:118110, 2007.
15S.W. Jones and W.R. Young. Shear dispersion and anomalous diffusion by chaotic advection. J. Fluid Mech, 1994.
16V. Rom-Kedar, A. Leonard, and S. Wiggins. An analytical study of the transport, mixing and chaos in an unsteady vortical flow. J.

Fluid Mech., 214:347–394, 1990.
17F. Raynal and J.N. Gence. Efficient stirring in planar, time-periodic laminar flows. Chem. Eng. Science, 50(4):631–640, 1995.
18F. Raynal and S. Wiggins. Lobe dynamics in a kinematic model of a meandering jet. i. geometry and statistics of transport and lobe

dynamics with accelerated convergence. Physica D-Nonlinear Phenomena, 223(1):7–25, NOV 1 2006.
19R. Sturman, J.M. Ottino, and S. Wiggins. The mathematical foundations of mixing: the linked twist map as a paradigm in applications:

micro to macro, fluids to solids, volume 22. Cambridge University Press, 2006.
20R. Sturman, S.W. Meier, J.M. Ottino, and S. Wiggins. Linked twist map formalism in two and three dimensions applied to mixing in

tumbled granular flows. Journal of Fluid Mechanics, 602:129–174, 2008.
21R. Sturman and J. Springham. Rate of chaotic mixing and boundary behavior. Physical Review E, 87(1):012906, 2013.
22G. Froyland and K. Padberg. Almost-invariant sets and invariant manifoldsconnecting probabilistic and geometric descriptions of

coherent structures in flows. Physica D: Nonlinear Phenomena, 238(16):1507–1523, 2009.
23M.A. Stremler, S.D. Ross, P. Grover, and P. Kumar. Topological chaos and periodic braiding of almost-cyclic sets. Physical review

letters, 106(11):114101, 2011.
24P. V. Danckwerts. Continuous flows systems – distribution of residence times. Chem. Engng. Sci., 2(1):1–13, 1953.
25P. V. Danckwerts. Local residence-times in continuous-flow systems. Chem. Engng. Sci., 9(1):78–79, 1958.
26J.P. Eckmann and D. Ruelle. Ergodic theory of chaos. Rev. Mod. Phys., 57(3):617–656, 1985.
27R. Artuso, L. Cavallasca, and G. Cristadoro. Dynamical and transport properties in a family of intermittent area-preserving maps.

Physical Review E, 77(4):046206, 2008.
28D.V. Khakhar, J.G. Franjione, and J.M. Ottino. A case study of chaotic mixing in deterministic flows: the partitioned-pipe mixer.

Chemical Engineering Science, 42(12):2909–2926, 1987.
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