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I. INTRODUCTION

Computed tomography (CT) scanners data are basically reconstructed with the gold standard Feldkamp (FDK) algorithm [START_REF] Feldkamp | Practical cone-beam algorithm[END_REF]. Its analytical formalism requires a large number of projections for a robust reconstruction thus not contributing to limit dose to patient. Calling on iterative methods -such as ART [START_REF] Gordon | Algebraic reconstruction techniques (art) for three-dimensional electron microscopy and x-ray photography[END_REF], EM [START_REF] Lange | Globally convergent algorithms for maximum a posteriori transmission tomography[END_REF] and their derivatives -reliable reconstructions are performed from reduced dataset but at large computational cost. This is mainly due to the regular voxel lattice used as sampling : high spatial resolution means thin 3D grids and leads to an oversampling of large homogeneous regions. This translates to a larger number of unknowns to estimate -computational cost -and to large file to store the reconstruction -memory requirement. Graphics processing units (GPU) downscale iterative methods computation time but the processing of big volumes still remains an issue -due to limitation in devices internal memory size. Volume storage memory consumption moreover remains the same. Addressing this issue, representations enabling an adaptive sampling of the reconstruction volume have been investigated. Such is the case of multi-scale basis functions and especially of blobs [START_REF] Wang | Image representation by blob and its application in ct reconstruction from few projections[END_REF]. Main drawbacks are however their high computational cost and the complexity of extension to the 3D case. In tomography, meshed representations are of particular interest, due to their ability to achieve a sampling mirroring the structure of the object. Meshed 2D CT reconstruction was investigated in [START_REF] Brankov | Tomographic image reconstruction based on a content-adaptive mesh model[END_REF] and the 3D case in [START_REF] Sitek | Tomographic reconstruction using an adaptive tetrahedral mesh defined by a point cloud[END_REF], [START_REF] Boutchko | Practical implementation of tetrahedral mesh reconstruction in emission tomography[END_REF]. Brankov et al. [START_REF] Brankov | Tomographic image reconstruction based on a content-adaptive mesh model[END_REF] approach is of sampling nature : a pixel-based coarse reconstruction is first performed and is used to sample the mesh nodes adequately. A maximum-likelihood (ML) algorithm adapted to the mesh representation is then applied for reconstruction. The initial pixel reconstruction needed to build the triangulated representation of the object is the main limitation of this approach because of the large number of projections required by analytical algorithms and because it represents an additional step. In [START_REF] Sitek | Tomographic reconstruction using an adaptive tetrahedral mesh defined by a point cloud[END_REF], Sitek et al. introduce a method based on a refinement scheme. A first regular grid of tetrahedral cells is generated and several iterations of EM algorithm are performed. Tetrahedra linked to big errors are splitted by addition of a node at their centroids and EM is again performed. In [START_REF] Boutchko | Practical implementation of tetrahedral mesh reconstruction in emission tomography[END_REF] the approach is of coarsening type. Starting with a fine grid of tetrahedra, the method proceeds alternating iterative reconstruction and collapsing of cells belonging to homogeneous regions. In both cases, remeshing operations are computationally costly and the number of nodes added at each iteration being user fixed, the performance will be linked to the one's expertise. Buyens et al. [START_REF] Buyens | Adaptive mesh reconstruction in x-ray tomography[END_REF] framework combines the idea of the previous approach. Reconstruction is first performed on a 2D grid of triangle. By interpolating the result to a pixel grid, a level-set method is used to re-sample the nodes and a more adapted mesh is generated. Values are interpolated back from the pixel base to the mesh one and the process goes through another iteration. Results show that the convergence of the reconstruction is substantially improved when the mesh matches the structure of the considered object. The issue is once again that the representation adapts itself to the object along with the tomographic reconstruction. Moreover, the values interpolation from the tessellated representation to the pixel grid and back prove to be costly in terms of computation and may introduce imprecision in the reconstruction. In this work we build an adapted mesh prior to any step of reconstruction by directly exploiting the acquired data. Doing so, fast 3D CBCT reconstructions are achievable. In order to create such a mesh the location of the 3D interfaces that constitute the object structure has to be known. Firstly, we exploit the evidence of 2D interfaces as the result of the 3D ones by performing edge detection on the acquired data. Secondly, the 2D structural information is merged in 3D using the statistical framework of the hypothesis testing. This papers is organized as follows. Section II is devoted to the structural information merging and the positioning of the mesh nodes as a pointcloud. Section III shows the results of the complete method applied on numerical data. Conclusions and perspectives of this work are discussed in Section IV.

II. AUTOMATED 3D POINTCLOUD SAMPLING OF THE RECONSTRUCTION VOLUME

The mesh representation could be well adapted to the object in reconstruction when the mesh nodes are located on the 3D object interfaces. The aim hence is to obtain a 3D pointcloud adequately sampling these interfaces. We estimate these 3D locations in two steps by exploiting the evidence of 2D interfaces as a result of 3D ones. As a first step, we extract the structural information of the 2D projections by performing edge detection using Canny's filter [START_REF] Canny | A computational approach to edge detection[END_REF]. The second step consists in the fusion of the detected 2D edge maps -Fig 1(a) -performed by successively:

• Merging by accumulation within the 3D volume • Filtering the resulting scalar field to only keep the relevant information and place the nodes accordingly

The merging is carried through standard ray-driven backprojection on a 3D regular grid of voxels. Calling on the statistical framework, the filtering step is fully automated and accurate, thus not depending on the user's expertise. By placing nodes with respect to this filtering, a 3D pointcloud sampling of the volume is built -Fig 1(c). Sparse outliers removal based on a K-nearest neighbour approach [START_REF] Rusu | Towards 3d point cloud based object maps for household environments[END_REF] is then performed. The final mesh is obtained from the cloud using Tetgen algorithm [START_REF] Si | A quality tetrahedral mesh generator and threedimensional delaunay triangulator[END_REF]-Fig 1(d). To achieve the filtering, at each l th voxel of the volume, we examine the count value n l resulting of the backprojection of the K 2D edge images as

n l = K k=1 B l k , l ∈ {1, . . . , M }, (1) 
where M is the total number of voxels in the grid and B l k denotes the binary value of pixel in the k th edge image linked to voxel l by backprojection. Therefore, the value n l of voxel l is the number of pixels identified as edge in the acquired images linked to l by projection, thus constituting a first counting volume (n l ) l=1,...,M -Fig 1(b) -of interfaces. To select the small set of relevant points for the mesh, one can put aside most common low count voxels of the volume. This amounts to defining the upper tolerant limit of the volume counts. As the resulting 3D scalar field (n l ) is obtained by a counting phenomenon, it can therefore be modeled as a Poisson distribution. However, the 2D edge images are parsimonious and a majority of the voxels are assigned a null value by backprojection. To select relevant voxels among non null counts, we hence need to use more specific distribution model : the zero-truncated Poisson distribution (ZTP).

ZTP is characterized by a single parameter θ usually estimated by using Plackett's method [START_REF] Plackett | The truncated poisson distribution[END_REF]. Lets denote θ the Plackett estimation using non null counts of the volume. As the count dataset is very large, one can consider θ = θ. Therefore, the L non null count voxels (L < M ) of the volume, (n l ) l=1,...,L is a sample of a random variable N where N ∼ ZT P (θ).
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If α denotes the confidence level of the upper tolerant limit λ, therefore

P (N ≤ λ) = 1 -α ZT P . (3) 
The threshold λ hence is by definition the quantile Q of the ZTP distribution of significance level 1 -α ZT P . We get Q using the approximation of Gilchrist [START_REF] Gilchrist | Statistical modelling with quantile functions[END_REF]. Letting F (.) be the cumulative distribution function of the Poisson distribution of parameter θ one can find the equivalent confidence level α P for the standard Poisson distribution to the required α ZT P of the ZTP using

1 -α P = F (1) -(1 -α ZT P )(1 -F (1)). ( 4 
)
The required quantile is then straightforwardly given as λ = Q P (1 -α P ) with Q P the α p quantile of the standard Poisson distribution. The set of centroids of voxels for which counts are larger than λ thus defines the sampling 3D pointcloud on which the adapted mesh is built. For specific configurations, this approach can produce artifacts in the pointcloud as planes filled with misplaced points. This happens when objects oriented orthogonally to the rotation axis and with particular aspect ratio are present in the volume.

It is due to the fact that acquisitions are limited to the 2πplane of rotation around the object of interest and that few projections are used to perform the pointcloud construction. In such configurations, the count distribution of N is closer to Poisson law than to ZTP one. To take into account this variation, Mizere et al. [START_REF] Dossou-Gbété | Quelques tests de la loi de poisson contre des alternatives générales basés sur lindice de dispersion de fisher[END_REF] test is applied at each slice in order to decide between ZTP and Poisson law as a model for N . The decision is based on the following statistic

T f = S × V 2 S N S ( 5 
)
where S is the number of voxels in the slice, N S is the mean of its distribution and V 2 S its unbiased empirical variance. The authors showed that the statistic T f ∼ χ 2 S-1 when N ∼ Pois (θ). We therefore choose the Poisson distribution when the statistic T f is superior to the α quantile of the Chisquare distribution with S -1 degree of freedom and α is the confidence level chosen for this statistical test.

III. RESULTS

The method performance is evaluated on a 3 mono-material shapes -sphere, cone and bone extremity -and on the multi-material 3D phantom of Shepp-Logan. We simulate 30 projections -sizing 1024 2 pixels -of these objects as dataset from which the meshes are built. Pointcloud quality is based on its comparison to the STL phantom of the object. Using CloudCompare [15] we compute the closest distance d i from each point i to the STL. Point selection is considered as optimum when d i ≤ Grid res × √ 3/2. Meshes are compared to the best voxel-based representations of the objects for 128 3 , 256 3 and 512 3 grids resolution. These descriptions are obtained using Binvox [START_REF] Binvox | [END_REF] for the three shapes. For the Shepp-Logan, this corresponds to a 512 3 phantom. Confidence levels have to be chosen but the set of values is extremely reduced and well defined α ∈ {0.5, 0.1, 0.001}. We choose α = 0.05 for 128 3 grids for the 3 shapes. At 256 3 grid resolution, α = 0.01 for both the sphere and the bone and it is set to 0.001 for the cone. For the 512 3 grid, α = 0.001 for the cone and the bone and it is set to 0.01 for the sphere. The clouds displayed in I -its is clear that this fine description still yields an important reduction in the number of unknowns to estimate -up to 99%. Apart from the large cells used in homogeneous portions of the volume, this gain also comes from the fact that the reconstruction is restricted to the object convex hull. 

IV. CONCLUSION

This paper presents a reliable and automated method to build a 3D adapted mesh sampling of an object from a few number of 2D projections. A keypoint of this approach is the ability to obtain this representation prior to any usual tomographic reconstruction. The sampling is obtained by exploiting the evidence of 2D interfaces as result of 3D ones. Thus, by extracting edges present in the acquired raw data, a 3D merging scheme relying on a statistical model of the backprojection volume was developed to obtain a node clouds fitting the object interfaces. Using standard constraint Delaunay tetrahedralization, this cloud provides a contentadapted mesh for low computational burden reconstruction. The statistical flavour of the method enables critical parameters automatic choices thus avoiding results quality dependence on users expertise. Using extremely reduced dataset -30 projections -our method provides reliable adapted mesh sampling of the 3D object in a matters of seconds on a conventional setup. In terms of automation, the choice of α levels are still up to the user but from an extremely reduced set. As illustrated in Section III, the reduction in the number of cells used in the description is very important -up to 99% -and the method manages to focus the cells density around the interfaces of the various volumes composing the object -thus ensuring its good geometrical description even with so few cells.

Considering the dose exposure to the patient, this new type of sampling can prove interesting. Reliable representations are obtained from very sparse dataset and a first rough reconstruction was obtained through an adapted SART using a suitable projector/backprojector [START_REF] Quinto | Tetrahedral volume reconstruction in x-ray tomography using gpu architecture[END_REF]. Our work will now focus on the improvement of the reconstruction by investigating a better adaption of the iterative algorithm to this new representation.

Focusing on the pointcloud obtained by our method, one can think on obtaining a surface representation of the object of interest from it. Such surface modeling could be use in multiple medical applications such as, for example, the design of patient-specific prosthetics.
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 1 Fig. 1: (a) Examples of 2D edge maps. (b) Backprojection over the 3D volume (white corresponds to a null count). (c) 3D pointcloud sampling of the volume obtained by filtering the count volume. (d) Mesh built on pointcloud (c).

  Fig 2(a)-(b) shows how adequately the pointclouds sample the object of interest. The quality metric -observation is confirmed by the quality metric displayed in Fig 2(c). Details of cuts in the sphere meshes superimposed with its best voxel description -Fig 2(d) -show how the mesh enables an extremely fine sampling along the interfaces of the object while at the same time displaying large cells in homogeneous areas. Considering the number of cells composing the mesh -Table
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 2 Fig. 2: (a)STL description of the three studied shapes. (b)Examples of corresponding pointclouds obtained by the method. (c)Clouds qualities for 3 grids resolution. (d) Zoomin on a cut in the sphere meshed volume superimposed with best voxel description for 128 3 , 256 3 and 512 3 grids
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 3 Fig. 3: (a) Left : Superposition of the transverse cut in the meshed volume and of the corresponding voxel slice of the Shepp-Logan phantom. Right : Zoom-in of the mesh in the sagittal and transverse cut. (b) Transverse cut in the volume reconstructed using a mesh adapted SART.