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Abstract: In this paper, the monotonicity property is exploited to obtain symbolic abstractions,
in the sense of alternating simulation, of a class of nonlinear control systems subject to
disturbances. Both a centralized and a compositional approaches are presented to obtain such
abstractions, from which controllers are synthesized to satisfy safety specifications and optimize
a performance criterion using a receding horizon approach. Performance guarantees on the
trajectories of the controlled system can be obtained with both approaches. The controller
synthesis and performance guarantees are illustrated and compared on the temperature

regulation in a building.
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1. INTRODUCTION

The problem of control synthesis for complex dynamical
systems has been approached by various methods, such as
robust H., control (Skogestad and Postlethwaite, 2005)
or model predictive control (Rawlings and Mayne, 2009).
The method considered in this paper consists in creating
an abstraction of the model with some behavioral relation-
ship ensuring that the control applied to the abstraction
also controls the original model. These abstractions can
be obtained in several ways, using a bisimulation algo-
rithm (Alur et al., 2000), computing reachable sets (Reifig,
2009) or by state quantization (Pola et al., 2008). All these
approaches provide an abstraction where the states are
symbols representing sets of states in the original model,
with the number of symbols acting as a trade-off between
the precision on the state information and the simplicity
of the abstraction model.

The abstraction model may differ depending on the con-
trol objectives, the desired simplifications on the original
model, the available information and to what extend we
can ignore part of this information. When the abstraction
is a finite model, as it is the case in this paper, we
can enforce safety specifications by using a fixed point
algorithm and optimize a performance criterion using a
receding horizon controller (Ding et al., 2014) similarly to
a model predictive control strategy (Rawlings and Mayne,
2009). The advantage of the abstraction in this case is that
all the computations can be done offline and the resulting
control implementation thus only corresponds to a look-up
table. To overcome the exponential complexity of creating
such a finite model, we propose a compositional approach
taking an additional tradeoff between precision and sim-
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plicity of the abstraction by decomposing the system into
subsystems with partial information on the state. Similarly
to an assume-guarantee reasoning (Alur and Henzinger,
1999), the controller synthesis for each subsystem assumes
that the safety specifications are met for the others.

We consider a class of monotone nonlinear systems (more
precisely, cooperative systems), implying that their tra-
jectories preserve some partial order on the state (e.g.
see Smith (1995) for autonomous systems and Angeli and
Sontag (2003) for controlled systems). This monotonicity
property significantly facilitates creating an abstraction
and proving the required behavioral relationship. For ex-
ample in Moor and Raisch (2002), over-approximations
of reachable sets are directly obtained using the mono-
tonicity. This method can be extended to a class of
non-monotone systems satisfying the mixed-monotonicity
property, where the dynamics are decomposed into increas-
ing and decreasing components (Coogan and Arcak, 2015).
Monotone systems appear in numerous fields, such as
molecular biology (Sontag, 2007), chemical networks (Bel-
gacem and Gouzé, 2013) or thermal dynamics in buildings,
which is the application considered in this paper.

The structure of this paper is as follows. The class of
systems considered and some preliminary definitions are
presented in Section 2, followed by the problem formula-
tion in Section 3. In Section 4 we present a centralized
method to synthesize a controller based on a symbolic
abstraction of the system. A compositional approach is
then given in Section 5 where the previous method is
used on subsystems with a partially observable state. For
both methods, we provide performance guarantees on the
controlled trajectories of the original system. Finally, in
Section 6, our methodological results are illustrated and
compared on the temperature control in a building.



2. PRELIMINARIES
2.1 Cooperative systems

We consider a class of nonlinear systems given by:

i:f(xauvw)v (1)
where x € R", u € [u,u] C RP and w € [w,w] C RY
denote the state, the control input and the disturbance
input, respectively. The trajectories of (1) are denoted
D(-, z9,u, w) where ®(t,x9,u,w) is the state reached at
time t € Rg from initial state xg € R”™, under piecewise
continuous control and disturbance inputs u : R — [u, ]
and w : R — [w, W], respectively.

Let > and > denote the componentwise inequalities on
the appropriate space R™, m € {n,p,q}. We also extend
the definition of these inequalities to functions of time
7,7 : R — R™ with z > 2/ < Vt > 0, z(t) > z/(t).
In Angeli and Sontag (2003), a dynamical system with
inputs is said to be monotone when its trajectories preserve
a partial ordering on the states. In this paper, we focus on
cooperative systems where the partial orderings are >.
Definition 1. (Cooperative system). System (1) is cooper-
ative if for all z > 2/, u > u’, w > w’ it holds for all ¢ > 0,
O(t,z,u,w) > O(t, 2/, u’, w').

Definition 1 is assumed to be satisfied for all the results of
this paper. Characterization of such systems based on the
vector field f can be found in Angeli and Sontag (2003).

2.2 Alternating simulation

In Tabuada (2009), a system is defined as a quadruple
S = (X, Xo,U,—) consisting of: a set of states X; a set
of initial states Xy C X; a set of inputs U; a transition
relation —C X x U x X. A transition (z,u,z’) €—
is equivalently written 2 —— 2’ or 2’ € Post(z,u). U(x)
denotes the set of inputs w such that Post(z,u) # 0. A
trajectory of S is an infinite sequence (z°,u°, xt ut,...)
such that 20 € X; and for all i € N, v’ € U(x') and
z'l € Post(xt, u?).

Complex dynamical systems may motivate creating an
abstraction of their model. Ideally, finding a control strat-
egy for the abstraction would be simpler than for the
original model. However, to control the original model
with the controller of the abstraction, the systems must
satisfy a formal behavioral relationship such as simula-
tion or bisimulation. In the case of control systems with
disturbances, we are interested in alternating simulation
relations, defined in Tabuada (2009).

Definition 2. (Alternating simulation). Consider two sys-
tems S, and Sp. A map H : X, — X, is an alternating
simulation relation from S, to Sy if it holds:

o V.0 € Xa0, 3100 € Xpo | a0 = H(240);
o Vx, = H(xy), Yug € Uy(xa), Jup € Up(xp) such that
Vay, € Posty(xy, up), H(z)) € Posty(xq, uq).

We say that S, alternatingly simulates the abstraction S,
and denote it as S, =4s Sp-

The second condition means that all the inputs of abstrac-
tion S, have an equivalent in Sj such that all transitions
in Sy are matched by a transition in the abstraction.

3. PROBLEM FORMULATION

We counsider the system S = (X, Xy, U, —) corresponding
to a sampled version (with a constant sampling period
7 € RT) of (1) where X = R", Xy = [z,7) is a half-
closed interval (z € [2,7) © T >z > z), U = [u,u] C RP
and  —% 2/ if Iw : [0,7] = [w, @] | 2’ = (1,2, u, w).
Our control objective is to meet the safety specification of
maintaining the state of S in the interval [z, T).

In addition to the safety specification that may al-
low several values of the control input, we want to
optimize a performance criterion given for a trajec-
tory (2%, u®, 2t ul,...) of the controlled system S by
oo Alg(x®, u'), where g(x, u) is the cost of choosing input
u when the state of §'is z and A € (0, 1) is a discount factor
to reduce the influence of the steps further in the future.

In what follows, we present two approaches based on ab-
stractions to obtain such controllers of S. In Section 4, we
use a centralized approach where we create an abstraction
of the whole system S, while a compositional approach is
considered in Section 5.

4. ABSTRACTION BASED CONTROL SYNTHESIS
4.1 Symbolic abstraction

We want to create a finite abstraction S, of the sampled
system S. To take advantage of the cooperativeness of our
system (Definition 1), the set of initial states is chosen
as a uniform partition X,0 = P° of [z,7) into smaller
identical half-closed intervals. For an element s € P°, we
denote as s and 5 its lower and upper bounds, respectively:
s =1s,5) CR". If we want o € N intervals per dimension
in the partition, P° can be expressed as follows:

PO = {[s7s+x_x> | s € (x+x_x*Z") ﬂ[%x)},
(67 [0

where * denotes the componentwise multiplication of vec-
tors. The set of states of S, is taken as X, = P° U {Out}
with Out = R™\[z,T) such that X, is a partition of R™.
S, is called a symbolic abstraction because each element
s € P can be seen as a symbol for all the states x € s of the
original model S. To obtain a finite-transition system, we
first need a finite input set. Similarly to the lower bounds s
in PY, we discretize U = [u, u] regularly into 8 > 2 values
per dimension, including the lower and upper bounds:
u—u

Ua:<u+61

Then, we use the fact that (1) is cooperative to compute
an over-approximation of the reachable set Post([s,3),u):
for all x € s = [s,5), w: [0, 7] = [w, W], Definition 1 gives

(D(T7 x7 u’ W) E I:@(T7§7 ’U@Q),@(T, g’ u,ﬁ)] (3)
Hence, the successors of a symbol s € P° are those
intersecting this over-approximation interval: s — s’

a

if s N[®(7,s,u,w),®(7,3,u,w)] # 0. This method was
presented in Moor and Raisch (2002) for the case of
systems without disturbances. For simplicity and to ensure

the alternating simulation, we consider that all possible
transitions exist from symbol Out: Yu € U,, Vs' €

u . . .
P, Out — s’. This choice has no consequence in what
a

* Zp> nu, 2)



follows since we are interested in the invariance of the
interval [z, T) and these transitions will soon be discarded.

Proposition 3. The symbolic model S, is alternatingly
simulated by the original system S: S, <4s S

Proof. Consider s = H(z) < x € s as the candi-
date alternating simulation relation. The first condition
of Definition 2 is immediately satisfied. For the second
condition, let s = [5,5) € PV, x € s, u € U, C U and
a2’ € Post(z,u). From the definition of the transitions of S,
Post(z,u) C [®(7,s,u,w), P(7,5, u, w)] which means that
the symbol s’ = H(z') is such that s’ € Post,(s,u) and
x' € ¢ Lastly, Vu € U,, Post,(Out,u) = P, therefore
any transition in S from x € Out can be matched by a
transition in S,. O

We can note that the symbolic model S, described above
is a finite-state and finite-transition abstraction of the
initial system S. In addition, for a pair (s,u), checking
the existing outgoing transitions s —s s’ only requires

a
to compute two successors in S (the bounds of s) and
intersect the obtained over-approximation interval with
the finite partition P. This symbolic model can thus be
built with a finite number of operations.

4.2 Receding horizon control

Safety  We now aim to synthesize controllers of S that
meet the specification of invariance of the interval [z, T).
The corresponding safety specification for the abstraction
S, is the set PY. The safety game on S, can be solved by
introducing the operator Fpo : 2F — 27 such that:
Fpo(Z) ={s€ ZNP° | Ju € Uy,, Posty(s,u) C Z}.

The set Fipo(Z) contains all symbols s € ZNP? whose suc-
cessors stay in Z for some u € U,. Note that Post,(s,u) #
() since for all s, Uy(s) = U,. Then the maximal fixed-
point Z, = lim;_,o Fpo(PP) of Fpo is computable in a
finite number of steps and allows the definition of a non-

deterministic controller C, : Z, — 2Y= solving the safety
game for S, if Z, # () (Tabuada, 2009):

Cu(s) ={u €U, | Posty(s,u) C Z,}. (4)

Performance optimization  Then, we use a dynamic pro-
gramming algorithm (Bertsekas, 1995) to minimize the
cost of system S, controlled with C, over a finite horizon
of N sampling periods. For a known initial state s°, this
cost Jo(sY) is computed iteratively following the principle
of optimality (Bellman, 1957) for all k from N to 0:

nie) = uin (s 41 Jen(s)) 9

where Jyy1(s) = 0 for all s € P and the cost function g,
is defined using the cost g on S from Section 3:

ga(s,u) = maxg(z, u). (6)

min
u€Cq(s)

max
s’€Postq(s,u)

At each iteration of (5), we minimize over safe inputs
u € Cgy(s) the sum of the cost of the current step and
the worst case additive cost of all the following steps.

We can then apply a receding horizon control scheme

2H)

max
s’€Postq(s,u)

C7(s) = argmin <ga (s,u) + A
u€Cy(s)

where at each sampling period we measure the current
symbol s and only apply the first element of the control
policy provided by (5). This approach is the basis of model
predictive control (Rawlings and Mayne, 2009), with the
difference that all the computations of (5) and (7) can be
done offline for our finite transition system S,. With the
alternating simulation in Proposition 3, we can obtain a
controller C:X : [z,%) — U of the sampled system S:

Vs € Z,, Y €5, C2X(x) = CF(s) € Cu(s). (8)
4.8 Safety and performance guarantee

In this section, we show that the trajectories of S con-
trolled with the receding horizon controller (8) satisfy the
safety specification and we provide an explicit bound on
their costs. We consider the following intermediate result.
Lemma 4. Let M = gré%)jJN(s) = ?é%)juenétr%s)g“(s’u)'
Then Jo(s) < Ji(s) + ANM for all s € Z,.

Proof. This is proved by induction. For the initial step,
we consider (5) with & = N — 1, the input u € Cqy(s)
satisfying Jy(s) = ga(s,w) and the definition of M:

In-1(s) < JIn(s)+ A JN(S/)SJN(S)-F)\M.

max
s’€Postq(s,u)

Assume now that Ji.(s) < Jer1(s) + AN "FM, then:
Jir(o)=min (an(ov10 4 ()
u€Cy(s)

max
s’€Postq(s,u)

< i (g +3_max | (ia ()
+)\N—k+lM

<Jg(s) + AN
With k = 1, we obtain the result from Lemma 4. O

An upper bound on the performance criterion of S is then
obtained when using the receding horizon controller C:X.

Theorem 5. Let (2°,u° 2, ul,...) be a trajectory of S

controlled with C2X in (8), then Vk € N, z* € [z,7).
Moreover, let s° st ... € P such that for all k € N,
z* € s*. Then, for all k € N,

)\N+1
1-A

+oo
Z M g(xP T ukb ) < Jo(s®) + M.
3=0

Proof. We know from (4) that C, renders S, invariant
in the fixed point Z,. With the alternating simulation
from Proposition 3 and the definition of C:X in (8), if 2°
is initialized in a symbol s € Z,, then the state of S
controlled with C:X remains in {z € R" | 3s € Z,, x €
s} C [z,Z). For the second part of the proposition, let
J(s) = Jo(s) + %M We start from the definition of
Jo(s%) in (5) with u* = C*(s*) as in (7):
A
k ko, k /
J(87)=ga(s",u >+As/epo’ﬁfék,uk)(J1(S N+ 1M
N+1

>ga(s*, ) 4 M () + 2

N
>ga (s, uP) + X <J0(sk+1) —2MVM + 1>\_)\M>

M

>g(z®,uf) + AT (s51)
The first inequality is obtained for a particular value

s’ = s**t1 of the possible successors, the second comes



from Lemma 4 and the third from the definition (6) of g,.
Thus, if the inequality obtained above is applied to all the
following states of the trajectory, we have for any k:

J(s")>g(x®, uF) + AT (")
Zg(l’k,uk) + )\g(l‘k+1,uk+1) + )\2J($k+2)
>

Expanding these inequalities to all states of the trajectory
leads to the results from Theorem 5. O

Note that the constant part %M of the upper bound
in Theorem 5 goes to zero when the size N of the horizon
used in the dynamic programming grows.

5. COMPOSITIONAL APPROACH

It is well known that scalability is one of the main
limitations of the symbolic method presented in Section 4
due to the exponential complexity in the dimension n of
the system. The idea presented in this section is to reduce
the computational burden at the cost of lower precision: we
decompose the system S into subsystems by considering
only a subset of the state and control input components.

5.1 Subsystems

Let m be the number of subsystems, ([,...,I,) a
partition of {1,...,n} and (Jy,...,J,) a partition of
{1,...,p}. For subsystem i, z7, and uy, are the vectors of
observable states and controllable inputs, respectively. The
remaining state and input components, denoted as xg;,
and uwy, with K; = {1,...,n}\[; and L; = {1,...,p}\J,
are considered as disturbances. For a set of indices I and
a function, set or variable V, V; represents the projec-
tion of V on the dimensions of indices in I. Similarly
to an assume-guarantee reasoning (Alur and Henzinger,
1999), we assume that the other subsystems ensure the
safety specification for the unobservable states: zg, €
[T, Trk,;). The symbolic abstraction corresponding to
subsystem i is the finite automaton S; = (X;, X;0, U;, —)
K3

where Xjo = P} and U; = U,,, are the projections
of PV and U, on the dimensions I; of R™ or J; of RP.
Let Out’ be such that X; = P U {Out'} is a par-
tition of Xy, (projection of the continuous state space
X on the dimensions in I;). Using the simplified no-
tations @;i(sy,,us,) = @r,(7, (51, 2x,), (v, ur,),w) and
@(Eji,uh) = ‘I)]i(T, (gji,f}(i),(u.]“ﬂ[,i),ﬁ), the transi-
tion relation is defined as follows for all sy, € X0, uy, € U;
and s}, € X;:

ug, i
® S TJ> 5111 A 5111 n [ﬁ(§li’uh)a (Pi(slivuJi)] # 0;
i Wi
o Out’ — s/ .
i i

Since @, denotes the projection of ® on the dimensions
in I;, we can clearly see that we obtain a less precise
over-approximation of the reachable set due to the loss
of observability of xk, and ur,. The second part of the
transition definition is similar to the one of S,.

Using a cost function ¢* : X; x U; — RT, we can apply
the controller synthesis approach presented in Section 4.2

to subsystem .S; and obtain the maximal fixed point Z; C
Xio = P?i and the following three controllers for all s € Z;:

Ci(s) = {u € U; | Posti(s,u) C Z;}, (9a)
7). (o)
(9¢)

where C; is the safety controller associated to the fixed
point Z;, C; is the receding horizon controller for S;
obtained from (5) and C;X the corresponding receding
horizon controller on the continuous state space Xj,.

C7(s) = argmin ( g*(s,u) + A
ueCi(s)

C¥(x) = CF (s) € Cy(s), Vx € s,

7

max
s’€Post;(s,u)

5.2 Composition

Let S. = (P,P° U,,—) correspond to the composition
C

of all subsystems S;, with a transition relation defined by,
Vs, s’ € PO, Yu € U,:

ug.
o s s ifVie{l,...,m}, sjiﬁs’l,,
c 7 K3
u . . wg, i
e s — OutifFie{l,...,m} | s, — Out’,
C K2

e Out — s’ and Out — Out.
C (&
We can then prove the alternating simulation between S,
and S, and, by transitivity of <4s, between S, and S.

Proposition 6. S. <as S, and S, <45 S.

Proof. Consider the identity as the candidate alternating
simulation relation. The first condition of Definition 2
is immediately satisfied. Let s € P, u € U, and s €
Post,(s,u). If s,8 € PO then for all i € {1,...,m},
st, N [®r, (7,8, u,w), ®r, (7,5, u,W)] # (). Definition 1 gives:

{ézi (7, (81,5 2k,)s (Wi, up,), w) < @ (7,5, u, w)

10
P, (7—7 (gfmei)a (quﬂLi%E) > Py, (T,E,u,@) ( )

which implies that s} € Post;(ss,,uz,) for all i and then
s’ € Post.(s,u). If s = Out, Out € Post,(s,u) means
that there exists j € {1,...,n} such that ®,(7,s,u,w) <
z; or ®;(7,3,u,w) > T;. Let i € {1,...,m} such that
j € I;, then (10) gives Out’ € Post;(sy,,u,,) which implies
Out € Post.(s,u). If s = Out then s’ € Post.(Out,u) =
P. The second result is obtained by transitivity of the
alternating simulation (Tabuada, 2009) using Proposi-
tion 3. O

Since the subsystems partition the sets of state and input
indices, the fixed points or controllers can simply be
composed with a Cartesian product: let Z, = Z1 x--- X Z,,
and for all s € Z. and = € s,

CC<S) = 01(811) X oo X Cm(SI,m) (11&)
Cels) = (Ci(sn,), -, Cpls,,) (11b)
Cf (x) = (CF (z1,), -, Oy (2,,)) (11c)

To obtain a result similar to Theorem 5, we need to
introduce the following assumption.

Assumption 7. gq(s,u) < >0t g (sp,uy,) Vs € Ze, u €
Uy and M < 37" M* with M* = geaé(i Uiénciir(lSi)gl(si, u;).
Theorem 8. Let (2°,u° 2, ul,...) be a trajectory of S
controlled with C:X from (11c), then Vk € N, 2 € [z,7).
Moreover, let s°,s', ... € P such that for all k& € N,
z¥ € s*. Then, under Assumption 7, for all k € N,



)\N—i—l m

—+oo m
ZO )\jg(xk+j7uk+3 Z — Z M.
J= 1=1

i=1

Proof. Let s € Z. and z € s. By construction,
Posti(s,,C(x5,)) C Z;. Then by definition of S., Z.
and CX, we have Post.(s,CX(z)) C Z.. Let 2/ €
Post(x,CX(x)) and s’ € P such that 2/ € s'. The
alternating simulation from Proposition 6 gives s’ €
Post.(s,CX(x)) C Z. which implies that 2’ € {z €
R™ | 3s € Z,, z € s} C [z,T).

For the second result, for each subsystem S;, Assumption 7
gives Ji(s1,) < Ji(s1,) + AN M? for all s;, € Z; similarly to
Lemma 4. Then, as in the proof of Theorem 5 we obtain

Z )\] /\N+1

1-A
Taklng the sum of (12) over all subsystems, we obtain the
inequality in Theorem 8 using (6) and Assumption 7: for

all x € S, g(a:,u) < ga(57u) < Z:il gi(SIqui)' g

k+J k+j) < Jé(sllci)_i_ Mw (12)

From the first part of Theorem 8, we can deduce the
following result.

Corollary 9. Z. C Z,.

Proof. Z. is an invariant set for S. and with the alternat-
ing simulation from Proposition 6, it is also an invariant set
for S,. We also know that Z, in Section 4.2 is the maximal
invariant set of S, for safety specifications in P°. O

We can also show that the cost obtained in (5) for S, is
smaller than the sum of those for the subsystems .5;.

Proposition 10. Under Assumption 7, for all s € Z. we
have Jo(s) < S0, Ja(s1).

Proof. Let the cost function g°(s,u) = 31", g*(sz,, ur,).
Since two functions ¢* and ¢’ with j £ are mdependent
the min and max operators on ¢¢ can be decomposed
into looking for its extrema for each ¢ € {1,...,m}. The
dynamic programming (5) applied to S, using ¢g¢ and the
safety controller C, from (1la) thus has for solution the
functions J¢(s) = >.iv, Ji(sy,) for all s € Z.. Define G§
and uj, as
Gi(s,u)

=g¢°(s,u) + A max

s’€Postq(s,u)
uf, = arg minGg (s, u),
u€Cc(s)
such that Ji(s) = mingec, () Gj(s,u) = Gi(s, uk) and
assume we have similar notations G¢(s,u) and uf for S,.
Since Z. C Z, and J¥ is not defined on Z,\Z., we only
focus on s € Z. and prove the inequality by induction.
The initial inequality Jy(s) < J§(s) is a consequence of
the first part of Assumption 7. Next, assume that for all
8 € Z, we have Jy11(s) < J¢,1(s). Then we have:

Ji(s)=Gi(s,ui) < Gii(s, ug)
<g°(s,uf) + A

Jlg—o—l(s/)’

max
s'€Postq(s,uy)

Jrt1(s")
Jir1(s)
Jiey1(8") = Ji(s).

The four inequalities are obtained using, in this order, the
definition of u§, Assumption 7, the alternating simulation

<g°(s,uf) + A

<g“(s,up) +

max
s'€Postc(s,uf)

max
s'€Post.(s,uf)

in Proposition 6 (Postq(s,u) C Post.(s,
induction hypothesis. O

u)) and the

Combining Proposition 10 with Assumption 7, we can
see that, as expected, the performance guarantees from
Theorem 5 are smaller than those from Theorem 8.

6. TEMPERATURE REGULATION IN BUILDINGS

System  In this section, we illustrate the results of this
paper on the temperature regulation in a flat equipped
with UnderFloor Air Distribution, an alternative solution
to traditional ceiling ventilation in buildings (Bauman and
Daly, 2003) where the air is cooled in an underfloor plenum
before being sent into each room. The temperature in a
room is assumed to be uniform and the model of its vari-
ations is derived from the energy and mass conservation
equations in this room. For a n-room building, the non-
linear dynamics of the system can thus be described by
T=f(T, u,w,d), (13)
where the n-dimensional vector field f depends on the
temperature T € R™, the control input u € [0,1]™ cor-
responds to the ventilation in each room, the exogenous
inputs w € R3 contains uncontrolled temperatures (un-
derfloor, ceiling and outside) and the binary disturbance
6 € {0,1}9 represents the discrete state of heat sources in
the rooms and the opening of doors. A detailed description
of the system and the hypotheses to obtain (13) is given
in Witrant et al. (2010) and Meyer et al. (2013), where we
also prove that the model is cooperative as in Definition 1.

Abstraction ~ The methods in Section 4 have been vali-
dated in Meyer et al. (2015) on an experimental 4-room
small-scale building. To facilitate visualization, in this pa-
per we consider the model (13) for a 2-room flat. We define
the symbolic model S, as in Section 4.1 with a partition
PO of the state interval [T, T) C R? into 10 x 10 symbols
(half-closed intervals) and a control set U, obtained as in
(2) from a discretization of U = [0,1]? with 8 = 5 values
per dimension. The sampling period 7 has to be chosen
as a tradeoff between large values to avoid self loops for
the optimization and small values to avoid large variations
that might prevent finding a non-empty fixed-point.

Safety  An illustration of the controller synthesis pro-
posed in Section 4.2 on the symbolic abstraction S, is
depicted in Figure 1. In all three examples of this figure,
we represent the partition P° of the target interval as the
red grid and the symbols colored in yellow are those in the
fixed-point Z, solving the safety specification. In the first
graph of Figure 1, we want to keep the temperature of both
rooms in an interval [22,24] and we can see that Z, = PV,
which means that for each symbol in the interval there
exists a value of the ventilation keeping both temperatures
in their intervals in any condition of the disturbances. This
case can be linked to the notion of robust controlled in-
variant interval defined in Meyer et al. (2013). The second
graph of Figure 1 corresponds to a similar partition but
with the target interval for room 2 shifted to [20,22]. In
these conditions, we can see that the largest fixed-point Z,,
for S, does not cover the whole interval but is much larger
than the maximal robust controlled invariant sub-interval
for the continuous system (1). This is due to the fact that
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Fig. 1. Fixed-points Z, (yellow) for S, and largest robust
controlled invariant sub-interval (black).

the symbolic approach allows non-rectangle invariants. In
the same conditions, the third graph of Figure 1 represents
the fixed-point Z, when the symbolic model S, is created
with a finer partition (30x 30 symbols) of the interval. If we
keep increasing the precision of the partition and reduce
the sampling time accordingly, Z, converges to the maxi-
mal robust controlled invariant subset of the interval and
we can see that we already obtain a good approximation
with 10 x 10 symbols. With the compositional approach
from Section 5, the fixed-points Z, obtained in the three
conditions of Figure 1 are Z, = Z, = P° in the first case
and Z, = 0 in the others, which confirms that Z, C Z,.

Complerity  On the other hand, the compositional ap-
proach compensates the loss of precision in its subsystems
by a significant increase in computation efficiency. If we
consider the model (13) for a n-room building with «
symbols and S control values per dimension as in Sec-
tion 4.1, the symbolic abstraction S, can be obtained by
computing 2(af)™ successors of the sampled system S,
while the composed system S, only needs n*2af. Thus we
go from an exponential complexity in n and a polynomial
one in a and B for S, to a linear complexity in n, «
and 8 for S.. In the configuration presented below for
the 2-room building, S, and C were obtained after 26s
while S, and C, only required 0.13s (on a 3GHz CPU).
In a 4-room building, the centralized method (S,, C)
for the experimental implementation presented in Meyer
et al. (2015) took a couple of days while the compositional
method only needs 0.4s in the same conditions.

Performances  The dynamic programming algorithm is
run over a finite time window of size N = 5 and with a
discount factor A = 0.5. These values are chosen such that
the constant part of the upper bound in Theorems 5 and 8
is small enough: AN+1/(1 — \) ~ 3%. The cost function g
at step k is defined as the combination of three criteria

Criterion k cxX cxX
T M g(@ T uk ) L—o | 02004 0.1227
Guaranteed upper bound(z*) 0.2873  0.3216
T — - :
Too N g(ah Tt k) mean | 01790 0.1458
Guaranteed upper bound(z*) keN 0.3158  0.3135

Table 1. Costs on the trajectories of Figure 2.

to be minimized: the norm ||u*|| of the control input, its
variations ||u¥ —u*~1|| requiring to introduce an extended
state zF = (T*,u*~1) (Bertsekas, 1995) and the distance
|T* — T*| between the state T* and the center T* of the
interval. To have comparable influences, the three criteria
are normalized and associated with a 1/3 weight. Using
the square of the 2-norm, the first part of Assumption 7 is
satisfied with an equality. The second part of Assumption 7
is verified numerically: M = M? = M/2 = 0.33 .

To compare the results with both the centralized and the
compositional approaches, we consider the conditions of
the first graph of Figure 1 where both Z, and Z,. are non-
empty. We can first check that Proposition 10 is satisfied:
over all symbols s € Z,, J}(s1) + J3(s2) — Jo(s) varies
between 0 and 0.92 with a mean value of 0.016, while the
maximal value of either side of the inequality is 0.99. In
Figure 2, we represent the temperature and ventilation
of system (13) controlled with C:X from the centralized
method in Section 4 (red dashed curve or upward triangles)
and CX from the compositional approach in Section 5
(blue plain curve or downward triangles). The simulations
are run with sinusoidal exogenous inputs and the discrete
disturbances are such that all possible combinations ap-
pear: the heat source in room 1 is on from 13 to 36 and
from 61 to 84 minutes, in room 2 from 25 to 72 minutes
and the door is open after 49 minutes (until the end).
First, we can see that both controllers correctly maintain
the state of the system in the prescribed bounds. For the
second part of Theorems 5 and 8, we compute the cost
;;Og N g(zk+7 u*+7) of the trajectory from any sampling
time k (discarding the last 10 having too short trajectories)
and verify that it is smaller than the guaranteed upper
bound provided in Theorems 5 and 8 corresponding to the
same sampling time k. The value of both sides of these
inequalities for the initial state z° of the trajectories of S
respectively controlled with CX and CX are reported in
the top of Table 1. We only look at the initial state since it
is the only step where we know that the trajectories are in
the same state. We can first see two expected results: the
cost of the trajectories are smaller than their respective
guaranteed upper bounds as in Theorems 5 and 8 and the
guaranteed upper bound for the compositional method is
larger than the centralized one as in Proposition 10. There
is however a surprising result that the actual performance
from the initial state are better for the compositional
method. This is confirmed when computing the average
value of the performance criterion from any point of the
trajectories, while the average on the corresponding guar-
anteed upper bounds are comparable for both methods
(bottom of Table 1). This could be explained by the fact
that CX and CX are obtained with worst-case consider-
ations on the disturbances. Since more disturbances are
involved in the compositional method (unobservable states
and inputs), CXX naturally is more conservative, which
gave better performances in this particular simulation.
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Fig. 2. 2D system (13) controlled with the controllers from the centralized (red) and compositional (blue) methods.

7. CONCLUSION

We presented two methods to obtain a symbolic abstrac-
tion, in the sense of alternating simulation, of a class of
non-linear systems subject to disturbances and satisfying
the cooperativeness property. The first one is a central-
ized approach where an abstraction of the whole system
is created, while a compositional approach is considered
in the second method to reduce the complexity of the
problem at the cost of the precision of the abstraction.
These symbolic abstractions are then used to synthesize
a controller ensuring a safety specification on the original
system and minimizing some cost criterion. For both ap-
proaches, we provide performance guarantees in the form
of an upper bound for the total cost of the controlled origi-
nal system on any infinite time horizon. We also show that
the guaranteed performances for the centralized method
are, as expected, better than those for the compositional
approach. Finally, these theoretical results are illustrated
on the temperature regulation in a 2-room building. In
particular, we can observe on these simulations the large
reduction in computation time with the compositional
method for a relatively small or no loss of performance
compared to the centralized approach. This compositional
approach thus provides the opportunity to apply symbolic
methods in a real-time implementation and to systems of
larger dimensions that could not be handled otherwise.
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