
HAL Id: hal-01180918
https://hal.science/hal-01180918v1

Submitted on 28 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning concise pattern for interlinking with extended
version space

Zhengjie Fan, Jérôme Euzenat, François Scharffe

To cite this version:
Zhengjie Fan, Jérôme Euzenat, François Scharffe. Learning concise pattern for interlinking with
extended version space. 13th international conference on web intelligence (WI), Aug 2014, Warsaw,
Poland. pp.70-77, �10.1109/WI-IAT.2014.18�. �hal-01180918�

https://hal.science/hal-01180918v1
https://hal.archives-ouvertes.fr

Learning Concise Pattern for Interlinking with
Extended Version Space

Zhengjie Fan
INRIA & LIG

655, avenue de l’Europe
Montbonnot Saint Martin

38334 Saint-Ismier, France
Email: zjfanster@gmail.com

Jérôme Euzenat
INRIA & LIG

655, avenue de l’Europe
Montbonnot Saint Martin

38334 Saint-Ismier, France
Email: Jerome.Euzenat@inria.fr

François Scharffe
LIRMM

161 rue Ada
34095 Montpellier Cedex 5, France
Email: francois.scharffe@lirmm.fr

Abstract—Many data sets on the web contain analogous data
which represent the same resources in the world, so it is helpful
to interlink different data sets for sharing information. However,
finding correct links is very challenging because there are many
instances to compare. In this paper, an interlinking method
is proposed to interlink instances across different data sets.
The input is class correspondences, property correspondences
and a set of sample links that are assessed by users as either
“positive” or “negative”. We apply a machine learning method,
Version Space, in order to construct a classifier, which is called
interlinking pattern, that can justify correct links and incorrect
links for both data sets. We improve the learning method so that it
resolves the no-conjunctive-pattern problem. We call it Extended
Version Space. Experiments confirm that our method with only
1% of sample links already reaches a high F-measure (around
0.96-0.99). The F-measure quickly converges, being improved by
nearly 10% than other comparable approaches.

I. INTRODUCTION

Nowadays, many organizations and individuals publish
RDF data sets on the web1, which tend to be more and more
heterogeneous. Integrating heterogeneous data sets can help
search web data efficiently. For example, without interlinking
across library databases, a librarian has to manually browse
different library databases to find a requested book, leading to
response delay and mistakes.

Many existing solutions are being used for interlinking. (1)
One straight-forward idea is to compare the property values
of instances for identifying links [1], yet it is impossible to
compare all possible pairs of property values. (2) Another
common strategy is to compare instances’ property values
with respect to property correspondences found by instance-
based ontology matching [2], [3], [4], [5], [6], [7], [8], which
can generate property correspondences based on instances.
However, it is hard to identify the same instances across data
sets, because there are the same instances whose property
values of some property correspondences are not the same.
(3) Many existing solutions [9], [10], [11] leverage Genetic
Programming to construct interlinking patterns for comparing
instances, however they spend long running times for gaining
high F-measures.

In order to link instances across two data sets precisely and
efficiently, we design an interlinking method, which employs

1http://lod-cloud.net/

a supervised learning method, called Version Space [12], to
generate a classifier for the interlinking task, which can cover
all assessed correct links (or positive links) and exclude all
assessed incorrect links (or negative links) meanwhile. This
classifier is called an interlinking pattern. Assume that we are
going to find out the same instances that refer to the same
people from two data sets. One data set is in English, the
other data set is in French. All pairs of the same instances
contain two property correspondences name ↔ nom and
sex↔ gender. The interlinking pattern can be expressed as a
conjunction of these two correspondences. Such a conjunctive
formula can help classify pairs of instances into two classes.
The pairs of instances that satisfy such a formula will be
recognized as a link. The ones that do not satisfy such a
formula will not be recognized as a link.

The Version Space method is able to construct an in-
terlinking pattern from a set of assessed links and a set of
property correspondences across two corresponding classes as
input. Nevertheless, it suffers from a serious limitation. It can
only build the interlinking pattern that is represented by a
conjunctive pattern, a conjunction of property correspondences
that satisfies all positive links. If there is not such a conjunctive
pattern, Version Space cannot produce any interlinking pattern,
but a null result instead. Disjunctive Version Space is one
model designed to overcome such a limitation. It is able to
express the cases that cannot be represented by a conjunctive
pattern, via a disjunction of conjunctive patterns. When there
are several conjunctive patterns each of which satisfies only
some but not all positive links, the interlinking pattern can be
expressed into a disjunction of conjunctive patterns by Disjunc-
tive Version Space. Whereas, the interlinking pattern it learns
is often a long expression, which will significantly increase the
interlinking running time. To this end, we propose an Extended
Version Space algorithm, which includes (excludes) all positive
links (negative links), with a much more concise expression
than Disjunctive Version Space, which speeds up interlinking
in turn.

We evaluate the proposed interlinking method and other
comparable methods using a set of large-scale data sets and
make comparisons on the F-measure and running time. Ex-
periments confirm that our interlinking method with only 1%
sample links can already return a fairly precise link set. The
F-measures quickly converge to a higher level by nearly 10%
than other interlinking approaches.

The remainder of the paper is organized as follows. We
formulate the interlinking problem in Section II, and introduce
related works in Section III. In Section IV and Section V,
we describe Version Space and the Extended Version Space
algorithm respectively. Section VI presents the experimental
results based on different data sets. Finally, we conclude the
paper with the future work in Section VII.

II. THE DATA INTERLINKING PROBLEM

Given two data sets being RDF graphs g and g′ described
by ontology o and o′ and an alignment between classes and
properties of two ontologies o and o′, the objective is to find
an interlinking pattern that covers a set of links L such that i
owl:sameAs i′ if and only if < i, i′ >∈ L.

We assume that a set of class correspondences and all
property correspondences across each pair of corresponding
classes are available for two interlinking data sets. Since an
interlinking pattern can be transferred into an interlinking
script, which is executed by the semi-automatic interlinking
tool Silk2 for generating links across two RDF data sets, our
work will focus on leveraging the given correspondences and a
set of sample user-assessed links to build a concise and precise
interlinking pattern for the two data sets.

III. RELATED WORK

There are a group of related works that use Machine Learn-
ing [13], [14], [15], [10], [11] for learning the interlinking
pattern.

Genetic Programming [16] is a supervised learning method
that is used for learning interlinking patterns in some inter-
linking methods [9], [11], [10], [13]. A genetic programming
algorithm is proposed in the interlinking method of [9]. The
method improves the interlinking patterns by changing the
aggregation methods of combining property correspondences,
so as to let the patterns be able to classify more assessed links.
One of the most recent works on interlinking is proposed by
Ngonga Ngomo et al. [10]. The method uses not only Genetic
Programming but also Active Learning [17] to construct and
improve the interlinking pattern. Active Learning is a learning
strategy that actively chooses unlabeled examples which bring
the biggest information and change to the classifier [17]. It
helps speed up the learning process when there are a large
amount of assessed links to be learned. The interlinking ap-
proach in this paper outperforms many other solutions like [13]
and [9]. The F-measure of generated link set grows higher with
the same amount of assessed links than [13] and [9]. Another
recent work on interlinking by learning the interlinking pattern
is proposed by Isele et al. [11]. It utilizes Genetic Programming
to initialize a set of candidate interlinking patterns. A variety
of changes are permitted to be applied on the selected patterns
when crossing over and mutating fragments of the patterns.

Nevertheless, Genetic Programming is not a method suit-
able for interlinking at runtime. In each learning round, more
than one interlinking pattern should be evaluated. The process
of evaluating each interlinking pattern is to interlink the data
sets with the interlinking pattern and compute the Precision,

2http://www4.wiwiss.fu-berlin.de/bizer/silk/

Recall and F-measure of the generated link set. When inter-
linking data sets with each interlinking pattern, the computer
should query each data set at least once in order to get
instances’ property values. The queries require I/O operations
of the computer, which take a lot of running times.

[14] is another interlinking work that uses Machine Learn-
ing for interlinking. The authors design a boolean classifier to
distinguish correct links and incorrect links that are assessed
by users. The boolean classifier is a conjunction of several
property correspondences. However, there are many interlink-
ing tasks whose links do not share the same set of property
correspondences. Therefore, this method cannot interlink the
data sets that cannot be classified by such a boolean classifier.

To conclude, a learning method that costs shorter time and
is able to generate interlinking patterns for all interlinking tasks
is required.

IV. VERSION SPACE

Version Space [12], [18] is a supervised learning method
that constructs and improves a set of classifiers by learning
labeled examples one by one. The entire objective is to build a
composition of some conditions such that all labeled examples
are compatible with, which is called a hypothesis. During the
learning process, there are two sets of hypotheses always being
maintained. One is a set of the most strict compositions of
the conditions that cover all positive examples being learned,
and they are called Specialized Hypotheses. The other is a set
of the most general compositions of conditions that cover all
cases which exclude the negative examples being learned, and
they are called Generalized Hypotheses. With more positive
examples being learned, the specialized hypotheses become
more general. When more negative examples are learned,
the generalized hypotheses become stricter. After learning all
labeled examples (including positive ones and negative ones),
the two sets finally converge into one set in Version Space.

The learning process of Version Space can build several
interlinking patterns (i.e., hypotheses for the interlinking task)
which are able to precisely distinguish all assessed links
across the data sets. More specifically, given a set of sample
links assessed as either positive or negative by users, it can
construct several interlinking patterns with several property
correspondences being compatible with all of positive links
and conflicting to all of negative links. For each pair of
instances i and i′ that builds an assessed link, we apply an
l-tuple (B(j)), j = 1, . . . , l with a sequence of bit values to
denote the similarities between property values of l pairs of
corresponding properties. The bit value (denoted by B(j)) is
defined in Formula (1), where ≡ and 6≡ refer to similarity
and non-similarity between two property values i.pj and
i′.p′j respectively. Each property comparison is determined
by some similarity metric (such as “Levenshtein” [19] and
“Jaccard” [20]). The bit value is equal to 0 or 1 (denoted
by 0|1 in the following text), representing non-similarity and
similarity respectively. For example, if there are three property
correspondences across two corresponding classes, then l is
equal to 3, and then there will be eight possible tuples of
similarity values, (0,0,0),(0,0,1),· · ·,(1,1,1) for all instance pairs
between the two classes.

B(j) =

{
1 i.pj ≡ i′.p′j
0 i.pj 6≡ i′.p′j

where j = 1, . . . , l (1)

For each pair of corresponding properties between two
corresponding classes, its similarity value is either 1 if the
two property values i.pj and i′.p′j on an assessed link are
the same based on a similarity metric or 0 otherwise. Then,
a binary similarity sequence (BSS) for the property pair is
shown in Formula (2), where PC1, PC2, . . . , PCl stand for l
property correspondences, each either being equal to 1 (equal)
or 0 (non-equal).

(PC1, PC2, . . . , PCl)

Binary Similarity Sequence = (0|1, 0|1, . . . , 0|1) (2)

In general, the computed similarity of two property values
may not exactly be equal to 0 or 1, but another decimal number
in [0,1], such as 0.75. In our design, we always convert the
similarity to a binary value with a threshold T . If the computed
similarity value is larger than T , we assume that the similarity
is 1. If the computed similarity value is equal to or smaller
than T , we assume that the similarity is 0.

The input of the Version Space learning process is
a set of binary similarity sequences. The output of the
Version Space learning process is one or several interlinking
patterns that cover all positive links and filter all negative links
simultaneously, each of which is a conjunction of property
correspondences. In machine learning, the input and output of
a supervised learning algorithm are expressed with instance
language and generalization language respectively [12]. With
respect to the interlinking problem, the instance language of
Version Space is a binary similarity sequence. Each bit of the
instances’ binary similarity sequences is either 0 or 1. The
generalization language is also a binary similarity sequence,
called a conjunctive pattern, but each bit of such a binary
similarity sequence is 0, 1 or ×, where × = 0|1.

A. Problem of Version Space

In practice, there are many interlinking problem cannot be
built an interlinking pattern by Version Space. In other words,
it is possible that there is no conjunctive pattern that can cover
all positive links and filter all negative links. An example is
shown below: there are four assessed links, each having five
property correspondences PC1, PC2, PC3, PC4, PC5.
Link No. Type PC1 PC2 PC3 PC4 PC5

1 Positive (0, 1, 1, 0, 0)
2 Positive (0, 0, 1, 1, 0)
3 Negative (1, 0, 1, 0, 0)
4 Negative (0, 0, 1, 0, 0)

(3)

In this example, with the two positive links, there is only
one specialized pattern can be produced, which is (0,×,1,×,0).
Given a negative link, we can derive a generalized pattern by
traversing all binary similarity sequences that are conflicting
to the negative link with at least one bit (e.g., property corre-
spondence PCi). For the above example, based on the third as-
sessed link (a negative link), the candidate generalized patterns
are binary similarity sequences: (0,×,×,×,×), (×,1,×,×,×),
(×,×,0,×,×), (×,×,×,1,×), (×,×,×,×,1). Then, the gener-
alized pattern with the first three links is supposed to be
(0,×,×,×,×), in that only (0,×,×,×,×) contains all positive
links that have been learned. When combining the fourth
assessed link, however, a conflict arises, because there is no
feasible conjunctive pattern that covers all the positive links
and filters all the negative links simultaneously.

Disjunctive Version Space [18] adopted disjunctive con-
structor to solve the above problem. The instance language
of Disjunctive Version Space is a binary similarity sequence.
Each bit of the instances’ binary similarity sequences is either
0 or 1. The generalization language is a disjunction of these
binary similarity sequences. However, its output is represented
in a more complicated format with a large number of binary
similarity sequences, because the binary similarity sequences
in the pattern cannot induce a more concise expression. The
generalized pattern of Disjunctive Version Space of Example 3
is (0,0,0,0,0)∪(0,0,0,0,1)∪(0,0,0,1,0)∪(0,0,0,1,1)∪(0,0,1,0,1)∪
(0,0,1,1,0)∪(0,0,1,1,1)∪(0,1,0,0,0)∪(0,1,0,0,1)∪(0,1,0,1,0)∪
(0,1,0,1,1)∪(0,1,1,0,0)∪(0,1,1,0,1)∪(0,1,1,1,0)∪(0,1,1,1,1)∪
(1,0,0,0,0)∪(1,0,0,0,1)∪(1,0,0,1,0)∪(1,0,0,1,1)∪(1,0,1,0,1)∪
(1,0,1,1,0)∪(1,0,1,1,1)∪(1,1,0,0,0)∪(1,1,0,0,1)∪(1,1,0,1,0)∪
(1,1,0,1,1)∪(1,1,1,0,0)∪(1,1,1,0,1)∪(1,1,1,1,0)∪(1,1,1,1,1). In
contrast, Extended Version Space, can not only cover all
positive links and filter all negative links simultaneously, but
we show that its expression is in a very concise representation.
Extended Version Space deploys two operations MERGE and
RESELECT, which are not used in Disjunctive Version Space,
to construct a more concise interlinking pattern.

V. CONSTRUCTION OF AN INTERLINKING PATTERN VIA
EXTENDED VERSION SPACE

The instance language of Extended Version Space is a
binary similarity sequence. Each bit of the instances’ binary
similarity sequences is either 0 or 1. The generalization lan-
guage is a disjunction of binary similarity sequences, called a
disjunctive pattern. Each bit of the binary similarity sequences
in the generalization language can be 0, 1 or ×.

A disjunctive pattern can be recursively represented as For-
mula (4), where (B(j)) represents a binary similarity sequence
with l bits, j = 1, . . . , l.

Pattern ::= (B(j)) | Pattern ∪ (B(j)) (4)
In this formula, ∪ denotes the union operation (i.e. disjunction)
in set theory. This formula means that a pattern is either a
binary similarity sequence, or a union of such sequences. We
give a simple example based on the definition. Assume there
are two data sets which are represented in English and French
respectively, and we are given two sample links, each of which
connects two instances and there are three property correspon-
dences (name↔nom, sex↔gender, and supervisor↔directeur)
to compare, i.e., three bits per binary similarity sequence.
Assume these two links can be represented as binary similarity
sequences (1,1,0) and (1,1,1) respectively, and they are both
assessed as positive by users, implying that they are correct
links. Then, the disjunctive pattern that satisfies both of the
two links can be written as (1,1,0)∪(1,1,1), or in a concise
format (1,1,×). A disjunctive pattern defined in Formula (4)
can take over the cases Version Space cannot handle. As
for Example 3, the disjunctive pattern can be written as
(0,1,×,×,×)∪(0,0,1,1,×). This pattern can cover all positive
links and filter all negative links, with a concise format.
This method is called Extended Version Space. Note that
neither the specialized pattern nor the generalized pattern
of Extended Version Space is a set of interlinking patterns,
each one maintains only one interlinking pattern whenever
a new assessed link is learned. The reason is that when the
disjunction operator is applied, we can always find out the most

strict/general pattern whenever an assessed link is learned. The
pseudo-code of the Extended Version Space method is shown
in Algorithm 1.

Algorithm 1 EXTENDED VERSION SPACE

Input: Binary Similarity Sequences of All Assessed Links
Output: A Disjunctive Generalized Pattern PatG

1: PatS=∅; /*empty set*/
2: PatG=(β(i))l×1, where β(i)=×, i = 1, 2, . . . , l; /*univer-

sal set*/
3: PatOri=(ϕ(i)), where ϕ(i)=×, i = 1, 2, . . . , l;
4: for (each assessed link (denoted by BSSlink)) do
5: if (BSSlink is marked as “positive”) then
6: MERGE(PatS , BSSlink);
7: MERGE(PatG, BSSlink);
8: end if
9: if (BSSlink is marked as “negative”) then

10: if (∃ BSS, BSSlink⊆BSS, BSS∈PatOri) then
11: PatOri = PatOri−BSS;
12: for (BSSnew∈(BSS−BSSlink)) do
13: MERGE(PatOri, BSSnew);
14: end for
15: end if
16: PatG = RESELECT(PatOri, PatS);
17: end if
18: end for

Algorithm 1 aims at generating a disjunctive pattern in the
form of Formula (4). It separately processes assessed links one
by one. The whole algorithm is split into two parts, based on
whether the checked sample link is assessed as positive or not.
The details are described below.

• If the current link is assessed as a positive one, the
algorithm will check if it is covered by the current
patterns (PatS and PatG). Such a checking step is
defined in the MERGE function. If yes, the specialized
pattern and the current generalized pattern (PatG)
will stay unchanged. If not, we will merge the link
represented in the form of binary similarity sequence
(denoted as BSSlink in the following text) into PatS
such that the newly added link can be included by
PatS . In the meantime, PatS will be reconstructed
if the newly added link can induce a more concise
expression, for example, replacing (0,1,1,1,0) and
(1,1,1,1,0) by (×,1,1,1,0). Note that we should also
revise PatG to make sure PatS ⊆ PatG. So we
should also merge BSSlink into PatG, if it cannot be
included by PatG. Finally, we reconstruct PatG to be
more concise as the way that PatS is done.

• If the current link is assessed as a negative one, we
need to check if it can be included by PatOri. If not,
PatOri stays the same. If yes, we need to delete the
BSSlink from PatOri such that the negative link can
be excluded by the new PatOri. We should find out
the BSS that is contained in PatOri, which contains
BSSlink. Then, we need to delete BSSlink from BSS.
We also need to delete BSS from PatOri. Afterwards,
we should add the rest binary similarity sequences
that are contained in BSS into PatOri. Then, PatOri

should be reconstructed further into a more concise

expression (if possible). Finally, a RESELECT step
removes from PatOri the binary similarity sequences
that cannot cover any binary similarity sequence in
PatS , otherwise the number of binary similarity se-
quences in PatG would increase exponentially with
more negative links learned. In general, this is not a
must-do step, but Silk will perform quite slowly if too
many binary similarity sequences are transformed in
the script.

In this algorithm, we assume that there is no intersection
between all positive links and all negative links. It means that
users never mark wrongly. Therefore, all positive links are
included by PatOri, no matter whether they are included by
PatS . Similarly, all negative links are not included by PatS ,
no matter whether they are included by PatOri. Therefore,
when a positive link is not included by PatS , we do not need
to merge the link into PatOri. Similarly, when a negative link
is included by PatOri, we do not need to remove it from
PatS .

The key operations appearing in Algorithm 1 are described
below.

1) MERGE operation: The MERGE operation (denoted by
MERGE(Pat, BSSlink)) is used to check if the newly added
BSSlink is supposed to be inserted and merged with some
binary similarity sequences in the pattern (denoted by BSSi

Pat),
such that the whole pattern can be represented in a more
succinct way. This operation is one key difference between
Extended Version Space and Disjunctive Version Space, which
makes the interlinking pattern be represented in a more concise
format. In order to formally define this operation, two other
operations should be introduced.

• The first one is denoted by BSSMERGE(BSSi
Pat,

BSSj
Pat), with respect to two binary similarity se-

quences, such as BSSi
Pat and BSSj

Pat. Its formal
definition is shown below.

BSSMERGE(BSSi
Pat,BSSj

Pat) = (b1, b2, · · · , bl)
where bk = BITMERGE(β

(k)
i , β

(k)
j)

=

{
β
(k)
i , if β(k)

i = β
(k)
j

×, if β(k)
i 6= β

(k)
j

(5)

where β(k)
i denotes the kth bit of the pattern BSSi

Pat.
BITMERGE in the above formula is a critical opera-
tion. Two examples are given to illustrate it here. (1)
If BSSi

Pat = (×,1,1,1) and BSSlink = (0,1,1,1), then
BITMERGE(BSSi

Pat, BSSlink) = (×,1,1,1). (2) If B-
SSi

Pat = (0,×,1,1) and BSSj
Pat = (1,×,1,1), then BIT-

MERGE(BSSi
Pat, BSSj

Pat) = (×,×,1,1). Obviously, the
core of BITMERGE is to construct a concise pattern
which is compatible with the given binary similarity
sequences.

• The second one is called DIFF operation, also
with respect to two binary similarity sequences,
such as BSSi

Pat and BSSj
Pat. DIFF(BSSi

Pat,BSSj
Pat)

is a function to compute the number of different
bits between the two binary similarity sequences.
For example, DIFF((0,1,1,1),(0,1,0,1)) = 1 and DIF-
F((0,0,×,1),(0,1,0,0)) = 3.

Based on the definitions of BSSMERGE and DIFF,
MERGE(Pat,BSSlink) can be formally represented as a recur-
sive function. Some examples are given to illustrate it later.

MERGE(Pat,BSSlink)=

Pat, if ∃BSSi
Pat∈Pat, DIFF(BSSi

Pat,BSSlink)=0
Pat ∪ BSSlink,

if ∀BSSi
Pat∈Pat, DIFF(BSSi

Pat,BSSlink)≥2
MERGE(Pat− BSSi

Pat,BSSMERGE(BSSi
Pat,BSSlink)),

if ∃BSSi
Pat∈Pat, DIFF(BSSi

Pat,BSSlink)=1
Pat ∪ BSSlink, if Pat=∅

(6)

In Formula (6), the notation “−” means the difference
operation on sets. In the above formula, if there exists a binary
similarity sequence in the pattern which is equal to the link’s
binary similarity sequence, then the pattern stays unchanged.
This means that the link is covered by the pattern. If all binary
similarity sequences in the pattern that have more than one
different bit with the link’s binary similarity sequence, then
the link should be inserted into the pattern. If there exists one
binary similarity sequence in the pattern that has one different
bit with the link’s binary similarity sequence, then the link
should be merged with such a binary similarity sequence. The
newly produced binary similarity sequence should be further
merged with other binary similarity sequences in the pattern if
possible. The computation is recursively performed until there
are no binary similarity sequences to merge. Finally, the new
produced binary similarity sequence is inserted into the pattern.
If the pattern is empty, then the link should be inserted into
the pattern.

Here, several examples are given to illustrate the compu-
tation of MERGE(Pat,BSSlink), supposing the current pattern
Pat = (0,1,1,×,×)∪(1,0,1,0,0).

• If BSSlink = (1,0,1,0,0), since there exists one binary
similarity sequence (1,0,1,0,0) in the current pattern
such that DIFF(BSSlink,(1,0,1,0,0))=0, the returned
new pattern stays unchanged (i.e., the first situation
in Formula (6)).

• If BSSlink = (1,1,1,0,1), since DIFF value is al-
ways no less than 2 for any binary similari-
ty sequence in the current pattern, the new pat-
tern should be represented as Pat∪BSSlink =
(0,1,1,×,×)∪(1,0,1,0,0)∪(1,1,1,0,1).

• If BSSlink = (1,1,1,0,0), since DIF-
F((1,0,1,0,0),BSSlink) = DIFF((1,0,1,0,0),(1,1,1,0,0)) =
1, the new pattern should be (0,1,1,×,×)∪(1,×,1,0,0).

2) RESELECT operation: The RESELECT operation re-
moves from PatOri the binary similarity sequences that cannot
cover any binary similarity sequence in PatS . This operation is
the other key difference between Extended Version Space and
Disjunctive Version Space, which also makes the interlinking
pattern be represented in a more concise format. It can be
formally defined as follows, where BSSPatOri

and BSSPatS
are referred to as the binary similarity sequence in PatOri

and the binary similarity sequence in PatS respectively.
RESELECT(PatOri, PatS) =

{BSSPatOri
| ∃ BSSPatS ,BSSPatS ⊆ BSSPatOri

} ∪
{BSSPatS | 6 ∃ BSSPatOri

,BSSPatS ⊆ BSSPatOri
} (7)

The RESELECT operation is used to reduce the size of PatG:
the binary similarity sequence in PatOri can be maintained if
and only if it covers at least one binary similarity sequence
belonging to PatS . Although the existence of other irrelevant
binary similarity sequences in PatOri does not break the
relationship PatS⊆PatOri, these binary similarity sequences
will degrade the Silk interlinking speed. Hence, it is necessary
to maintain the relevant binary similarity sequences in PatOri

and remove irrelevant ones meanwhile. Besides, the binary
similarity sequences in PatS that are not subsumed by any
binary similarity sequence in PatOri should also be added
into PatG.

In the end of Algorithm 1, the converged generalized
pattern will act as the final output. The algorithm will terminate
when there is no assessed link to be learned. The soundness of
the algorithm has been proved [21]. But it is not sure if there
exist a pattern, the algorithm will find it (completeness). We
did not encounter a case when doing interlinking experiments
that are described in Section VI, in which the algorithm does
not find a pattern while there exist one.

VI. EVALUATION

The interlinking method in this paper is evaluated based
on public data sets mainly downloaded from IM@OAEI 20103

(data sets Person1 and Person2), IM@OAEI 20124 (data sets
Sandbox001) and CKAN5 (geographical data sets INSEE and
EUROSTAT). Silk is used here to generate a link set across
two RDF data sets by executing an interlinking script that is
transferred from an interlinking pattern, because it is an open
source software.

A. Experimental Setting

A set of sample links are created for constructing and
improving the interlinking pattern by Extended Version Space.
We use K-medoids clustering method to cluster the properties
of every class for each data set based on the statistics (e.g., the
average value of properties), and then determine which pairs of
properties between two classes across data sets can be regarded
as potential property correspondences. The sample links are
generated by Silk according to a pattern that combines all
property correspondences into a disjunction of property corre-
spondences. It means that any instance pair that have the same
property values of any potential property correspondences will
be linked as a sample link. These sample links are assessed by
users and used to construct and improve an interlinking pattern
afterwards.

The F-measure and runtime are computed every 10 as-
sessed links. If the interlinking procedure stops before learning
100 assessed links, we assume that the F-measure and runtime
keep on the same level as the one when the procedure stopped,
in order to evaluate our interlinking method with other works
when the learning process stops with 100 assessed links.

The experiments in Section VI-B1 are performed on each
data set 5 times with a single thread and allocated maximally

3http://oaei.ontologymatching.org/2010/im/index.html
4http://www.instancematching.org/oaei/
5http://datahub.io/

2GB of RAM. The experiments in Section VI-B2 are per-
formed on each data set 5 times with 4 threads and allocated
maximally 2GB of RAM. Active Learning [22] is applied to
select sample links to be assessed by users for reducing the
number of assessed links. There are different links that are used
to improve the interlinking pattern for different experiments.
Thus, the precisions and recalls of generated link sets and
running times of each interlinking task to be shown are the
average values under 5 experiments. F-measures of generated
link sets are computed with regard to the average precisions
and average recalls of each interlinking task. The F-measures
and running times of Extended Version Space are computed
by executing interlinking with interlinking patterns when the
assessed links are transferred into binary similarity sequences
with the threshold T=0.5. According to our experiment, this
threshold can lead to a relatively higher F-measures and
lower running times of Extended Version Space than other
thresholds.

Our interlinking method is implemented by Java 1.6+, and
the experiments are performed on a desktop computer (2.5GHz
8-core CPU, memory size=32GB, 64-bit operating system).
The experimental results are stored in RDF files.

B. Evaluation Results

1) Comparison with Genetic Programming: This section
compares the F-measure and running time of Extended Version
Space with related works [10], [9] that use Genetic Program-
ming for interlinking.

Through Fig. 1 and Fig. 2, we can observe that the
interlinking method of this paper performs better than the
approaches proposed by Ngonga Ngomo et al. [10], [9], based
on the same two data sets Person1 and Person2. In both
figures, our method is denoted as EVS. The three comparable
methods of Ngonga Ngomo et al. are denoted as EAGLE, CL,
WD respectively. CL and WD are two interlinking methods
that combines EAGLE with two different Active Learning
methods. Both Active Learning methods classify sample links
into several groups according to the similarity sequence that
are composed of similarities of property values according
to each property correspondence. The figures show the best
convergence results that are presented in their paper [10]. We
compare F-measures and running times of Extended Version
Space with the ones of the related works when they achieve
their best F-measures with 100 initial population of Genetic
Programming. We do not implement EAGLE, CL and WD,
because the correspondence discovering method [23] required
by the three methods is not a open-source method. The only
difference on execution is that Extended Version Space is
executed with a CPU of 2.5GHz, while the other three works
are executed with a CPU of 2.0GHz. Since most of running
time is spent on I/O operations, which are required to extract
data from data sets, the difference of CPU does not influence
the running times of both interlinking methods.

Fig. 1 shows the F-measure comparisons on two interlink-
ing tasks Person1 and Person2. With respect to the data set
Person1, the final converged F-measure under EVS is much
higher than the best ones of EAGLE, CL and WD (0.99 versus
0.86, 0.88 and 0.89 respectively). The F-measure of EVS stays
on a high level when there are more than 20 assessed links. For

the interlinking task Person2, the final converged F-measure of
EVS is 0.96, while the ones of EAGLE, CL and WD are all
roughly 0.77.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
-m

e
a
s
u
re

Number of Assessed Links

EVS

EAGLE

CL

WD

(a) Person1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
-m

e
a
s
u
re

Number of Assessed Links

EVS

EAGLE

CL

WD

(b) Person2

Fig. 1. F-measures of Extended Version Space and Genetic Programming

Extended Version Space achieves better F-measures in
the interlinking task Person1 and Person2 than EAGLE, CL
and WD. We can also observe that Extended Version Space
converges faster than EAGLE, CL and WD. Extended Version
Space has better F-measures than Ngonga Ngomo et al.’s work
by about 10% in both interlinking tasks. This is mainly due
to the fact that Extended Version Space builds a disjunctive
pattern, which can cover positive links and filter out negative
links more comprehensively. However, the operations mutation
and crossover of Genetic Programming make some changes on
some randomly-chosen parts of the interlinking pattern. These
two operations may cause the interlinking pattern to cover less
positive links and filter less negative links, so that F-measures
decrease accordingly.

Note that there are about 10,446 sample links and 6845
sample links for the two data sets respectively while there are
60 sample links and 80 sample links used by Extended Version
Space for improving the interlinking pattern (only 1% of the
total sample links), which means a quite high interlinking
efficiency.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

R
u
n
n
in

g
 T

im
e
(s

)

Number of Assessed Links

EVS
EAGLE

CL
WD

(a) Person1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

R
u
n
n
in

g
 T

im
e
(s

)

Number of Assessed Links

EVS
EAGLE

CL
WD

(b) Person2

Fig. 2. Running Times of Extended Version Space and Genetic Programming

Fig. 2 shows the comparisons of the running time on two
interlinking tasks.

Extended Version Space reaches high F-measures with
shorter running times than other related works on both inter-
linking tasks. As for the interlinking task Person1, Extended
Version Space spends shorter time than other works when there
are more than 10 assessed link. The interlinking procedure
stops after learning 60 assessed links, because there is no
more binary similarity sequences that have not been learned.
There are totally 57 different binary similarity sequences in
the interlinking task Person1. The running time of Extended

Version Space stays at 73 seconds with a higher F-measure
0.99 by referring to Fig. 1 (a). Thus, comparing to other
interlinking methods, Extended Version Space reaches higher
F-measures with a relatively shorter time in Person1. As
for data set Person2, the running times of Extended Version
Space are shorter than other related works after learning 10
assessed links. The interlinking procedure stops after learning
80 assessed links, in that there is no more binary similarity
sequences that have not been learned. There are totally 71
different binary similarity sequences in the interlinking task
Person2. The reason for the efficiency of Extended Version
Space is that it executes only one interlinking pattern in
each round, but Genetic Programming executes more than
one interlinking pattern, which requires more running times.
Thus, Extended Version Space can reach high F-measures with
shorter time.

We also can observe that Extended Version Space spends
less time on the interlinking task Person1 than the interlinking
task Person2. Because there are fewer different binary similar-
ity sequences of the interlinking task Person1 than the ones of
the interlinking task Person2. Since the interlinking pattern is
composed of different binary similarity sequences of assessed
links, the size of the interlinking pattern is decided by the
number of different binary similarity sequences. In Person1, all
correct links are transferred into 17 different binary similarity
sequence groups. While in Person2, all correct links are
transferred into 46 different binary similarity sequence groups.
Thus, the interlinking pattern of Person2 will definitely become
larger than the one of Person1 when more assessed links are
learned. When the interlinking pattern is larger, there are more
I/O operations that are required by Silk script when generating
links. Therefore, the running times of Person2 become longer
than the ones of Person1 when more assessed links are learned.

To conclude, Extended Version Space performs better than
other related works because of the following reasons. Genetic
Programming searches for the suitable interlinking pattern by
evaluating more than one interlinking patterns during each
learning round. The evaluation is realized by executing each
interlinking pattern to generate a link set, which will increase
a lot of running time with many I/O operations. Furthermore,
crossover and mutation operations of Genetic Programming
easily cause the instability of the interlinking pattern, which
will make the F-measure decrease in the meanwhile. In
contrast, Extended Version Space does not need to evaluate
more than one interlinking pattern during each learning round.
It does not change the interlinking pattern with crossover
and mutation operations but with informative assessed links.
Therefore, it reaches high F-measure with shorter time than
other related works.

2) Comparison with Disjunctive Version Space: This sec-
tion compares F-measures and running times of Extended
Version Space and the ones of Disjunctive Version Space on
different data sets.

The F-measures and running times of Extended Version
Space and Disjunctive Version Space are computed by execut-
ing interlinking with the generalized patterns of both learning
methods when the assessed links are transferred into binary
similarity sequences with the threshold T=0.5. There is an
exception. If there is no negative link’s binary similarity
sequence being learned, the generalized pattern is a universal

expression which contains all correct and incorrect links. Thus,
it cannot be used for generating links. In this case, we compute
the F-measures by executing interlinking with the specialized
patterns of both methods.

We do not generate links with the generalized pattern of
Disjunctive Version Space but with the one of Disjunctive Ver-
sion Space after the operation MERGE of Extended Version
Space. The operation is defined in Section V-1. On the one
hand, the F-measures of the generated link set by executing
the generalized pattern after merging are the same with the one
before merging. On the other hand, the running times of the
generalized pattern before merging are definitely longer than
the ones of the generalized pattern after merging. If we can
show that the running times of the generalized pattern after
merging are longer than the ones of Extended Version Space,
the running times of Extended Version Space will definitely
be shorter than the ones of Disjunctive Version Space.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 600

 1200

 1800

 2400

 3000

Number of Assessed Links

F-measure of EVS
F-measure of DVS

Running Time(s) of EVS
Running Time(s) of DVS

(a) Person1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 400

 800

 1200

 1600

 2000

Number of Assessed Links

F-measure of EVS
F-measure of DVS

Running Time(s) of EVS
Running Time(s) of DVS

(b) Person2

Fig. 3. F-measure and Running Time of Extended Version Space and Merged
Disjunctive Version Space on Person1 and Person2

Extended Version Space converges faster than merged Dis-
junctive Version Space when interlinking Person1 and Person2
in Fig. 3. In Fig. 3(a), the F-measure of Extended Version
Space increases to 0.98 when there are 20 assessed links. While
merged Disjunctive Version Space should learn 60 assessed
links so as to reach the similar level of F-measure. As for
running time, Disjunctive Version Space spends 2300 more
seconds to reach the similar F-measure as Extended Version
Space when there are 60 assessed links. In Fig. 3(b), the F-
measure of Extended Version Space reaches 0.96 when there
are 50 assessed links, but merged Disjunctive Version Space
should learn 70 assessed links to gain the same F-measure. As
for running time, Disjunctive Version Space spends 1300 more
seconds to reach the same F-measure of Extended Version
Space when there are 70 assessed links.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 4

 8

 12

 16

 20

Number of Assessed Links

F-measure of EVS
F-measure of DVS

Running Time(s) of EVS
Running Time(s) of DVS

(a) INSEE and EUROSTAT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 100

 200

 300

 400

 500

Number of Assessed Links

F-measure of EVS
F-measure of DVS

Running Time(s) of EVS
Running Time(s) of DVS

(b) Sandbox001

Fig. 4. F-measure and Running Time of Extended Version Space and Merged
Disjunctive Version Space on INSEE vs. EUROSTAT and Sandbox001

Extended Version Space converges faster than merged
Disjunctive Version Space when interlinking the data sets
INSEE and EUROSTAT and Sandbox001 in Fig. 4. In Fig.
4(a), Extended Version Space converges at the same speed
with merged Disjunctive Version Space. Both of their F-
measure reach 0.99 when there are 10 assessed links. But
merged Disjunctive Version Space spends longer running time
than Extended Version Space. In Fig. 4(b), the F-measure
of merged Disjunctive Version Space is 0.07 no matter how
many assessed links are learned. In contrast, the F-measure
of Extended Version Space reaches 0.94 when there are 10
assessed links. F-measure of Extended Version Space is always
much higher than the one of merged Disjunctive Version
Space in each learning round, although merged Disjunctive
Version Space spends nearly 90 seconds more to improve the
interlinking pattern.

To conclude, Extended Version Space converges faster to
a higher F-measure with shorter running times than Disjunc-
tive Version Space. Since there is a RESELECT operation
in Extended Version Space, only binary similarity sequences
that are relevant to assessed correct links are maintained
in the generalized pattern of Extended Version Space (i.e.,
PatG). However, the generalized pattern of merged Disjunc-
tive Version Space (i.e., PatOri) contains not only relevant
binary similarity sequences but also irrelevant ones that cover
many incorrect links. Furthermore, the generalized pattern of
Extended Version Space is usually more concise than the
one of merged Disjunctive Version Space, which requires less
I/O operations for querying data sets when generating links.
Thus, the running time of Extended Version Space is less
than the one of merged Disjunctive Version Space. Since the
generalized pattern of Disjunctive Version Space definitely
spends longer running time than the one of merged Disjunctive
Version Space, Extended Version Space converges to a higher
F-measure with shorter running times than Disjunctive Version
Space.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed Extended Version Space to
construct an interlinking pattern across two RDF data sets.
The advantage of our design is its high F-measure as well
as processing efficiency with relatively short running time.
We evaluate different solutions using various public data
sets. Experiments confirm that our method with only 1% of
sample links already reaches a high F-measure (around 0.96-
0.99). The F-measure quickly converges in our solution, which
improves by nearly 10% on other interlinking approaches. In
the future, we plan to evaluate our interlinking method with
more data sets, which have different qualities on class/property
correspondences. We also plan to implement our interlinking
method in an ontology matching tool so as to help improve
the generated ontology alignment.

ACKNOWLEDGMENT

This work is partially supported by ANR project Datalift
(2010 CORD 009).

REFERENCES

[1] F. M. Suchanek, S. Abiteboul, and P. Senellart, “Paris: Probabilistic
alignment of relations, instances, and schema,” Proceedings of the
VLDB Endowment, vol. 5, no. 3, pp. 157–168, 2012.

[2] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos, “imap:
discovering complex semantic matches between database schemas,” in
Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data. ACM Press, 2004, pp. 383–394.

[3] J. Berlin and A. Motro, “Database schema matching using machine
learning with feature selection,” in Proceedings of the Conference on
Advanced Information Systems Engineering, 2002, pp. 452–466.

[4] J. Kang and J. F. Naughton, “On schema matching with opaque
column names and data values,” in Proceedings of 22nd International
Conference on Management of Data. ACM Press, 2003, pp. 205–216.

[5] A. Bilke and F. Naumann, “Schema matching using duplicates,” in
Proceedings of the 21st International Conference on Data Engineering.
IEEE Computer Society, 2005, pp. 69–80.

[6] H. Nottelmann, “splmap: A probabilistic approach to schema match-
ing,” in Proceedings of the 27th European Conference on Information
Retrieval. Springer Verlag, 2005, pp. 81–95.

[7] Q.-V. Tran, R. Ichise, and B.-Q. Ho, “Cluster-based similarity aggre-
gation for ontology matching,” in Proceedings of Internationl Semantic
Web Conference Ontology Matching workshop, vol. 814. CEUR-
WS.org, 2011.

[8] H. Qin, D. Dou, and P. LePendu, “Discovering executable semantic
mappings between ontologies,” in Proceedings of the 2007 OTM
Confederated International Conference on On the Move to Meaningful
Internet Systems: CoopIS, DOA, ODBASE, GADA, and IS - Volume Part
I, vol. 4803, 2007, pp. 832–849.

[9] A.-C. Ngonga Ngomo and K. Lyko, “Eagle: Efficient active learning of
link specifications using genetic programming,” in Proceedings of the
9th Extended Semantic Web Conference, ser. Lecture Notes in Computer
Science, vol. 7295. Springer, 2012, pp. 149–163.

[10] A.-C. Ngonga Ngomo, K. Lyko, and V. Christen, “Coala-correlation-
aware active learning of link specifications,” in Proceedings of the
Extended Semantic Web Conference. Springer, 2013, pp. 442–456.

[11] R. Isele and C. Bizer, “Active learning of expressive linkage rules using
genetic programming,” Web Semantics: Science, Services and Agents on
the World Wide Web, vol. 23, no. 0, 2013.

[12] T. M. Mitchell, “Generalization as search,” Artif. Intell., vol. 18, no. 2,
pp. 203–226, 1982.

[13] R. Isele and C. Bizer, “Learning linkage rules using genetic pro-
gramming,” in Proceedings of 6th ontology matching workshop at the
International Semantic Web Conference (OM@ISWC), Bonn (DE), ser.
CEUR Workshop Proceedings, vol. 814, 2011.

[14] A.-C. Ngonga Ngomo, J. Lehmann, S. Auer, and K. Höffner, “Raven
– active learning of link specifications,” in Proceedings of the 6th
International Workshop on Ontology Matching, vol. 814. CEUR-
WS.org, 2011.

[15] A.-C. Ngonga Ngomo, “A time-efficient hybrid approach to link discov-
ery,” in Proceedings of 6th ontology matching workshop (OM), Bonn
(DE), ser. CEUR Workshop Proceedings, vol. 814, 2011.

[16] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin, Genetic
programming: an introduction: on the automatic evolution of computer
programs and its applications. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998.

[17] B. Settles, “Active learning literature survey,” University of Wisconsin–
Madison, Computer Sciences Technical Report 1648, 2009.

[18] T. M. Mitchell, Machine Learning. McGraw-Hill, New York, 1997.
[19] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions,

Insertions and Reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp.
707–710, 1966.

[20] P. Jaccard, “The distribution of the flora in the alpine zone,” New
Phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[21] Z. Fan, “Concise pattern learning for rdf data sets interlinking,” Ph.D.
dissertation, University of Grenoble, 2014.

[22] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active
learning,” Knowledge and Information Systems, vol. 35, no. 2, pp. 249–
283, 2013.

[23] A.-C. Ngonga Ngomo, N. Heino, K. Lyko, R. Speck, and
M. Kaltenböck, “Scms - semantifying content management systems,”
in Proceedings of Internationl Semantic Web Conference, ser. Lecture
Notes in Computer Science, vol. 7032. Springer, 2011, pp. 189–204.

