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Abstract 

One of the primary factors that impact the master production scheduling 

performance is demand fluctuation, which leads to frequently updated decisions, thereby 

causing instability. Consequently, global cost deteriorates, and productivity decreases. A 

reactive approach based on parametric mixed-integer programming is proposed that aims to 

provide a set of plans such that a compromise between production cost and production 

stability is ensured. Several stability measures and their corresponding mixed-integer 

programming model are proposed. An experimental study is performed to highlight the 

effectiveness of the reactive approach with regard to the proposed performance measures. It 

is observed that an improvement in stability does not mean a significant increase in the total 

production cost. Furthermore, the procedure yields a set of plans that in practice would 

enable flexible management of production.  

 

Keywords: production planning and control; manufacturing systems; master production 

schedule; stability; mixed-integer programming. 
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1. Introduction  

A master production program should be periodically adjusted according to demand, 

and as a consequence, a phenomenon known as nervousness generates instability in the 

production scheduling. Nervousness is defined as a characteristic in a Master Resource 

Planning (MRP) system when minor changes in higher level records or the master 

production schedule cause significant timing or quantity changes in lower level schedules 

and orders (de Kok and Inderfurth, 1997; Heisig and Fleischmann, 2001). Alternatively, 

nervousness also can be defined as a shifting of the scheduled setups (Carlson et al., 1979) 

or as a set of changes in setting up the orders (Blackburn et al., 1986; Ho, 1989). A rolling 

horizon is used to adjust the master production schedule (MPS) to the demand forecast by 

minimizing inventory costs with respect to delivery dates. The necessity of reducing 

nervousness is based on increasing both the throughput times and inventory costs (Heisig, 

2002). As a consequence, nervousness causes an increase of the global cost (Steel 1975), a 

reduction in the productivity (Hayes and Clark 1985) and an increase in the bull-whip 

effect. Thus, companies have to determine a trade-off considering production costs, quality 

of service and schedule instability (Blackburn et al. 1986). An important body of work is 

based on the idea of fixing some decisions by freezing the MPS with the drawback of 

increasing global cost proportionally to the uncertainty level (Yano and Carlson 1985). 

Managing an MRP system requires a decision-making process that considers the 

MPS level. Reactivity is needed to respond to disturbances by ensuring feasibility of plans 

and allowing operator involvement in the decision-making process while ensuring the 

solution quality. When using a rolling planning horizon, between two consecutive 

schedules, demand changes make previous decisions infeasible; therefore, new decisions 

have to be made. In practice, decentralized decisions usually based on dispatching rules are 

most often applied due to their simplicity of implementation. For example, in lean visual 

management, the performance of operator decisions depends strongly on their limited 

visibility range which leads to myopic behavior. Thus, recurrent external changes do not 

allow carrying out predictive planning accurately, and then predictive planning is used as a 

reference plan in which deviations happen frequently. Although there are several works that 

study the effectiveness of an MPS, less attention has been devoted to the issue of reactivity 
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(Sridharan and LaForge, 1990; Kadipasaoglu and Sridharan 1995; Zhao and Lam 1997). 

The evaluation of these procedures has often been used with dynamic lot-sizing methods, 

such as Wagner-within (Blackburn and Millen 1982b) or Silver-Meal algorithms 

(Blackburn and Millen 1982a). Several studies have tackled the problem with approximate 

approaches, but only a small number of them are based on exact methods to dampen 

instability. On the other hand Belmokhtar et al. (2010) proposed the reduction of 

nervousness in the context of a hierarchical production planning system. To this end, the 

quantities are disaggregated from the sales and operation plan. Although this approach 

allows obtaining the required results, the resulting rigid planning contrasts with the 

flexibility required in real world applications.  

Recently the problem of reducing nervousness has focused in the supply chain. For 

example, Sahin et al. (2008), Robinson et al. (2008) and Nedaei and Mahlooji (2014) 

propose integration of information between suppliers by rules MPS / AOC. In addition, 

Pujawan and Smart (2012) and Sahin et al. (2013) conclude that the main causes for 

nervousness come from the relationship with customers and suppliers. Thus, they proposed 

tackling the problem from an external perspective instead of using the conventional 

approach, which is based on simulation and mathematical modeling of internal operations. 

In this study, an approach based on a reactive decision-making process to manage 

nervousness in a production system is studied. This approach generates appropriate 

production planning without significantly deteriorating the global cost and enabling system 

operation within an acceptable margin. A set of alternative plans is obtained by minimizing 

a weighted difference between planned quantities per periods for each item. Because this 

problem occurs in many industrial companies, the solution proposed to address nervousness 

would allow such companies to program their productions with less uncertainty and 

consequently reduce their production costs. The primary interest addresses mass 

customization companies that should reach a high level of stability with regard to computed 

schedules for practical convenience. 

 The study is organized as follows. Related works dealing with instability in 

planning system and several instability measures are presented in section 2. The parametric 

MIP model is presented in section 3, and additional MIP models for each instability 

measure are also formulated. In section 4, the effectiveness of the proposed model is shown 
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through computational experiments considering different levels of demand variation. 

Finally, in section 5, the conclusions are presented. 

 

2. Instability in production planning  

The study of instability in production planning is a critical issue to generate a master 

production schedule. The works of Steel (1975) and Mather (1977) are among the first 

dealing with MRP system nervousness. These researchers identify such causes as MPS 

modifications due to changes in customer orders, lead time, safety stocks and the demand 

forecast. Carlson et al. (1979) proposed a solution procedure based on a mathematical 

model to dampen nervousness in a make-to-stock production environment. The authors 

underline the importance to avoid changes in the first periods of the plan relatively to the 

more distant ones. In Hayes and Clark (1985), the relationship between instability and 

productivity was studied. Afterward, the work of Blackburn et al. (1986) examined the 

effectiveness of alternative strategies in multi-level production processes. Sridharan et al. 

(1988) studied the problem of how to effectively measure instability and gave one of the 

more accepted instability measures that is used currently. In the nineties, Inderfurth (1994) 

studied the nervousness effect in stochastic inventory control. The author defined a measure 

of nervousness by exclusively taking into account the setup variables considering the setup-

oriented instability measure as more critical. In Kimms (1998), the author shows the impact 

of stability using three models of production planning. Furthermore, some approaches are 

proposed to measure stability by applying them to the MPS solutions. The effects of 

different cost structures are simulated and analyzed. Finally, an iterative method is 

proposed to reduce MPS instability.  

 Several strategies can be implemented to diminish instability in a production 

system. Three of them have received more attention in the literature: freezing the MPS, 

end-item safety stock and a lot-for-lot rule for components (Kadipasaoglu and Sridharan, 

1995). Frozen intervals consist of fixing quantities within some planning period in which 

changes are forbidden for the next reschedules. The frozen-period strategy presents the best 

performance in a stochastic-demand multi-level environment, but in practice such strategies 

can be used in a complementary way. An extension of this work for a multilevel MRP 

system instead of a single level with rolling time horizons and a deterministic demand, 
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allowed the identification of the impact of lot-sizing rules selection on the MPS freezing 

parameters (Zhao and Lam, 1997). The same purpose is also considered in Zhao and Xie 

(1998), where an improved heuristic procedure is compared to the best known lot-sizing 

rules. In Zhao et al. (2001), freezing the MPS was studied in the case of a multi-item single 

level with single resource capacity constraints under deterministic demand. Uncertainty in 

demand is further considered in the context of precedent in Xie et al. (2003), whereas the 

impact of forecasting error is evaluated in the total cost, schedule instability and system 

service level. Ho (2008), shows that nervousness in MRP systems strongly depends on both 

the dampening procedure selected and on the close relationship between operational 

performance and responsiveness of the planning system. 

Tunc et al. (2013) have proposed an approach to assess the nervousness cost by 

considering a setup-oriented measure by means of three inventory control strategies: static 

uncertainty, dynamic uncertainty and static-dynamic uncertainty. Interesting findings show 

that setup-oriented nervousness could be completely eliminated at minor expense, whereas 

a quantity-oriented measure is difficult to reduce without large cost penalty. The instability 

of a production system can also be reduced using modified versions of the Wagner-Within 

and Silver-Meal methods or using models based on mixed integer programming (MIP) that 

consider previously scheduled periods (Kazan et al., 2000). The results are analyzed in a 

computational study in which the model based on MIP obtains good stability results in 

some cases.  

Several causes seem to be involved in the origin of instability in a production 

system. Some of them are: the cost structure, the raw materials costs, the uncertainty level 

of demand and the rules to define lot-sizing (Kadipasaoglu and Sridharan, 1995). 

Additionally, it has been suggested that schedules are more stable when there are 

component commonalities in the supply chain, when the capacity is not tight and when the 

setup costs are relatively low (Meixell, 2005). The coordination of activities when 

managing the supply chain has also been identified as a critical factor to instability (van 

Donselaar et al., 2000). Theoretical studies appropriately reflect what occurs in real world 

situations in which similar factors affecting instability have been identified, such as lot-

sizing rules, uncertain demand, item bills and delivery of raw materials (Pujawan, 2004). 

Different measures can be used to evaluate the instability numerically (Sridharan et 
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al., 1988; Kimms, 1998; Pujawan, 2004; Kabak and Ornek, 2009). A rolling planning 

horizon n, is often used with a specific periodicity t (cycles). Rescheduling is useful for 

several reasons, such as for planning raw material delivery and adjusting demand to 

resource capacity. Quantity-oriented instability is given by the differences between 

scheduled quantities by the MPS in different cycles. Table 1 shows an example of 

scheduled quantities given by the MPS, where quantity ����  represents the scheduled 

production quantity for an end item i, for period t, at cycle k. In this example, parameters 

are a rolling horizon, n = 4, and periodicity in the number of cycles, ∆t = 1. For period t = 

5, instability is equal to the differences among ���� , ���	 , ���

  and ����  . Note that at cycle 5 

the final decision corresponds to ����  and not to the previous potential decisions computed 

in cycle 2, 3 and 4. Nevertheless, at cycle 2, planning was done on the basis of potential 

decision, ���
  which leads to ordering raw materials and planning the corresponding load on 

the machines. The measure proposed by Sridharan et al. (1988) has been extensively used 

as a performance criterion in several works, such as those by Zhao and Lam (1997), Xie et 

al. (2003, 2004). In the following, NGK is introduced as a measure of global instability. It 

corresponds to a proportional cumulative quantity difference for all periods of the planning 

horizon, and it is expressed in Eq. (1). 

 

Insert Table 1 about here 
 

 �� = 	���� � �
���

∑ ∑ ����� − ���������
���

 ��
��� !

���

"
, ∀	$	≥	%,																										(1) 

 

where,  t’ = k + (n − 1) − l and, 

i : end item,  

t : time period,  

k : rescheduling cycle,  

��&�  : scheduled quantity for end item i, period t at cycle k, 

n : planning horizon length,  

'��	:	cumulative	demand	volume	of	item	i	from	the	current	cycle	T	to	the	rest	of	the	
planning	horizon	T	+	n	such	that			'�� =	∑ ?��&@ 

��& 	where	dit	is	demand	for	item	
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i at period t. 
In contrast to Sridharan et al. (1988), in Eq. (1) there is no weight to reduce the 

importance of distant quantity differences. Indeed because the earliest decisions are already 

rescheduled several times, their deviation from the precedent values is further considered. 

The second reason is that all potential quantities generate several engagements as purchase 

orders for raw materials. Thus, the proposed measure considers all periods of the planning 

horizon with the same weight. This measure allows reporting the differences from the 

previous plans to the demand volume, obtaining a proportional estimation of quantity 

variation, which is more significant than an absolute variation. The proposed measure is 

determined by the most unstable product to consider the worst case among the whole group 

of products. 

 In addition to the global measure and due to a short rescheduling interval (∆t = 1), 

we define a local instability measure to focus on one period only. This measure is provided 

to help the decision-maker manage the supply process. A precise indication of the level of 

variation for each purchase order is needed to minimize the difference between purchasing 

cost and production cost. This local measure NL expressed in Eq. (2) represents quantity 

differences between the current plan and the previous ones for only the first period in the 

corresponding cycle. Regarding the precedent global measure, the local measure is 

proportional to the demand volume to obtain comparable values.  

 

�C� =  ���D � �
��E

∑ ����
� − ���

����F��
��� !

���

"
, ∀ $ ≥ %,                          (2) 

 

Additionally, a smoothing measure is determined by the worst case among the 

products instability measures. More precisely, it is defined as the differences between 

production quantities for the same cycle (e.g., in Table 1 for k = 2, differences between 

Q2
i2, Q

 2
i3, Q

 2
i4, Q

 2
i5). So, the smoothing measure can be formulated as follows: 

 

G� =  ����H∑ ��(�@�)
� − ���

� ��"
��� L���

" , ∀ $ ≥ %,                          (3) 

where t′′ = k + n − 1. 

This measure represents an average of the scheduled quantity difference (between 
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each period and its immediate next period at each cycle k). In many manufacturing systems 

these differences tend to be minimized because of the associated costs relating to setup 

labor turnover, raw material management, etc. 

 

3. Considered models 

The proposal to measure instability in a production system takes into account four 

optimization problems: a capacitated lot-sizing problem (CLSP), a smoothing production 

problem (SPP) and two instability minimization problems. A solution for the CLSP 

provides a minimum direct-cost production plan. With this plan, it is possible to evaluate 

the allowed deterioration in the system in terms of the additional cost necessary to produce 

under a smooth production plan. In particular, the model allows evaluating the additional 

cost due to smoothing production. 

 

Capacitated lot-sizing problem for the MPS  

The mathematical formulation for this problem specifies a minimum direct-cost 

production plan that considers the costs of production, inventory, backorder and setup 

costs. First, the decision variables and input data are defined, and then the model is 

formulated by equations (4) to (10).  

Variables: 

MN
� : objective function for model ON in cycle k, 

MP
� : objective function for model OP in cycle k, 

MQR
�  : objective function for model OQR in cycle k, 

MQS
�  : objective function for model OQS in cycle k, 

xit : production quantity of item i in period t, 

sit : inventory of item i in period t, 

r it : backlog of item i in period t, 

yit : setup for item i in period t (yit = 1  ⇔ xit > 0, ∀ i, ∀ t), 

wit : smoothing production variable of product i in period t: t > 1. 

T��
�  : auxiliar variable that represents quantity differences in absolute value 

Input data: 

dit : demand of item i in period t, 
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pit : production cost of item i in period t, 

hit : inventory cost of item i in period t, 

bit : backorder cost of item i in period t, 

qit : setup cost of item i in period t, 

���
�  : production quantity of item i in period t scheduled in cycle k, 

Ct : available capacity of critical resource in period t, 

αi : marginal consumption of capacity by production of item i, 

βi : marginal consumption of capacity by setup of item i, 

M : upper bound on production quantity; it is the cumulative demand on the planning 

horizon.  

ON:							min MN� =	∑"��� ∑ (U����� + ℎ��W�� 	+ X��Y�� 	+ 	Z��[��)�"
���    (4) 

        Subject to: 

W�\ = 	W� �, Y�\ =	Y� � , ]	 ∈ _1, … ,�b,								(5) 
W��" = 	0, Y��" = 	0, ]	 ∈ _1, … ,�b,							(6) 

W�(���) − Y�(���) + ��� = ?�� + W�� − Y�� , ] ∈ _1, … ,�b, f ∈ _$, … , f"b,							(7) 
��� ≤ O[�� , ]	 ∈ _1, … ,�b, f ∈ _$, … , f"b,							(8) 
∑ j���� + k�[�� 	≤ l�, f ∈ _$, … , f"b"
��\ ,       (9) 

��� , W�� , Y�� ≥ 	0, [�� ∈ n0,1o.								(10) 
 

The model MP considers a fixed charge cost assumption, i.e., we suppose a high 

setup cost that represents the equipment installation and preparation costs (Pochet and 

Wolsey 2006). Moreover, backorders variables are considered because demand usually 

exceeds available capacity. The interval of periods [k,…,t′′] and the k-index in each 

function, has been explicitly chosen to highlight the rolling horizon nature of the model 

runs, where, k and t′′ = k + n − 1 represent, respectively the first and the last period in the 

rolling horizon. The objective function (4) minimizes production, inventory, backorders 

and setup cost. Constraint (5) sets the initial inventory and backorders resulting from last 

production period. Constraint (7) represents the inventory balance, constraint (8) is the 

relationship between production and setup (yit = 1  ⇔ xit > 0), and constraint (9) sets the 

available capacity by period. 
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Smoothing production problem  

A smoothing production problem (MI) is formulated as a capacitated lot-sizing 

problem by considering a penalty due to variations in the production quantities between 

two consecutive periods. The MI problem is described in equations (11)-(14) including the 

constraints from MP. The penalty function is expressed in terms of a set of continuous 

variables corresponding to such differences (11). The parameter λ weighs the differences. 

Constraints (12) and (13) express the absolute value of any difference in production. Thus, 

the reformulated objective function fI minimizes both direct production cost fP and 

cumulative quantity differences between consecutive periods for all items.  

 

OP:							�]% MP� =	MN� + p∑ ∑ q 
��r ��

"
���       (11) 

        Subject to: 

(5), (6), (7), (8), (9), 

��(�@�) − ��� ≤ q��, ] ∈ _1, … ,�b, f ∈ _$, … , f"b,							(12) 
��� − ��(�@�) ≤ q��, ] ∈ _1, … ,�b, f ∈ _$, … , f"b,							(13) 

��� , W��, Y�� , q�� ≥ 	0, [�� ∈ n0,1o.								(14) 
 

Instability minimization problems  

Instability minimization problems are formulated to obtain the best possible 

reduction for the instability measures NG and NL. To obtain tight production values the 

production cost fP is relaxed by allowing a minor deviation, and it is included as a 

constraint in the way of ε constraint programming (Ehrgott, 2000). Thus, the larger value is 

the deviation from production cost; the maximal value is the potential instability gain. In 

other words, the cost becomes more expensive as instability is reduced. In addition, when 

the deviation from the initial direct production cost is minimal, the resolution of the 

problem becomes more difficult due to the tight added constraint that increases time 

consumption. Then, a trade-off has to be found between the instability reduction needed 

and the acceptable additional cost. A first MNG problem is formulated to optimize the 

measure NG and is described by equations (15) – (19) including (5) – (9). The problem is 

formulated for each cycle k with regard to schedules of precedent cycles. In this problem, 
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the objective function (15) minimizes the absolute value of the differences between 

production quantities ���
�  at the current cycle k and those obtained in previous cycles (���

���). 

Constraint (16) allows a cost deterioration in the limit of ε%. Note that MN
�, is relative to the 

computation obtained in the first cycle with the model MP, such that the results of the 

precedent cycle are incorporated as initial conditions into the next cycle. Constraints (17) 

and (18) guarantee the absolute value for variables T��
� . 

OQR:							�]% MQR� =	∑ ∑ ∑ T�����
���

 ��
���

"
���       (15) 

        Subject to 

(5), (6), (7), (8), (9)   

	∑"��� ∑ vU������ + ℎ��W��� 	+ X��Y��� 	+ 	Z��[���w ≤ 	MN�∗ 
��� (1 + 	y)  (16) 

���� −	������ ≤	T��� , z ∈ _1, … , % − 1b, f ∈ _$, … , f′b, ] ∈ _1, … ,�b									(17) 
������ − ���� 	≤ 	 T��� , z ∈ _1, … , % − 1b, f ∈ _$, … , f′b, ] ∈ _1, … ,�b									(18) 

f� = 	% − $ − 1																								 
���� , W��� , Y��� , T��� ≥ 	0, [��� ∈ n0,1o								(19) 

 

In a similar way, a MNL problem specifies the optimal value to measure NL, and it is 

represented by equations (20) – (24) including constraints (5) – (9). The objective function 

(20) minimizes the differences among quantities of the current period t and those obtained 

in the previous cycles for the same period (with ∆f = 1	 ⟹ f = $ ). As in the MNG, 

constraint (21) allows the cost deterioration in the limit of a ε%, and constraints (22) and 

(23) restrict T���  to its absolute value. 

 

OQS:							�]% MQS� =	 ∑"��� ∑ T��� ��
���      (20) 

         Subject to 

(5), (6), (7), (8), (9) 

	∑"��� ∑ vU������ + ℎ��W��� 	+ X��Y��� 	+ 	Z��[���w ≤ 	MN�∗ 
��� (1 + 	ε)  (21) 

���� −	������ ≤	T��� , z ∈ _1, … , % − 1b, ] ∈ _1, … ,�b, f = $								(22) 
������ − ���� 	≤ 	 T��� , z ∈ _1, … , % − 1b, ] ∈ _1, … ,�b, f = $										(23) 

���� , W��� , Y��� , T��� ≥ 	0, [�� ∈ n0,1o								(24) 
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4. Experiment description  

The problem instances are generated randomly such that parameter values are close 

to an industrial case. To obtain an acceptable simulation time, five products are considered. 

Time periods correspond to weeks; then an operational horizon of H = 52 periods is chosen 

to obtain sufficient visibility to measure instability. Note that in practical industrial 

situations, the operational horizon is determined by the cumulative lead time. The 

rescheduling interval is t = 1, and the planning horizon is n = 8 periods which correspond to 

two months. The parameter values for production, inventory, backorders and setup are 

randomly regenerated using a uniform distribution within the following interval: pit ∼ 

U([5,15]);  hit ∼ U([10,25]); bit ∼ U([20,40]); and q ∼ U([1900, 2200]). Note that parameter 

intervals have been chosen to enable a possible overlapping between them. Demand has 

been generated using the normal distribution as ?��
� 	~	�(�, �) = 	�(1200, �), ∀], ∀f, ∀$. To 

simulate the different levels of variation (ρ=5, 10, 15, 20 (%)). 

The experiments could be described as three linked processes. In the first process, 

MI is solved for several values of λ. Consequently, a set of solutions are obtained, each one 

corresponding to a different λ value. This set of solutions is a set of potential production 

plans that could be provided to the decision-maker depending on the degree of stability 

needed and the production cost allowed. The solution with the best trade-off between cost 

and instability is selected. The proposed approach assumes that this decision is made by the 

production manager taking into account several factors which typically are, in practice, 

such as the system capacity, scheduled maintenance, availability of labor, among others. 

However, the simulation only considers the best trade-off. When alternatives do not arise, 

we use the original planning, i.e., the standard lot-sizing model (MP). 

The second process consists of computation of the set of potential production plans 

H times, i.e., for all the considered cycles. More precisely, for each cycle, a different 

instance is generated by varying demand and costs. This data variation simulates the real-

case fluctuations that could occur. In the third process, both previous steps are performed to 

consider several percentage deviations (ρ) from the initial demand. Figure 1 shows a 

schema of the simulation procedure. For each cycle k, all models MP, MI, MNG and MNL, are 

launched independently such that results of the previous cycle are introduced as initial 
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conditions of the next cycle (stock and backorders). The strongest variation arises from 

demand whereas costs remain constant for the rest of the planning horizon. Note that the 

number of cycle simulations is 60, and only the last 52 cycles are considered. This allows 

comparing all periods with the same quantity of information. 

 

Insert Figure 1 about here 
 

Experiments have been performed for ρ = {0.05, 0.1, 0.15, 0.2} supposing that the 

demand changes following a normal distribution. The generation of instances has been 

developed using the Python 2.6 programming language, and the MIP models have been 

solved using GLPK LP/MIP Solver v4.45. 

 

5. Computational results  

 The additional cost due to the consideration of instability is not high compared with 

the improvement in instability. This effect can be observed in Figure 2, which shows the 

results obtained for two representative instances. The figure shows the variation in the total 

cost (MP
∗ ), the instability reduction (I) and instability reduction measures NG and NL 

depending on the variation in λ. Note that the Y-axis is graduated as a value in the interval 

[0.0, 1,0] such that each measure is normalized with respect to its initial value (the value 

obtained when λ = 0). For example, in Figure 2(a) when λ = 5 the cost increase showed 

with the curve MP
∗ means that MP

∗/MN
∗  slightly exceeds 1.0 where MP

∗ = MN
∗ when λ = 0. The 

profit obtained for instability measure I decreases to 80% relatively to its initial value, as 

seen in the I curve in Figure 2(a) when λ = 5 compared to λ = 0, which is the production 

difference given by MP. 

  

Insert Figure 2 about here 
 

 The proposed approach yields a set of plans that allow managing production 

flexibly. Each solution corresponds to a fixed value of parameter λ; therefore, all of these 

solutions present a trade-off between production cost and instability (Figure 2). Next, the 

planning can be adjusted flexibly bearing in mind other conditions that typically arise in 

real situations and that are not explicitly expressed in the mathematical models. In general, 
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stability is not desired when it highly deteriorates the production cost MN
∗ which leads to 

restriction of the λ value to an interval delimited by an upper bound and a lower bound. In 

this way, λmax can be used to identify the interval upper bound corresponding to the 

acceptable cost deterioration. Analogously, λmin can be used to define the minimal 

instability reduction needed corresponding to the minimal stability threshold. This range 

must be defined by taking into account the computational time. The idea is to produce a 

sufficient amount of production plans in a reasonable amount of computer time. In practice, 

the interval size is determined in an experimental way such that the runs are stopped as the 

production cost limit is reached. 

A comparison of model performances regarding the production smoothing (I), 

instability (NG, NL) and production cost increase is presented. Because instability 

addresses cycle rescheduling, the experimentation phase is then performed for several 

cycles of the operational horizon thus, a focused analysis is proposed to show the behavior 

of the different indicators for instances with 5% demand variation during all cycles. 

In spite of a slight cost increase in MI, a significant reduction in terms of instability 

is observed. Figure 3 depicts the results of MI and MP for a demand variation of 5%. It is 

observed that improvement is achieved using MI compared to MP with regard to instability 

measures for all periods in the operational horizon of simulation. The experimental results 

show the positive effect on instability reduction as a consequence of instability 

minimization obtained with model MI.  Similarly, though less notable, NL and NG reflect 

the efficiency of MI model. 

  

Insert Figure 3 about here 
 

The level of variation in demand is an important factor in determining the 

production planning. In fact, more variation might involve increased instability and 

significant changes in the total cost during the planning period. Thus, it is interesting to 

study whether the behavior detected for a level of demand variation of 5% holds for other 

levels. In table 2, the production cost obtained with the conventional model MP is compared 

with the proposed models MI, MNG and MNL for 5%, 10%, 15% and 20% of demand 

variation. The columns in the Table contain the relative deviations from MP values.  
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A significant improvement achieved by model MI with regard to instability 

reduction is observed (Table 2). In fact, model MI achieves up to 93% of stability, which is 

obtained with a 5% of demand variation. Thus, the level of reduction obtained with MI 

depends on the demand variation. In particular, the higher demand variation is the lesser the 

instability reduction is, as can be observed in Table 2 experimenting a decrease from 

78.52% to 35.82%. This decrease could be explained by the possibility to smooth 

production when demand does not greatly exceed the available capacity whereas it becomes 

much more difficult when demand reaches a peak of variation. Related to model MNG, the 

stability is difficult to achieve because the best reduction does not exceed 30.00% on 

average. Nevertheless, when demand variation increases, the difference between models MI 

and MNG decreases from 64.24% (78.52-14.28) to 6.39% (35.82-29.43). The model MNL 

presents the worst results because it deteriorates even the performance of the conventional 

CLSP formulation (see the negative deviation computed on the basis of the column MP).  

The numerical results show the superiority of the MNG model because it presents the 

minimal values with regard to the global instability measure NG for all the experimented 

instances. Considering the local instability measure, there is no exclusive dominant model  

because MNL outperforms both MI and MNG on average for the instance with 15% and 20% 

of demand variation. Furthermore, very close results are obtained for the other demand 

variations that in general, are closer to real-world situations. 

 

Insert Table 2 about here 
 

6. Conclusions  

Several MIP formulations have been proposed to increase reactivity in the decision 

making at the level of master scheduling in production planning. The first model minimizes 

the instability in addition to production cost to reduce the instability under a rolling 

horizon. Instability and both global and local instability measures are defined. Then, two 

MIP models are proposed to reduce global and local instability measures, respectively. A 

study with an experimental design has been performed to compare the performance of the 

proposed models regarding smoothness and instability reduction whereas several demand 

variation levels have been considered. The experimental design aims to highlight the 
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flexibility brought in the decision-making process by generating a set of production plans 

corresponding to several values of the smoothness weighting. Thus, several alternative 

plans become possible, which guarantee a trade-off between a minimum instability 

threshold and maximum cost degradation. 

From the experimental analysis, it is concluded that an improvement in stability 

does not mean a significant increase in the total production cost. Furthermore, the 

procedure yields a set of plans that in practice would allow flexible managing of 

production. Specifically, a comparison of model performances regarding the production 

smoothing (I), instability (NG, NL) and production cost increase, shows that in spite of a 

slight cost increase in MI a significant reduction in terms of instability is observed. In 

addition, MNG produces plans closer to those generated by MI, regarding the plans produced 

by MP. Additionally, the numerical results show the superiority of MNG because it presents 

the minimal values regarding the global instability measure NG for all tested instances. In 

this way, the instability minimization appears to be an excellent choice to dampen 

instability and to maintain a trade-off between the additional cost and 

smoothness/instability reduction. 

This work opens new perspectives for future studies, in which decentralized 

decisions can be made based on flexibility on the shop floor, especially when disturbances 

occur. In fact, the operators would participate in facing short-term disturbances, such as 

machine breakdown or urgent demand. Such systems could be implemented with a multi-

agent approach in which a neighborhood search could be used to reach close solutions to 

those obtained in this proposed centralized approach. 
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Table 1.  Example of MPS execution in a rolling horizon for end item I 
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Table 2. Percentage differences among MI,MNG  and MNL with respect to MP  for 5% and 
10%, 15% and 20% of demand variation. 

Demand variation 

 5%  10%                     15% 20% 

Measure MI MNG MNL MI MNG MNL MI MNG MNL MI MNG MNL

fP 3.11 4.99 5.00 2.53 5.14 4.92  1.83 5.21 4.20 2.02 4.96 3.90

I 78.52 14.28-134.22 50.86 24.56 -51.46  40.79 28.09-20.20 35.82 29.43 -7.37

NG 28.63 39.63  16.84 30.66  21.87 32.45 20.41 37.18

NL 28.35 84.08 11.89  40.07  22.97 37.71 14.12 45.55
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Figure 2. Two example cases of the decision making process: trade-off between total cost 

(f I
∗), instability (I) and instability measures (NG and NL). 
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Figure 3. Comparison between MI and considering total cost and instability. 


