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Abstract The foundational Benders decomposition, or variable decomposition, is
known to have the inherent instability of cutting plane-based methods. Several tech-
niques have been proposed to improve this method, which has become the state of
the art for important problems in operations research. This paper presents a comple-
mentary improvement featuring quadratic stabilization of the Benders cutting-plane
model. Inspired by the level-bundle methods of nonsmooth optimization, this algo-
rithmic improvement is designed to reduce the number of iterations of the method.
We illustrate the interest of the stabilization on two classical problems: network de-
sign problems and hub location problems. We also prove that the stabilized Benders
method has the same theoretical convergence properties as the usual Benders method.

Keywords Benders decomposition - nonsmooth optimization - quadratic stabiliza-
tion - bundle method - mixed-integer programming - network design problems - hub
location problems - convex analysis

1 Introduction

Benders decomposition, or variable decomposition, is a fundamental method of op-
erations research that is adapted to problems where fixing some "complicating" vari-
ables makes the problem much easier to solve. The approach consists in decomposing
the initial optimization problem into a sequence of two problems: a master problem
in the complicating variables producing the next iterate, and a subproblem in the easy
variables generating a new constraint (or cut) for the master. Originally proposed by
(Benders, 1962) for linear programming, the method was generalized to nonlinear
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programming by (Geoffrion, 1972) and then refined and adapted to various mixed-
integer programs (see e.g. (Conejo et al, 2006)). Successful Real-world applications
include network design (see the survey (Costa, 2005) and recent examples (Fortz and
Poss, 2009; Contreras et al, 2011)), locomotive and car assignment (Cordeau et al,
2000), aircraft routing and crew scheduling (Mercier et al, 2005).

It is well-known, however, that the application of the classical Benders decompo-
sition sometimes leads to excessively slow convergence and long computing times;
see e.g. (Geoffrion and Graves, 1974; McDaniel and Devine, 1977; Magnanti and
Wong, 1981; Saharidis and Ierapetritou, 2010; Naoum-Sawaya and Elhedhli, 2013).
In particular, forty years ago, (Geoffrion and Graves, 1974) already observed that
the problem formulation strongly affects the performance of Benders method. Simi-
larly, (Magnanti and Wong, 1981) noted that a straightforward application of Benders
method to some network design problems leads to poor performance.

Several techniques have been proposed to deal with this phenomenon and to ac-
celerate the standard Benders method. These techniques mainly split into two cat-
egories: reducing the cost of each iteration, or reducing the number of iterations.
First, one can achieve cheaper iterations by reducing the time spent solving the mas-
ter problem or the subproblem. Among the first references that attempt to make the
master problem easier to solve are: (McDaniel and Devine, 1977) which relaxes the
master problem at most iterations, and (C6té and Laughton, 1984) which solves the
master problem only approximately. The idea of solving the subproblems approxi-
mately (resulting in inexact cuts) has also been successfully used in e.g. (Zakeri et al,
2000; Oliveira et al, 2011). Second, the main idea to reduce the number of iterations
is to generate more or “better” cuts. A standard technique, going back to (McDaniel
and Devine, 1977), is to add an initial set of valid cuts to the master problem in order
to restrict its feasible region. Most of the research done to accelerate Benders method
focuses on generating more efficient cuts. In particular, (Magnanti and Wong, 1981)
presented a multi-cut approach, introducing the so-called Pareto-optimal cuts; (Sa-
haridis et al, 2010) proposed a strategy to generate a bundle of cuts involving most of
the variables. In the case where a lot of feasibility cuts are needed, (Saharidis and Ier-
apetritou, 2010) constructs new optimality cuts from infeasible subproblems. Finally,
another recent and fruitful idea is to combine Benders decomposition with branching
strategies. For example, (Rei et al, 2009) proposed a local branching approach to be
used within Benders and (Naoum-Sawaya and Elhedhli, 2013) exploits warm-starting
using the Benders method within a branch-and-cut framework.

This paper brings a new tool to accelerate Benders decomposition: we propose an
algorithmic improvement, complementary to existing techniques, to reduce the num-
ber of iterations. More specifically, looking at the Benders method from a nonsmooth
optimization point of view (Hiriart-Urruty and Lemaréchal, 1993), we introduce a
quadratic stabilization, inspired by bundle methods to stabilize and accelerate the
Benders decomposition. Quadratic stabilizations of the Dantzig-Wolfe decomposi-
tion have already been studied: the review paper (Briant et al, 2008) shows the appli-
cability and the interest of the approach on several mixed-integer problems. Quadratic
stabilizations have also been introduced for Benders decomposition with no integer
variables, as in particular stochastic two-stage problems appealing for scenario de-
composition (see e.g. (Ruszczynski, 1986) and (Oliveira et al, 2011)). To the best of
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our knowledge, quadratic stabilizations have not been adapted to the case of Benders
decomposition for mixed-integer problems. In this case indeed, the situation is much
different from Dantzig-Wolfe or continuous Benders, due to the presence of integer
variables in the master problem.

This methodological paper is organized as follows. In Section 2, we revisit the
classical Benders decomposition from a nonsmooth optimization perspective, lay-
ing the ground for our developments. We follow the abstract framework of the gen-
eralized Benders decomposition (Geoffrion, 1972). Section 3 introduces our main
contribution: the stabilized Benders method, using the quadratic stabilization of level
bundle methods (Lemaréchal et al, 1995). We prove in Section 4 that the convergence
properties of the stabilized method are (almost) the same as those of the original one.
Finally, in Section 5, we illustrate the relevance of the stabilization for two classical
classes of problems: network design and hub location problems.

2 Benders decomposition from a nonsmooth optimization point of view

This section recalls classical Benders decomposition and introduces our notation.
We revisit here the standard approach from a nonsmooth optimization point of view.
Though this viewpoint is part of the folklore, it has never been precisely formalized.
In particular, the underlying "oracle" is discussed in Section 2.1 and illustrated in
Section 2.2. We recall in Section 2.3 the structure of the Benders cutting-plane algo-
rithm.

2.1 Framework and convexity assumptions

Following the notation of (Geoffrion, 1972), we consider the optimization problem

min f(x,y)
s.t. G(x,y) <0 (1)
xeX,yey,

where X C R”, Y C R? and G(-,-) is an R™ valued function. We do not make any
assumptions on the constraints sets X and Y; in particular, Y can be discrete, of the
form of the intersection of a polyhedral set and the integers Z”. We only assume
that (1) is feasible, i.e. its optimal value is not —eco.

Consider the situation where the y variables are the “complicating” variables in
(1), in the sense that when temporarily fixed, the remaining subproblem is consid-
erably more tractable. In this case, it is natural to decompose the problem, into two
levels, by considering the function

v(y) :=inf f(x,y)

s.t. G(x,y) <0 2)
xeX,
and writing the problem (1) as
v :=minv(y) or  Vv':= min v(y). (3)

yey yeynv
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In the minimization problem above, V denotes the domain of v, i.e. the values y such
that v(y) is finite, namely:

V:={yeR9:(2)isfeasible} = {y ¢ R : Jx € X,G(x,y) < 0}.

Benders decomposition exploits this structure by considering a sequence of two sim-
pler problems: a relaxation of (3) (called master problem) and a subproblem of the
form (2). The resulting algorithm is detailed in Section 2.3. Let us emphasize here
that the approach requires some "underlying convexity", formalized by the following
assumptions.

Assumptions (Convexity assumptions)

(i) The function v is closed and convex (and as a result its domain V is a closed
convex set).
(i1) For all y € V, we can compute (approximately) the value and a subgradient of v
aty.
(iii) For all y ¢ V, we can compute a hyperplane separating y from V.

Before giving examples in the next section, note that assumption (i) is mandatory
to ensure the consistency of Benders decomposition. Indeed, when v is not convex,
(Sahinidis and Grossmann, 1991) provides an example where Benders decomposition
may not even lead to a local optimum. Note also assumption (ii) has a theoretical
aspect (existence of a subgradient), and a practical one (we can compute it).

In the nonsmooth optimization terminology, assumptions (ii) and (iii) mean that
we have a procedure, called oracle, returning a linearization of v (the so-called op-
timality cuts) or a linearization of V (a feasibility cuts). More precisely, the oracle
takes as an input a vector y € Y and returns a pair in R x R? as follows.

— If y € V: the oracle returns an approximate value of v aty
vy €R suchthat v(y)—n <v, <v(y), 4)
and an approximate subgradient of v at y
gy € R? such that v ey, v(y) > vy +g§ o' —y), &)
where 1 > 0 is the accuracy of the oracle. When 1 = 0, we say that the oracle

is exact. Note that by combining the inequalities (4) and (5), we see that g, is an
n-subgradient of v at y:

wey,  v)2v) g ' —y) -0
— If y ¢ V: the oracle returns a hyperplane separating y from V, that is:

(a,s) eRxRY suchthat ¥y eV,s'y <a<s'y. (6)
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2.2 Examples where the convexity assumptions hold

In this section, we present a general situation and two classical examples of problems
(linear problems and variable factor problems) that fit in the above framework. The
problems of the numerical experiments of Section 5 are instances of linear problems.

The usual situation where the convexity assumptions hold is when the subprob-
lem (2) is solved by duality. The next three lemmas study precisely this case. Their
proofs rely on standard results of convex analysis and are provided in the Appendix.
Following the notation of (Geoffrion, 1972), we consider the Lagrangian dual func-
tion

L (yu) = inf{f(x,y) +u' G(x.y)} (7)

for a dual multiplier # € R, and the associated dual problem

sup L™ (y,u). ®)

u>0

We also introduce the Lagrangian dual function associated with the constraints of (2)
L.(y,A) := inf AT G(x,y) 9)
xeX
that is useful to build a separating hyperplane.

Lemma 1 (Convexity of v) Assume that, for all y € Y NV, there is no duality gap
between (2) and (8) and that, for all u > 0, the function L*(-,u) is convex. Then v is
closed and convex, as written as:

v(y) = supL*(y,u). (10)

u>0

Lemma 2 (Subgradients of v) Suppose that assumptions of Lemma 1 hold. Then,
for giveny € YNV, n >0, and an n-optimal solution u of (8), the subgradients of
L*(-,u) at y are n-subgradients of v at y.

Lemma 3 (Separators of V) Assume that X is compact and that, for all A € R,
the function L, (-,A) is convex. Then, for each'y ¢ V, there exists A € R} such that
L.(y,A) >0, and for s € dyL.(y,A) and & := 5"y —L.(y,A), the hyperplane (s,c)
separates y from V (that is, satisfies (6) ).

The previous lemmas explain how to build a subgradient or a separating hyper-
plane, under the assumption of convexity of L* and L, with respect to y. It is usually
not difficult to check this convexity: we have it when f and G are convex with re-
spect to the variables x and y jointly; the Example 2 below presents another case. The
following two examples explicit the construction for classical general problems.
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Example 1: Original problem. The seminal paper (Benders, 1962) focuses on prob-
lems, linear with respect to x, of the form:

min ¢ x+ @(y)
s.t. Ax+y(y) <b (11)
xeRY, yeY CRY,

with ¢ € R?,; A € R™*? and b € R™. We assume that ¢: R? — R and the m com-
ponents y; of y: R? — R™ are convex. This formulation covers the two problems
(network design and hub location) used for our numerical experiments. For a fixed
vector y € Y, the subproblem is thus linear:

min ¢ x+@(y)
st Ax < b—y(y) (12)
xeRE,

and its linear dual is

max L*(y,u) = (y(y) —b) "u+@(y)
st. ATu>—¢ (13)
uc RT.

For a given y € Y, the oracle solves the pair of problems (12)-(13). Three cases are
possible.

— If (13) has a finite optimal value, then the oracle returns the value and a subgra-
dient:

v(y) = (W) —b)Tu(y) + 0(y),
g) = Y Bui(y)+7v  €0v(y),

where u(y) is an optimal solution of (13), y € d¢(y) and B; € dy;(y).

— If (13) has an unbounded optimal value (i.e. (12) is infeasible), then any linear
programming solver will return a certificate of unboundedness (or infeasibility).
This latter takes the form of an unbounded dual vector: adding this vector to
any feasible solution of (13) yields a feasible solution with a larger objective.
Formally, the oracle returns A € R’ such that

ATA =0 and (G(y)—b)"A >0. (14)
which implies that
vxeRY,  ATAx=0>21"T(b—wy(y)), (15)

and by taking the infimum over x € X we obtain that infxeszr ATAx = 0. Thus,

we see that A is such that L, (y,A) > 0, and Lemma 3 gives the expression of a
hyperplane separating y from V.
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Example 2: Variable factor-type problems. Let us consider the problem:

n
min ) fi(x)yi
i=1
n
s.t. inyi <c (16)
i=1

xeEXCR, yeY CRY

where ¢ is in (R% )", f; are convex functions and X is a convex set. Several prob-
lems can be formulated as (16); for instance, the variable factor problem presented
in (Geoffrion, 1972) and the unit-commitment of thermal systems problem presented
in (Geromel and Belloni, 1986). In general, the problem is nonlinear and nonconvex,
because of the constraint Zl’»‘:lxiy,- < c¢. However, we can prove that the function v
is convex, as follows. For any fixed y € Y, the subproblem in x is convex and the
solution x = 0 is strictly feasible. Therefore Slater’s condition holds, so that there
is strong duality between the primal subproblem and its dual. Moreover, for given
vectors y € ¥ and u € R}, the Lagrangian (7) can be written as

n
L*(v,u) = Y yi inf {fi(x)) +u'x'} —u'c. (17)
i=1 x'eX;

We see that the Lagrangian is linear in y for all u. Lemma 1 implies then that func-
tion v is convex; and because the subproblem is feasible for all y € Y, v is finite
everywhere, i.e. V = R™. Solutions of the n subproblems in x’ allow us to construct
subgradients of v with Lemma 2.

2.3 Benders decomposition algorithm

The Benders algorithm proposed by (Geoffrion, 1972), generalizing the original al-
gorithm of (Benders, 1962), is not readily implementable in general. It relies indeed
the assumption (called “Property (P)” in (Geoffrion, 1972)) that for given u € R’}
and A € R, one can compute explicitly the expressions of L*(y,u) and L,(y,A) of
(7) and (9). To cover the general case where this assumption may not hold, it is clas-
sical to use the linearizations L*(-,u) and L. (-, 4). From the nonsmooth perspective,
this corresponds to linearizing v and V with the information given by the oracle (by
lemmas 2 and 3), and the restrictive assumption (P) is compensated by the convexity
assumptions (ii) and (iii).

More precisely, assuming that the oracle has provided information at k points
¥1,- .-,V we denote by I the set of indices i < k such that y; € V and J the set of
indices j < k such that y; ¢ V. The cutting-plane models of the convex function v and
the convex set V are:

B(y) = max{vy +gy, (v —v)} <0y, (18)

Vie={yeRi:sjy<ajes} 2V. (19)
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So we consider here the version of Benders algorithm (that we call cutting-plane
Benders method) where the so-called master problem at iteration k& is

min Vi (y) st y€WNY, (20)
written equivalently
min r
st vy t+gl v—yi) <r i€l

S;!—ySOCj JEJk
yveY, reR.

1)

The (well-known) nonsmooth interpretation is then clear: the cutting-plane Benders
method corresponds to the Kelley cutting-plane method (Kelley, 1960) using the or-
acle (typically with an error n = 0). This algorithm is presented schematically in
Figure 1 and more precisely in Algorithm 1.

For a later use, let us describe further the notation of Algorithm 1 and its stopping
test. The master problem (20) is a relaxation of the original problem (3), i.e. its opti-
mal value V(yx41) provides a lower bound on v*. We denote by v}{ow the best lower
bound at iteration k, that is:

v}{ow = 'nllaxkﬁ,-(y,url) <y*, (22)
=

Each (approximate) evaluation of v at y; € V also gives an (approximate) upper
bound. We define vzp as the best (approximate) upper bound:
up

v,' :=minv,, >Vv'—n. 23
k e, 21— n (23)

We can then define the optimality gap as
A= o, (24)

If the oracle is exact (1 = 0), A, is always nonnegative, and Ay = 0 implies that the
point y; such that v(y;) = vEp is an optimal solution of (3). In the general case () > 0),
Ay is no longer always nonnegative, but still bounded from below: by definition of
vzp and v}f’w, we have for all k, Ay > —n. For a fixed tolerance € > 0, the stopping
test Ay < € ensures the approximate convergence. Indeed, denoting y; the iterate such
that vy, = v,", we would have

EZAk:V}’iiv}cow > vy =V > v(y) —n =V

where the last inequality comes from the definition of the oracle. Hence, A; < € gives
that y; is an (1 + €)-solution of problem (3).
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Algorithm 1 Cutting-plane Benders method

> Initialization
1: Choose y; € V and a stopping tolerance € > 0
2: Call the oracle at y; and get vy, g1 € dpv(y1)
3: Setdy + {1}, 71 <0, )P vy, VY —o0

4: fork=1,2,... do
> Test termination
5: if Ay < € then
return y* and vy« = P
7 end if

a

> Solve master problem
8: Solve (20) and get g1,V (Vkr1)
9: Update v}f}‘r’“l < max (V% Vi (yes1) }
> Call oracle (solve subproblem)
10: if yy+1 €V then

11: The oracle returns (vy, |, 8k+1)

12: Iy < LU{k+1} > Optimality cut
13: if vy, | <v'P then

14: Set y* <= Yrr1, VP vy

15: end if

16: else (yy 1 ¢V)

17: The oracle returns (Ot 1,S+1)

18: i1 — S U{k+1} > Feasibility cut
19: end if

20: end for

3 Quadratic stabilization of the algorithm

Cutting planes-based methods are known to suffer from an instability that can lead
to a slow convergence, see for example (Bonnans et al, 2006, Example 8.7). The
problem is twofold: the method can do very large steps, especially at the first itera-
tions, and, even when the iterates become close to an optimal solution, the method
can oscillate around it resulting in excessively slow convergence (the so-called tailing
effect). It is the same for the Dantzig-Wolfe column generation which can be seen as
dual to the Benders decomposition method.

In nonsmooth optimization, bundle methods have been proposed to stabilize cutting-
planes method, see for e.g. the textbook (Hiriart-Urruty and Lemaréchal, 1993). The
general idea of bundle methods is to encourage the next iterate to stay close to the
best one, while decreasing the cutting-plane model objective. Along with the iter-
ates {yx}, the methods thus keep track of a sequence of so-called stability centers
{$%} € {yx} For a given model v and a stability center J, three popular variants of
bundle methods compute a next iterate by solving:

1
min{ % () + — |y —5/* } (proximal bundle method) (25)
yey 2ty

milr/l{ W) st |ly—9ll* <R} (trust region bundle method)  (26)
ye

1
mi}r}l{ > ly—Fill® st %(y) < Li } (level bundle method) (27)
ye
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Add optimality cut
Update v?

Stop

yes
S ———> L> Solve subph <>

no

Add feasibility cut

Fig. 1 Scheme of the standard Benders decomposition algorithm

Update §, v and v'*" | €«——

yes

Substantial
decrease?

Add optimality cut o
Stop

yes] yes
no . yes .
Start ——> —>| Level master Feasible? > ——>| Solve subpb Feasible?

Update v and v'*¥ no

Add feasibility cut

Fig. 2 Scheme of the stabilized Benders decomposition algorithm

with #, Ry, Ly, real parameters whose role is to balance the minimization of the cutting-
plane model and the distance to the stability center. There is a theoretical equivalence
between the above three variants: for a fixed cutting-plane model v, there exists a
choice of the parameters #;, Ry, L; such that the three variants generate the same next
iterate, see for example (Bonnans et al, 2006, Theorem 9.7). In practice though, the
algorithms differ in the way the parameters are managed during the iterations. Even
for a given variant, the practical performance relies heavily on the update strategy of
the parameters. For proximal bundle method, efficient heuristics have been proposed
to manage #; (Bonnans et al, 2006); it is one of the reasons why this type is usually
preferred.
In the context of Benders decomposition for two-stage stochastic problems, quadratic

regularizations, inspired from bundle methods, have been proposed by (Ruszczynski,
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1986) for exact oracles and (Oliveira et al, 2011) for inexact oracles. In discrete lin-
ear optimization, the stabilization of Dantzig-Wolfe decomposition, in particular by
a proximal bundle method, proves to accelerate the resolution (Briant et al, 2008) of
several mixed-integer linear problems. In these applications however, the underlying
nonsmooth problem is convex, i.e. v is convex and Y is a convex set. To the best of
our knowledge, bundle-type methods have not been adapted to Benders decompo-
sition for mixed-integer programming — or more generally to the minimization of a
convex function over a discrete constraint set, as is our master problem in general.

Convexity is a crucial feature in proximal bundle methods: it is needed to define
the stopping criteria, to efficiently manage the proximal parameter #;, as well as to
guarantee convergence. Level bundle methods (Lemaréchal et al, 1995) have the ad-
vantage of computing a lower bound during the algorithm which, together with an
upper bound, allows us to define a simple stopping test. We propose here a stabiliza-
tion of Benders decomposition based on level bundle methods. We call the resulting
algorithm stabilized Benders method. Figure 2 provides an overview of the method
(comparison of Figures 1 and 2 is instructive) and Algorithm 2 contains all the de-
tails. In the reminder of this section we present the main properties of the stabilized
Benders method.

Level-master problem. Instead of computing the next iterate as the minimum of the
cutting-plane model as for the usual Benders method, we compute the closest point
to the current best iterate, within a certain level set of the cutting-plane model. More
specifically, we introduce the following level-master problem:

. A 12

min 5 ||y — 5|

st (y) < v (28)
yevny,

which is equivalent to the following problem

min 4 [ly— i
sty gl (v—yi) <V i€l
sjiy<eo  jehk
yeY.

The level-master problem (28) has a quadratic objective function, linear constraints
and possibly integer variables. Compared to (21), note that the complexity of the
master problem increases, from a mixed-integer linear program (MILP) to a mixed-
integer convex quadratic program (MIQP). This is not really a limitation for the ap-
proach because solvers for convex MIQPs are efficient (for e.g. Cplex and Gurobi).
Moreover, when the oracle is an expensive procedure, the additional time needed
to solve the level-master is often negligible in the overall solving process. Thus, if
the stabilization allows us to decrease the number of iterations (that is, the number
of oracle calls), we reduce the total computing time, as observed in the numerical
illustrations of Section 5.
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Algorithm 2 Stabilized Benders method

> Initialization
: Choose a stopping tolerance € > 0 and parameters k and A € (0,1)
: Choose y; € V and call the oracle to get (vy,,g1), choose VoV < v*
2 Set Pr < y1, VP vy, VIV = AP 4 (1= )Y
. Set I {1},]1 0

W N —

I

5: fork=1,2,... do
> Test termination
6: if A; < € then
7. return (Ji, vy, = vzp)
8: end if
> Level-master problem
9: Solve the (MIQP) level-master (28)

10: if Infeasible then > Infeasible master iteration
11: Set i < VIV VY = A+ (1= AV > Increase lower bound
12: Choose I such that {k} C I C Iy
13: continue (go to line 5)
14: else
15: Get yx41 solution of (28)
16: end if

> Call oracle
17: if yi41 €V then > Optimality cut
18: The oracle returns (vy, | 1 8k+1)
19: if vy, <" — k& then > Serious iteration
20: Set Pxi1 < Vet 1o vzil = Vyers "}21 — lv,"('erl +(1- l)v}(‘r’l > Decrease (inexact) upper

bound

21: Choose I, 1 such that {k+1} C L1 C I
22: else > Null iteration
23: Set [y %Iku{k+l}
24: end if
25: else (yy 1 ¢V) > Infeasible subproblem
26: The oracle returns (O 1,5k+1)
27: Set Jipq < JyU{k+1} > Feasibility cut
28: end if
29: end for

Stability center and upper bound. As in the standard Benders decomposition, the
evaluations of v at the solutions of the level-master problem provide approximate
upper bounds on v*. To avoid unnecessary moves, especially since the oracle can be
inexact, the classical strategy in bundle methods is to update the stability center only
when a “substantial” decrease of the objective is observed (see (Hiriart-Urruty and
Lemaréchal, 1993, Chap.XV)). At iteration k&, for an upper bound vzp, the observed
decrease is considered substantial when it is at least a fixed fraction x € (0, 1) of the
expected one, i.e.
Vg = VZP — K&,

where the expected decrease 8y is the decrease of the objective provided by the level

S =P — v (29)

In this case, we update the stability center y; = yx1 and the upper bound vzp =y,
Following the standard terminology of bundle methods, an iteration is called serious
or null (respectively), depending on whether there is a substantial decrease or not.
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Level parameter and lower bound. In standard Benders decomposition, the master
problem (20) is always feasible and its optimal value provides a lower bound. In
contrast, the level-master (28) problem may not be feasible and its optimal value is
obviously not a lower bound. In fact, it is precisely when the level-master problem
is infeasible that we can access a lower bound, as the parameter v}fv then becomes a
valid lower bound for problem (3). Indeed we have in this case:

Vyeynv, () >w,
and, since by definition V; contains V and v, under-approximates v, this implies
Yyervyny, v(y) > vie.

We denote v}fw the best (i.e. the largest) lower bound obtained at an iteration k. At
each iteration we have the inequalities:

VeV <vr <P 4. (30)

As for the usual Benders method, we use the optimality gap A of (24) to define
the stopping test. By construction the sequence (v/°¥) is nondecreasing and (v;"),
nonincreasing. Thus, the sequence of optimality gaps (A )y is nonincreasing.

Regarding the level parameter, one can observe that the larger v}f", the smaller the
steps from ¥, (and conversely). In theory, convergence is ensured for any choice of
viev:

VE = P (=AY, with 0< A < 1. (31)

In our numerical experiments, we use the standard value A = 0.5.

Bundle reduction. As in standard Benders decomposition, the level-master problem
contains two types of information on v: optimality cuts (indexed by I;) and feasibility
cuts (indexed by Ji). It turns out that, roughly speaking, the essence of optimality
information is summarized in the quantities $, v;¥, vi®” and vi". Thus we do not
need to keep all the optimality cuts in the bundle to guarantee convergence. More
precisely, each time v}fV is updated (as a consequence of the update of vzp or v}(ow), itis
possible to get rid of all optimality cuts, except the one corresponding to the stability
center. Let us denote by k the index such that § = ;- We call bundle reduction the
possibility of keeping only a subset of the optimality cuts, i.e. choosing any I | such
that:

{k} Tl C L4,

at iterations k where v}f" is updated. In addition to limiting the memory space used
by the algorithm, this feature prevents the level-master from growing too large. In
particular in the case of multi-cuts approaches (see e.g. (Magnanti and Wong, 1981),
(Saharidis et al, 2010) and references therein), bundle reduction would be a natural
way to control the size of the level-master problem. In contrast, we emphasize that the
bundle of feasibility cuts must be kept entirely, as there is no way to aggregate feasi-
bility cuts information.

Note that the bundle reduction of our algorithm is different from classical bun-
dle compression. Bundle compression is a key feature of bundle methods that aims
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at keeping the memory space needed by the algorithm bounded while still ensuring
convergence. It is based on the aggregation of the bundle information; basically, the
removed cuts are replaced by some convex combination of them. This combination
(and the proof that it is indeed enough to guarantee convergence) relies on the convex-
ity of the master problem. Since our level-master problem is not convex in general,
we cannot apply a similar bundle compression in our situation.

Bundle reduction however shares the same practical property as bundle compres-
sion: although theoretically only a few cuts are needed for convergence, in practice
it is better to keep as many as possible for a faster convergence. As always, the user
should find a trade-off between the memory space and the convergence speed.

Initialization. Note finally that all stability centers () are in V. Thus, the algo-
rithm needs the initial y; to be in V. Finding such point can be straightforward (as
in the problems used in our numerical experiments). If not, one can start by applying
the classical Benders decomposition until a feasible point y € V if found, and then
apply the stabilized version.

Moreover, the algorithm needs a lower bound on the optimal value. A lower
bound is often available or easily computed (as in our numerical experiments). If it is
not the case, minimizing the first cutting plane model gives one (when Y is bounded
as in the analysis of the next section).

Thus the stabilized Benders algorithm needs a feasible solution (upper bound)
and a lower bound. While Benders method uses them only for the stopping test, the
stabilized Benders method also uses them to define the level parameter v}f" (see (31)).
Thus it can take more advantage from good quality bounds.

4 Convergence analysis of the stabilized Benders method
4.1 Convergence result

In this section, we study the convergence properties of the stabilized Benders method
(Algorithm 2). The main result is the following theorem, that we prove at the end
of the section after getting some intermediate results. The theorem shows the con-
sistency of our stabilization approach; its performance will be evaluated through nu-
merical experiments in Section 5. We fix an oracle error 7 > 0 in the reminder of this
section.

Theorem 1 (Convergence of the stabilized Benders method) Assume that the con-
vexity assumptions hold. Assume furthermore that

— eitherY is finite,
— orY is a compact subset of V, and the sequence of subgradients of v generated
during the algorithm is bounded.

If € = 0, then the iterates J of Algorithm 2 generate an M-minimizing sequence, i.e.

v —n <limvy, <v* <limv(§) <v'+1.
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If € > 0, the algorithm terminates in a finite number of iterations with an (€ +1)-
solution.

This theorem for the stabilized Benders algorithm is similar to those of the Ben-
ders algorithm of (Geoffrion, 1972). More precisely, when 11 = 0, the theorem corre-
sponds for the stabilized Benders to Theorems 2.4 and 2.5 of (Geoffrion, 1972) for
the Benders method.

Remark 1 (When Y is finite and € = 0) In the case where Y is finite and € = 0, the
above convergence result is slightly weaker than the corresponding one of (Geoffrion,
1972) for the Benders decomposition. More precisely, Theorem 2.4 of (Geoffrion,
1972) proves that the Benders algorithm converges in a finite number of iterations
(at most |Y| iterations); this is not true anymore for the stabilized Benders algorithm.
The stabilization makes us loose the finite convergence when € = 0, as shown by the
following example.

Consider the minimization of the convex quadratic function v(y) = y* over the
singleton ¥ = {1}. Suppose that the lower bound 0 is known. Starting Algorithm 2
with y; = 1, the level parameter will be vllev = 1/2. Then, the level-master prob-
lem (28) will be infeasible, leading to an update of the lower bound, and the level
using expression (31) with A = 0.5: v!®V = 3 /4. Repeating this for the next iterations,
we see that the level parameter takes the values 1/2,3/4, ..., (2K — 1) /2*. Therefore,
finite convergence of our algorithm is only ensured for a tolerance € > 0.

Remark 2 (On the assumptions) Let us briefly discuss the role of the assumptions
of the theorem. The convexity of v (convexity assumption (i)) implies existence of the
subgradients on intV, the interior of the domain (see (Hiriart-Urruty and Lemaréchal,
1993, ThXI.1.1.4)). The first part of assumption (ii) then brings the existence of
subgradients on its boundary too. Again by (Hiriart-Urruty and Lemaréchal, 1993,
Th XI.1.1.4), we have that the subdifferential of v is unbounded on the boundary of V;
second part of assumption (ii) then says that we can still compute a finite subgradi-
ent on the boundary. Theorem 1 assumes furthermore that, in the case where Y is a
compact subset of V, the subgradients of v visited during the algorithm are bounded.
This assumption is closely related to the one of Theorem 2.5 of (Geoffrion, 1972),
which states that the set of dual multipliers of (8) is bounded, for all y € Y. Lemma 8
in the appendix studies a case where the boundedness of the dual multipliers implies
the boundedness of the subgradients of von all Y.

4.2 Convergence proof

On the schematic representation of the stabilized Benders algorithm of Figure 2, we
see that there are several types of iterations, corresponding to different paths in the
graph. Using Benders decomposition and bundle methods terminology, we categorize
the iterations of Algorithm 2 as follows:

— infeasible master iterations,
— infeasible subproblem iterations,
— serious iterations (feasible master and subproblem + substantial decrease),
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— null iterations (feasible master and subproblem but no substantial decrease).

We present a series of lemmas treating each case separately and leading to the
proof of Theorem 1. The intuitive idea of the proof is to show that each type of
iterations cannot be repeated infinitely many times without leading to convergence.

Lemma 4 (Infeasible master iterations) If there is an infinite number of infeasible
master iterations, then limA; < 0.

Proof Let (¢(k)); denote the indexes of iterations where the master problem is in-
feasible, and (y(k))x the indexes of the iterations directly preceding these iterations,
i.e. w(k) = ¢(k+1)— 1. For all k, we have an update of the lower bound:

Vetest) = Vel = Ay + (1 - Aty = Ytk + A4y

low

By definition of y, we also have vlow Vol and therefore:

low low

(k) —

1
Ay = I(Vq) k+1) ~ Vo(k ))
Summing over k, we obtain

1
ZA 10(‘7v+1) lo ) I( v};’(w)) for all N. (32)

Recall now that the sequence (Ar)y is nonincreasing and bounded from below by —1
(by definition of vk and v'OW) As aresult, the sequence (A ) converges, and so does
its subsequence (AV,( ))k- We conclude that the limit cannot be positive, in view of
(32). O

Lemma 5 (Serious iterations) If there is an infinite number of serious iterations,
then we have limA;, < 0.

Proof Similarly to the proof of Lemma 4, let (¢ (k)); denote the indexes of the it-
erations where the descent test is satisfied, and (y(k)); the indexes of the iterations
directly preceding these iterations. The condition of line 19 implies that for all &,

Summing over k, we get for all N

1
28 E (Vo) ~ Viouwin )

From the oracle definition, we have vy 1) > v()3¢<N +1)) —1n >v* — 1. Therefore,
for all N, the partial sum chv 0 5 %) is bounded from above by the constant %(v) 0(0)
v¥+1). Observe now from the deﬁmtlons of & and vlev in (29) and (31) that &; =
(1 —A)A. This yields that the partial sums Zk:() (k) are bounded from above for all

N. We can conclude by the same rationale as at the end of the proof of the previous
lemma. a
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Lemma 6 (Null iterations) Assume that either Y is finite, or Y is compact and the
sequence of n-subgradients of v visited during the algorithm is bounded. Then, there
cannot be an infinite sequence of consecutive null iterations.

Proof Suppose that after k iterations, we have an infinite sequence of consecutive
null iterations. This yields that, for all i > k, vl-ev = v}f", and all the constraints are
accumulated (no bundle reduction after iteration k). For all i and j such that k <i < j,
iterate y; satisfies the constraint:

lev lev

vy 8l (=) <V =0
Using the Cauchy-Schwarz inequality, we get

lgill |[vi =5l = (vy, = vEY). (33)

If Y is finite, we define A as the maximal norm of the n-subgradients of v on Y. If
Y is compact, the additional assumption also gives that there exists A > 0 such that
|lgi]l < A. Then (33) implies that:

1
\lvi =)l = A —v).

Besides, since there are no serious iterations after k, it holds that v,, > vzp — K(vzp —
v}f"). As a conclusion, we have for all k <i < j:

1—x)

iy > LX)

Y (P =) > 0.

This contradicts the existence of a convergent subsequence of the bounded sequence
e CY. a

Lemma 7 (Infeasible subproblem iterations) Assume that Y is finite. There cannot
be an infinite number of iterations where the subproblem is infeasible.

Proof Suppose yx ¢ V is a solution of the master problem at an iteration k — 1. Then,
the oracle returns a hyper-plane separating y; from V, ie (o, sy) such that skTyk > oy
The constraint skTy < oy is then added to the master problem and prevent y; from
being a solution in any future iteration. a

We are now in position to prove Theorem 1.

Proof (of Theorem 1) Suppose that Algorithm 2 performs an infinite number of iter-
ations. Let us distinguish the two cases:

— If Y is a compact subset of V, then there are no infeasible subproblem iterations
by definition, and no infinite sequence of null iterations by Lemma 6.

— IfY is finite, there is a finite number of infeasible subproblem iterations by Lemma 7,
and again no infinite sequence of null iterations by Lemma 6.
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Thus, in both cases we have an infinite number of either infeasible master iterations or
serious iterations. These two situations are handled by Lemmas 5 and 4 respectively.
Therefore in any case, we have that lim Ay < 0; let us show now that it is sufficient to
conclude.

Recall the definition (24) of A;. By construction, the sequence of upper bounds
{v;?} = {v5,} is nonincreasing and bounded from below (see (30)) thus converges
and limvy, > v* — 1. Similarly the sequence of lower bounds {v}("w} is nondecreasing

and bounded from above by v*. Writing limA; <0 as lim vg, —lim v}("w <0, we obtain
vi—n <limyy <v* (34)

Moreover the n-oracle properties imply that, for all k, v < v(Ji1) < vy, +1 and
passing to the limit-inf, we get

v <liminfv(Pqq) < limvy, + 7. (35)

Combining (34) and (35) we obtain the announced 1-convergence. a

5 Numerical illustrations

In this section, we illustrate the efficiency of the stabilized Benders algorithm by
comparing its performances to the standard Benders algorithm. We use two classi-
cal classes of mixed-integer linear problems for which Benders decomposition-based
approaches are the state-of-the-art: network design problems and hub location prob-
lems. Regarding the problems themselves, we do not present any novel numerical
result; here we just illustrate the interest of our quadratic stabilization. Each of the
following subsections presents the problems and show a comparison between the sta-
bilized and standard Benders algorithms.

For both problem classes, we have the following common experimental frame-
work. We have implemented the standard and stabilized Benders algorithms in Python,
using Gurobi callable libraries for solving the subproblems. All experiments have
been done on a processor Intel(R) Xeon(R) CPU W3530, running at 2.8GHz, with
10GB of RAM in a Linux environment. The subproblems (2) are solved exactly (the
oracle error is 11 = 0). We use the parameters kK = 0.1 and A = 0.5, as well as a rela-
tive tolerance of 103 for the stopping tests. A lower bound on the optimal solution is
computed by omitting the integrality constraints. For each problem, an initial feasible
point (y; € V) can be easily computed.

5.1 Experiments on network design problems

Network design problems consist in selecting arcs from a graph in order to satisfy
some flow constraints, at minimal cost. These constraints concern the transportation
of commodities from origin to destination nodes. The structure of the problem makes
Benders decomposition a method of choice for tackling it; see the review (Costa,
2005).



Quadratic stabilization of Benders decomposition 19

We consider the fixed-charged uncapacitated network problem, where there are
fixed costs associated with opening arcs, and no capacity limit on the amount of flow
going through the network. We denote by N the set of nodes, A the set of arcs and K
the set of commodities. We define the binary variables y;; to express whether the link
between nodes i and j is used or not in the solution, and the continuous variables x; jx
to represent the amount of flow of commodity & € K through arc (i, j). We can then
formulate the problem as

min Y cipXije+ Y, fivij
oYk ij

dy i=0(k)
s.t. injk — ijik = —dii= D(k) Vi, k
J J 0  otherwise

Xije S dyyij Vi, jk
Xijk 205 VI,J,k
y,-jE{O,l} Vi7j>

where c;jx denotes the unitary cost of routing commodity & through arc (i, j), fi; the
fixed cost of utilizing arc (i, j), dj the demand in commodity k, O(k) and D(k) the
origin and destination nodes of commodity k respectively.

Fixing the variable y means fixing the network; the remaining subproblem is the
well-known easy (polynomial) problem of finding a flow of minimal cost. Moreover
the subproblem is separable with respect to the commodities so that we can write the

function v as:
v(y) =Y )+ Y fijyii»
kek ij
where vy (y) are the optimal values of the |K| independent subproblems:

vi(y) := min Y cijiij
ij

dp i=0(k)
s.t. injk — ijik =< —diyi=D(k) Vi (36)
J J 0  otherwise

Xk < diyij Vi, j
Xije >0 Vi, j.

If the subproblem is infeasible for a fixed y, then similarly to Example 1 of Sec-
tion 2.2, a certificate of infeasibility allows to build a feasibility cut.

‘We generate random instances of fixed charge uncapacitated network design prob-
lem, with a number of nodes |N| € {5,8,10,12,15,20} and a number of commodities
IK| € {5,10,15,20}. This leads to problems with up to 2400 variables (400 boolean
and 2000 continuous) and reasonable computing times. For each problem size, we
generate 3 different instances. We initialize the algorithms with the solution where
all the arcs are opened, which is feasible for all instances.

Table 1 summarizes the results of the standard versus the stabilized Benders algo-
rithms. Both algorithms converge to an optimal solution; for each, we report the CPU
time in seconds, the total number of iterations and the number of iterations where the
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subproblem (36) is infeasible (“f. cuts” column), which corresponds to the number of
feasibility cuts added to the master problems (21) and (28). For each instance size, we
present the average results over the 3 instances that we generated. We observe that the

Instances Standard Benders algorithm Stabilized Benders algorithm
nodes commodities | time (s) iterations f. cuts time (s)  iterations f. cuts
5 5 0.27 24 16 0.31 22 5.66
5 10 0.38 25.33 15 0.07 8 0.66
5 15 0.58 29.33 16 0.12 9 0.33
5 20 0.69 29.66 15.66 0.08 5 0
8 5 1.24 33.66 28 0.65 18.66 [§
8 10 42.13 167.33 108.66 53.43 82 27
8 15 72.49 175.66 99.66 60.60 56.33 433
10 5 7.09 61.66 41 3.95 38.33 13
10 10 555.79 272 196.66 | 252.69 65.33 13.66
10 15 20099.7 671.66 426 20289.8 205.66 23.33
12 5 37.58 108.33 90.33 12.8 49.66 29
12 10 34267.4 893 698 10661.6 283.66 161.33
15 5 677.50 199 172.66 53.54 60 34.66
20 5 10796.2 324.33 252.33 | 1481.89 113.33 68.33
Average reduction 56 % 60 % 83 %

Table 1 Standard versus stabilized Benders algorithms on network design problems

stabilized version performs significantly better than the standard one. It is the fastest
for 37 out of 42 instances with an average acceleration of 56 %. As expected, this
speed-up is due to the reduction of the number of iterations needed for convergence
(on average 60% less iterations).

More surprisingly, we observe a dramatic decrease in the number of feasibility
cuts (at least 50 % and 83 % on average). Intuitively, by forcing the iterates to stay
close to the best one, the stabilization prevents the iterates from staying for too long in
infeasible regions. This is an interesting feature of our algorithm because numerous
feasibility cuts are often an issue in Benders method (see for e.g. (Saharidis and
Ierapetritou, 2010)).

Finally note that the stabilized Benders still requires a lot of iterations for some
instances (especially the ones of size (10,15), (12,10)). A way to improve the per-
formance could be a sophisticated management of the level parameter A. For sake
of simplicity, we keep this parameter fixed on our experiments; it is enough to out-
perform the standard Benders method. In practice anyway, an efficient solution of
network design problems would require combining the stabilization with existing
general acceleration techniques (mentioned in the introduction) and other strategies
specific for this problem (see (Costa, 2005)).

5.2 Experiments on hub location problems

The hub location problem aims at locating hubs to rout commodities at minimal cost.
Given a set of commodities to transport from origin to destination nodes, the problem
consists in locating hubs and choosing routes for each commodity through one or
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two hubs in order to minimize setup and transportation cost. Benders decomposition
based approaches have been successfully applied to this problem, allowing to tackle
large scale realistic instances (see (Contreras et al, 2011) and references therein).

We consider the uncapacitated hub location problem with multiple assignments.
In this variant, the number of hubs is not fixed, there are no capacity limits on the
amount of flow routed through the arcs and the hubs and each commodity can be
routed through several paths. We use the path formulation proposed first by (Hamacher
et al, 2004). For a given complete graph (N,A), we denote by H C N the set of po-
tential hubs. For each commodity k € K, we denote by o(k) € N (resp. d(k) € N)
its origin (resp. destination) node and W, the amount of commodity k to be routed.
We denote by f; the fixed cost associated with location a hub at node i € H, d;; the
euclidean distance between nodes i and j € N. The transportation cost of routing
commodity k through two hubs i then j € H, i.e. through the path (o(k), i, j,d(k)) is
written as

Fijie = Wie(Xdoryi + tdij + 8d k)

where , 7, 0 are the collection, transfer and distribution cost. The problem can be

formulated as:
n}l)n Z fiyi+ Z Z Z Fijixiji

icH icH jeH kek

Z Z Xk =1 Vke K

icH jeH

Z Xijk + Z Xjik < Vi Vie HVke K
jeH jeH\{i}

x,-ijO Vi,j€H7Vk€K
yi €{0,1} VieH.

When fixing the variable y (i.e. the locations of the hubs) the remaining subproblem
is to assign each commodity to one or two hubs. A simple way to avoid infeasible
subproblems is to add the constraint that at least one hub should be opened, namely

Y yi>t 37
icH
Again, the subproblem is separable with respect to the commodities leading to |K|
smaller independent subproblems. Note that we do not implement the sophisticated
techniques of (Contreras et al, 2011) to exploit further the structure of these subprob-
lems.

We use the Australian Post set of instances (available athttp: //people.brunel.
ac.uk/"mastjjb/jeb/orlib/phubinfo.html), which is a classical data set in
the hub location literature. It provides the postal flow between 200 cities (given by
their coordinates), transportation costs (¥, T and &) and setup costs f;. The data set
also provides a procedure to generate smaller instances by grouping the cities. As
postal flow is required between every pair of cities, the number of commodities is
|K| = |N|?, and all nodes are potential hubs so |H| = |N|. We consider instances with
a number of nodes in {10, 15,20,25,30,35,40}. We do not consider larger instances
because the cost of solving subproblems (especially in terms of memory space). For
each problem size, we generate 3 instances by taking different values for the transfer
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cost T € {0.1,0.5,1}. The different transfer costs leads to different numbers of open
hubs in the optimal solutions, and thus various instances types.

Table 2 presents the results of applying the standard and stabilized Benders algo-
rithms. Again, for all the instances, both algorithms converge to an optimal solution.
Table 2 reports the computing time in seconds and the number of iterations. There is
one less column than in Table 1: recall indeed that there is no feasibility issue here
because of the additional constraint (37). We first see on Table 2 that the standard
method already performs well, with at most 13 iterations to reach convergence. The
stabilized version performs slightly better: it is faster for 16 out of 21 instances and
give an average time reduction of 14 %. Thus, for this problem where standard Ben-
ders method works already fine, the stabilization is still able to improve the results.

Instance Standard Benders algorithm | Stabilized Benders algorithm
nodes T time (s) iterations time (s) iterations

10 0.1 1.06 7 0.91 6
0.5 1.28 8 0.89 6

1 1.07 7 0.75 5

15 0.1 5.31 7 3.01 4
0.5 5.27 7 5.86 8

1 4.52 6 5.83 8

20 0.1 21.72 9 16.61 7
0.5 16.83 7 14.24 6

1 14.3 6 13.94 6

25 0.1 58.66 10 35.18 6
0.5 52.58 9 3491 6

1 46.31 8 28.7 5
30 0.1 112.08 9 144.47 12
0.5 97.72 8 96.28 8

1 97.11 8 96.11 8

35 0.1 296.61 13 182.69 8
0.5 183.46 8 116.71 5

1 177.94 8 110.59 5

40 0.1 467.17 12 498.91 13
0.5 351.77 9 310.24 8

1 306.04 8 336.76 9

Average reduction 14 % 13 %

Table 2 Comparison of standard et stabilized Benders algorithms on hub location problems

6 Conclusion and perspectives

In this methodological paper, we use a nonsmooth optimization perspective on Ben-
ders decomposition to introduce an algorithmic improvement of the method, inspired
by level bundle methods and complementary to existing accelerating techniques. The
idea is to add a quadratic stabilization in the master problem of the cutting-plane Ben-
ders algorithm, to reduce the number of iterations of the method. Convergence of the
stabilized Benders algorithm is established under the usual assumptions. The interest
of the approach is illustrated on two mixed-integer linear problems: for the network
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design problem, the stabilized algorithm is able to drastically reduce the number of
used cuts, especially the feasibility cuts; for the hub location problem, the stabilized
algorithm is still able to improve the excellent performance of the standard method.

Quadratic stabilizations are known to be efficient in the context of constraint de-
composition or scenario decomposition (see e.g. (Ruszczyniski, 1986), (Lemaréchal,
2001), (Briant et al, 2008) and (Oliveira et al, 2011)); the contribution of this paper
is to show that it is also the case for Benders decomposition of mixed-integer prob-
lems. It is of interest for future research to study similar stabilization techniques for
other cutting plane-based algorithms for mixed-integer programming, as the extended
cutting-plane method (Westerlund and Pettersson, 1995) and outer-approximation
methods (see e.g. (Fletcher and Leyffer, 1994) and (Bonami et al, 2008)). The re-
cent preprint (Oliveira, 2014) builds on this line of research.

Appendix: more on the nonsmooth optimization perspective

This appendix completes Section 2 about the nonsmooth optimization viewpoint on
Benders decomposition by providing the proofs of the results together with an addi-
tional result.

Proof (of Lemma 1) The no duality gap assumption gives the expression (10). It
follows that v is closed and convex, as the supremum of a family (indexed by u € R"})
of convex functions (y — L*(y,u)). O

Proof (of Lemma 2) Suppose u is an 1-optimal solution of (8) for a given y € Y,
then d,L*(y,u) is nonempty (see for e.g. (Hiriart-Urruty and Lemaréchal, 1993, Chap
VD). Let g be in d,L*(y, u), the expression (10) of v and the convexity of y — L*(y, u)
imply that

wernv, vo) =L u) =L (yu)+g' (¢ ~y).

—1, thus

—

Besides, the definition of u gives that L*(y,u) > v(y

wWernv, vo)>v(y)+g (VY —y) —n,

which ends the proof. O

~

Proof (of Lemma 3) The compactness of X implies that the two following systems
of inequalities

xeX st. G(x,y) <0 and A e€RY st L.(yA) <0,

satisfy the assumptions of the theorem of strong alternatives (see (Boyd and Vanden-
berghe, 2004, p 261)): for y ¢ V there exists a vector A € R} such that L, (y,A) > 0.
On the other hand, observe that by definition of V, for all y/ € V and A € R, we have
L.(y,A) <0. Thus we can write:

vylev7 L*(yl7A)SO<L*(y7}L) (38)
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Besides for s in dyL.(y,A) (which is nonempty by definition (Hiriart-Urruty and
Lemaréchal, 1993, Chap VI)), the convexity of L, with respect to y implies that

vy,EV7 L*(y7)L)+ST(yl—y)SL*(y/,l), (39)
Combining (38) and (39) we deduce that:
Wev, s’y <s'y—L.(yA)<s'y.

Then, taking the supremum over y € V and introducing o := s'y — L, (y,4), we
obtain

sups'y <a<s'y,

y'ev

which means that (s, &) is a hyperplane separating y from V. a

Finally, we go beyond Lemma 2 by giving explicitly the expression of the sub-
gradients of v.

Lemma 8 (Subdifferential of v when the problem is convex) Assume that the set
X is convex, and that the functions f and the G are convex. Then v is convex. For
given 'y € YNV, assume moreover that there exists x an optimal solution of (2) and
that Slater assumption holds, i.e.

IxeimX Gi(x,y)<0 foralli=1,...,m.

Then the subdifferential of v at y consists in all the vectors of
m
A f(x,y) + Y uidyGi(x,y), (40)
i=1
where u € R are the optimal solutions of (8), that is, such that u' G(x,y) =0 and
m
0e 8xf(x,y)+2ui8xGi(x,y)+Nx(x). 41)

i=1

Proof We provide a different proof recasting v explicitly as a marginal function ob-
tained by partial minimization. Consider Jx the indicator function of X, and ‘%—oo,o]
the indicator function of the interval | — oo, 0]. Thus we write

xeRP

v(y) = inf h(x,y) with h(x,y):= f(x,y)+ i o) 0 Gi(x,y) + 6x (x).  (42)
i=1

Applying the calculus rule for the subdifferential of a marginal function (Hiriart-
Urruty and Lemaréchal, 1993, X.3.3.2), we get that dv(y) for given y is exactly the

set s € RY such that 5 e3)
0 L h(x,y
<> c (ayh<x,y>> | @

where x is an optimal solution (42) (that is (2)), which exists by assumption. We now
explicit the two above partial subdifferentials. The Slater assumption is a sufficient
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condition to be able to write the subdifferential of the sum of the subdifferentials (see
(Hiriart-Urruty and Lemaréchal, 1993, X1.3.1.2))

m

8xh(xay) = 8xf(x?y) + Zax(ﬁfw,()] OG,')(X,y) + a5X(x)

i=1

Recall that the subdifferential of an indicator function is the normal cone of the un-
derlying set:

0 ifa>0
95)(()6) = Nx<x> and 8@,«,70](05) = ]\f],w70]((X) =<0 ifa<0
R, ifa=0

The subdifferential calculus rule for the post-composition (Hiriart-Urruty and Lemaréchal,
1993, Corollary VI.4.3.1) also gives that for the convex functions G;’s

0 if Gi(x,y) >0
9x(8)—w0) 0 Gi)(x,y) = 1 O if Gi(x,y) <0
R+axGi(x7y) if Gi(xvy) =0
Thus the two parts of (43) gives respectively (40) and (41). a

This lemma shows that there is a direct link between the subgradients of v and
the dual multipliers of (8). This result allows us to establish precisely the correspon-
dance between the assumptions of Theorem 1 and the assumptions of its counterpart
for Benders decomposition (Theorem 2.5 of (Geoffrion, 1972)). Since the subdiffer-
entials of the finite-valued functions y — f(x,y) and y — G(x,y) are compact on Y,
the expression (40) indeed shows that the boundedness of the dual multipliers leads
to the boundedness of the subgradients of v on all Y.
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