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ABSTRACT
In many domains systems need to run continuously and can-
not be shut down for reconfiguration or maintenance tasks.
Cyber-physical or cloud-based systems, for instance, thus of-
ten provide means to support their adaptation at runtime.
The required flexibility and adaptability of systems suggests
the application of Software Product Line (spl) principles to
manage their variability and to support their reconfigura-
tion. Specifically, Dynamic Software Product Lines (dspl)
have been proposed to support the management and bind-
ing of variability at runtime. While spl evolution has been
widely studied, it has so far not been investigated in detail in
a dspl context. Variability models that are used in a dspl
have to co-evolve and be kept consistent with the systems
they represent to support reconfiguration even after changes
to the systems at runtime. In this short paper we present
a classification of the required operations for jointly evolv-
ing problem and solution space in a dspl. We analyze the
impact of such operations on the consistency of a dspl and
propose an approach to deal with the described issues. We
describe a runtime monitoring system used in the domain
of industrial automation software as an example of a dspl
evolving at runtime to motivate and explain our work.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies,
Representation; D.2.13 [Software Engineering]: Reusable
Software—Domain engineering, Reuse models

Keywords
Dynamic Software Product Lines, Evolution, Consistency

1. INTRODUCTION
Dynamic software product line engineering [6, 11] has

gained increasing popularity in recent years with the ad-
vent of software requiring runtime adaptation and recon-

figuration capabilities, such as cyber-physical systems, run-
time monitoring systems, cloud-based systems, or service-
based systems. In conventional spl engineering variation
points are typically bound at design time. dspl engineering
on the other hand supports binding variability at runtime,
thus enabling a system to reconfigure itself during operation
to adapt to changes in its environment, e.g., by relying on
context-based information [11].

A dspl, like any spl, is a long-term investment that is
in use for many years and needs to be continuously evolved
e.g., to meet new requirements [5] or to adopt new tech-
nologies [12]. Evolving a dspl poses significant challenges
as both problem and solution space must co-evolve with the
system they describe to avoid inconsistencies during runtime
adaptation. Most existing work on spl evolution has focused
on the evolution of the problem space [5]. However, evolving
a variability model may also affect the related assets (i.e.,
the solution space) and vice versa. Yet, limited work has
been conducted to support such co-evolution. For instance,
a set of evolutions of the problem space and of the solution
space as well as remapping operators to avoid inconsistencies
between the two spaces are described in [17, 4]. Other au-
thors [13, 18] study co-evolution within the Linux kernel, to
extract co-evolution patterns for the Linux kernel variabil-
ity model and keep it in sync with the actually implemented
variability. Existing research only recently started to inves-
tigate evolution in a dspl context, and especially its impact
on the running system. Helleboogh et al. [10] proposed the
notion of super-types to describe the evolution of variabil-
ity models at runtime. Capilla et al. [6] use super-types to
automate the modification of variants in a feature model at
runtime. However, these approaches are limited to a given
set of changes, e.g., the addition of a variant, as other kinds
of changes cannot be automated [9]. Based on our work on
runtime reconfiguration of monitoring systems [20, 16] and
on dynamic architecture evolution in dspl engineering [1],
we investigate the issues related to dspl evolution in more
detail.

In this paper we describe our first results, providing the
following contributions: we illustrate dspl evolution using
an example of runtime monitoring systems for industrial
automation. We then present a classification of required
operations for jointly evolving problem and solution spaces
in a dspl. We do not want to emphasize one particular
variability modeling approach (e.g., feature-based, decision-
oriented, UML-based, or orthogonal variability models) but
we use the general term variability model to describe any



Figure 1: Evolution of the mi dspl (left) and its impacts on the variability model supporting reconfiguration of the mi (right).

model of the variability of a software system. Such a model
may be created using any approach that provides advanced
modeling capabilities such as cardinalities and attributes [7,
15] necessary in a dspl context to describe additional infor-
mation like the number of instances of a feature or compo-
nent at runtime. We also analyze the impact of evolution
operations on the consistency of the dspl: the evolution of
problem or solution space can lead to inconsistencies within
the given space, between spaces, and with respect to rules
for the runtime adaptation of the system. Finally, we outline
an architecture of a tool-supported approach that addresses
the described issues and supports the evolution of a dspl.

2. DSPL EVOLUTION EXAMPLE

2.1 A Monitoring Infrastructure DSPL
In previous work, we developed a Monitoring Infrastruc-

ture (mi) providing support for analyzing the behavior of a
system of systems (SoS) in the domain of industrial plant
automation [20]. The mi relies on probes instrumenting a
system and providing events and data. Constraints are then
used to check the behavior of the system at runtime based
on these events and data. To support the reconfiguration of
our mi at runtime we have developed a variability manage-
ment approach [16], i.e., we describe the variability of the
key components of the mi – probes, events, and constraints
– using variability models. The mi is a dspl and allows us
to illustrate the co-evolution challenges outlined above.

Fig. 1 (top left) shows a simplified representation of a mi
developed to monitor several systems of a plant automation
SoS: four probes instrument an ironmaking automation sys-
tem and its human-machine interface (HMI), a steelmaking
automation system, as well as a continuous casting automa-
tion system. The probes provide events that are checked
by six constraints (C1-C6) at runtime. We do not present
details on all constraints here for the sake of simplicity (see
[16] for details). Constraint C4, for instance, checks that af-
ter a plant operator changed a steel production plan, these
changes are archived in the database. This constraint relies
on events provided by probe PSteel. Both, probes and con-

straints are components of the mi dspl and can be activated
and deactivated at runtime. Furthermore, the implementa-
tion of constraints (i.e., the code written in a constraint lan-
guage) can be modified at runtime. Fig. 1 (top right) depicts
a partial variability model of the mi that allows one to se-
lect the systems to be monitored. When resolving variability
(e.g., after the decision of a user), the probes and constraints
are activated or deactivated accordingly at runtime. In this
example we use a simplified version of a decision model [7].

2.2 DSPL Evolution
Whenever the systems monitored by the mi change, the

probes and constraints defined and managed by the mi po-
tentially need to be modified as well (at runtime). For exam-
ple, if probes no longer provide certain events after changes,
constraints on these events may detect violations even if the
adapted system works correctly. Furthermore, the monitor-
ing needs of the user of the mi may also change over time.
Whenever the mi evolves, the variability model supporting
its reconfiguration at runtime has to co-evolve as well.

Fig. 1 (bottom) depicts such an evolution scenario, where
the mi evolves at runtime to enable monitoring databases
that archive events for all systems. The user of the mi de-
velops new probes for instrumenting each monitored sys-
tem’s database component (PIronDB, PSteelDB, PCasterDB) to
receive events whenever plans for producing iron or steel
are archived in the database. The existing probes PIronHMI,
PSteel, and PCaster already provide events whenever such
a plan is changed via the user interface (HMI). The user
of the mi defines constraints to check that HMI plan change
events lead to database archiving events. For the ironmaking
and continuous casting systems she/he defines constraints C7
and C8 and relates them to the respective probes. For the
steelmaking system, constraint C4 already checks archiving
events for steel production and needs to be modified and
related with the new probe PSteelDB.

As a result of these changes the variability model of the
mi is inconsistent with the new version of the mi and both,
problem and solution space, need to be updated to reflect the
modified mi system. In the solution space, assets for the new
probes and constraints need to be defined together with their



Evolution Operation (X) and Potential Impact
Potential Impacts on DSPL Consistency

Problem Space Mapping Solution Space

X: Add Element Add/Update Element Add Element Reconfiguration choice without effect (dead feature)

X: Remove Element Remove Element Remove Element Reconfiguration fails (dead asset, can’t be activated)

X: Update Element Update Element Reconfiguration fails (false optional or dead feature)

Add Element X: Add Element Add Element Missing relation among choices and components

Remove Element X: Remove Element Remove Element Reconfiguration fails (see above)

X: Update Element Reconfiguration fails (see above)

Add Element Add/Update Element X: Add Element Component can’t be activated during reconfiguration

Remove Element Remove Element X: Remove Element Reconfiguration fails (see above)

Update Element Update Element X: Update Element Reconfiguration fails (see above)

Table 1: Changes in different spaces and their impact on other spaces and the dspl consistency.

relations, and the existing asset representing constraint C4

and its relations need to be updated. In the problem space,
a new decision needs to be added to allow reconfiguring the
mi for monitoring database archiving and be mapped to the
new assets.

3. DSPL EVOLUTION OPERATIONS
Evolving a dspl is challenging as changes in different mod-

eling spaces have different impacts on the way the running
system can be reconfigured. Table 1 describes the performed
intraspacial evolution operations [17] (marked with X) as
well as the potential (interspacial) impacts on other spaces.

Problem space.
Adding a new model element to the problem space has an

impact on the mapping with the solution space. The added
element must either be mapped to an existing asset or a new
asset needs to be added and mapped. For instance, when
adding a decision regarding archiving in our mi example, as-
sets PCasterDB, PIronDB, and PSteelDB need to be related with
this new decision. Removing a model element from the prob-
lem space similarly has interspatial effects. The element has
to be removed either together with its mapping to avoid a
dangling reference or together with both its mapping(s) and
related asset(s). Updating a model element in the prob-
lem space may involve different properties, e.g., the element
name, the range of an element’s cardinality, or one of its
attribute values. It may be either problem space-specific or
result in required changes in the solution space. For exam-
ple, changing the name of a decision does not necessarily
require updating assets, whereas changing the range of pos-
sible decision values can require modifying assets mapped to
the original range.

Problem-to-solution space mappings.
Evolution can also be necessary after changing the map-

pings between problem and solution spaces. For instance,
this can mean creating a relation between existing prob-
lem and solution space elements (intraspatial evolution), or
creating the mapping together with a new element in the
problem space, solution space, or both (interspatial evolu-
tion). In our example, mappings from the new probe assets

regarding archiving to the new archiving decision have to
be created. Removing a mapping may similarly be possi-
ble without modifying elements of the problem or solution
space, or it may require deleting elements from the problem
and/or solution space. Updating a mapping means changing
its own reference to an existing model element or asset, and
is thus intraspatial.

Solution space.
Finally, evolution operations can be triggered by changing

the solution space, as depicted in Fig. 1. Adding or remov-
ing an element from the solution space is similar to adding
or removing a problem space element, and thus represents
interspatial evolution. It requires adding or updating map-
pings and elements of the problem space depending on the
kind of relationship (1:1 or n:m). In our mi example, three
probe assets and two constraint assets are added to the so-
lution space, which requires adding several new mappings.
The evolution of the solution space can either be intraspa-
tial (e.g., changing the implementation of an existing asset)
or interspatial (e.g., splitting or merging existing assets and
updating related mappings and problem space elements). In
our mi example, an asset (C4) is also updated, i.e., certain
attributes change and a new relation needs to be defined.

In dspls these evolution operations have to be performed
at runtime, without introducing inconsistencies, to enable
successful system reconfiguration after dspl evolution.

4. IMPACTS ON DSPL CONSISTENCY
As shown in Table 1 some evolution operations may lead

to inconsistencies in the dspl. For instance, in our running
example, adding constraint assets C7 and C8 without relating
them to any probe assets would make them dead assets. The
consistency of the dspl must be checked when performing
changes, regardless of whether the evolution is intraspatial
or interspatial [17].

Intraspatial consistency.
Foreseeing the impact of a certain change in one model-

ing space on the overall model can be difficult. Analyses [2]
can be used after evolution to detect potential anomalies
such as dead or false-optional features (see Table 1). Addi-



tional analyses are required to check the consistency of the
variability model with respect to cardinalities [14]. Existing
approaches and tools can also be applied to check the con-
sistency of the solution space, where similar anomalies can
arise [12]. For instance, dependencies between assets can
prevent one of them being used in any reconfigured prod-
uct, thus being considered as a dead asset. An evolution
operation may also remove an asset without evolving the
problem space accordingly, thus leading to correct products
in the solution space that cannot be reconfigured correctly
anymore using the problem space model. Finally, all map-
pings between both spaces must be consistent, i.e., refer-
ences between elements in both spaces must refer to existing
elements in each space.

Interspatial consistency.
Although each space may be consistent if considered alone,

evolution can lead to an inconsistency when considering the
two spaces together. Let V be the set of products that can
be derived from the dspl variability model, and A the set
of products that can be composed with existing assets and
their dependencies. Then the product line is considered as
interspatial consistent iff V ⊆ A. In our running example
(cf. Fig. 1), new assets, a new decision and a mapping be-
tween new assets and the new decision are added, leading
to a consistent problem space, solution space, and mappings
between them. However, this evolution can still introduce
an inconsistency in the dspl. For example, the newly in-
troduced PSteelDB asset provides database archiving events,
which were already provided by PSteel before the evolution.
Constraint C4 is based on these archiving events, which are
provided by two different probes now, PSteel and PSteelDB.
Thus, either PSteel needs to be modified to no longer pro-
vide archiving events or the mapping must be updated to
avoid that both PSteel and PSteelDB send the same events
at once.

Evolution and Runtime Adaptations.
Reconfigurations rely (i) on the dspl variability model

that must be consulted at runtime to find adaptations [11],
and (ii) on predefined adaptation rules, e.g., goal policies
or Event-Condition-Action (ECA) rules [3]. While evolving
the dspl, the consistency between the variability model and
such adaptation rules must thus be ensured. Considering our
running example, after the evolution of the variability model
the user can reconfigure the mi to monitor database archiv-
ing. However, in practice database archiving only makes
sense to be activated when a database is actually up and
running. The mi knows which systems are up and running
and can (de-)activate probes and constraints automatically
depending on the system configuration. However, the vari-
ability model is not aware of such changes and thus will offer
the reconfiguration option for database monitoring regard-
less of the status of the monitored system. Reconfiguration
rules of the mi must thus be updated together with the vari-
ability model to avoid such inconsistencies.

5. SOLUTION ARCHITECTURE
We are currently working on a tool-based approach sup-

porting evolution in a dspl to put the ideas described in this
paper to practical use. We intend to automate the described
evolution operations as well as to provide support for man-

Figure 2: Solution architecture to support dspl evolution.

aging inconsistencies. Fig. 2 depicts the key components of
our solution architecture.

Each change of the running system in a dspl should lead
to an automated update of (i) the variability model speci-
fying reconfiguration options and (ii) the dspl adaptation
rules controlling automatic runtime reconfiguration based on
these reconfiguration options. Changes in the solution space
can be handled in a systematic and automated manner, be-
cause information about which components are added or
removed and how components are related with each other
can be extracted from the running system. This informa-
tion can then be used to automatically update the variabil-
ity model. More specifically, the Updater component listens
to all changes made in the running system (e.g., component
added, component deleted, or dependency among compo-
nents created) and updates the variability model accord-
ingly (e.g., adds an asset, removes an asset, or creates asset
relations in the asset model).

The Updater works on top of several Update Rules to auto-
mate the evolution process as far as possible. These rules are
based on the described evolution operations. For instance,
for each new asset (in our mi example, the archiving probes
and the two new constraints), a rule specifies to create a
default decision together with a mapping to allow selecting
the new asset during reconfiguration. Several rules can also
be specified for updating problem space dependencies (de-
cision relations) and attributes (cardinality). For example,
whenever an asset related to a decision with a cardinality is
removed, the cardinality maximum has to be reduced by 1.

However, evolving the problem space as well as the map-
pings can also require human intervention. Considering our
mi example, the new probe and constraint assets could ei-
ther be related to an existing decision or a new decision can
be added. The Updater UI is triggered in such cases and al-
lows the user to make a choice before the Updater component
updates the variability model.

The Updater also relies on a Consistency Checker that ana-
lyzes the variability model and compares it with the running
system as well as with the dspl adaptation rules. Based on
the Update Rules, some inconsistencies can be automatically
resolved, e.g., a default decision can be created in the vari-
ability model for a detected dead asset and an adaptation
rule related to a deleted decision can be removed. Inconsis-



tencies that cannot be resolved automatically are displayed
to the user in an Inconsistency Viewer to allow her/him to
manually resolve them by modifying the variability model
and/or the dspl adaptation rules.

At the time of writing, we have implemented a prototype
and tested it on evolution scenarios from the mi domain [16].
The Updater component already works and several Java-
based Update Rules have been implemented as part of an
Eclipse plug-in for the decision-oriented DOPLER tool [8].
We are currently working on the Updater UI, the Consistency

Checker, and the Inconsistency Viewer. For the latter two
we adapt the approach proposed in [14] and combine it with
the consistency checker described in [19]. Our current pro-
totype already supports identifying problem space elements
(decisions) without relation to any asset and resolves these
inconsistencies automatically.

6. CONCLUSIONS AND FUTURE WORK
While evolution is a fundamental concern, the dspl com-

munity has not considered it as a priority yet. We have dis-
cussed the different challenges related to the evolution of a
dspl as well as different inconsistencies that can arise during
evolution. We have presented evolution operations regard-
ing the problem and solution space, as well as the mappings
of these spaces in a dspl. We have also described how these
evolution operations may propagate from one space to the
other. We have further described how these operations can
introduce inconsistencies that can impact one or both spaces
and prevent proper runtime adaptations. We have outlined
a tool-based approach for supporting evolution in a dspl.
We are working on this approach and we plan to general-
ize it to different types of variability models. Finally, we
would like to evaluate our approach in the context of case
studies from different domains, e.g., cloud-based systems or
cyber-physical systems.
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