Claire Capdevielle

Colette Johnen

Petr Kuznetsov

Alessia Milani

On the Uncontended Complexity of Anonymous Consensus *

Consensus is one of the central distributed abstractions. By enabling a collection of processes to agree on one of the values they propose, consensus can be used to implement any generic replicated service in a consistent and fault-tolerant way.

In this paper, we study uncontended complexity of anonymous consensus algorithms, counting the number of memory locations used and the number of memory updates performed in operations that encounter no contention. We assume that contention-free operations on a consensus object perform "fast" reads and writes, and resort to more expensive synchronization primitives, such as CAS, only when contention is detected. We call such concurrent implementations intervalsolo-fast and derive the first nontrivial tight bounds on space complexity of anonymous intervalsolo-fast consensus.

Introduction

Consensus is one of the central distributed abstractions. By enabling a collection of processes to agree on one of the values they propose, consensus can be used to implement any generic replicated service in a consistent and fault-tolerant way. Therefore, complexity of consensus implementations has become one of the most important topics in the theory of distributed computing.

It is known that consensus cannot be solved in an asynchronous read-write shared memory system in a deterministic and fault-tolerant way [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF][START_REF] Loui | Memory requirements for agreement among unreliable asynchronous processes[END_REF]. The difficulty stems from handling contended executions. One way to circumvent this impossibility is to only guarantee progress (using reads and writes) in executions meeting certain conditions, e.g., in the absence of contention. Alternatively, a process is guaranteed to decide in the wait-free manner, but stronger (and more expensive) synchronization primitives, such as compare-and-swap, can be applied in the presence of contention.

We are interested in consensus algorithms in which a propose operation is allowed to apply primitives other than reads and writes on the base objects only in the presence of interval contention, i.e., when another propose operation is concurrently active. These algorithms are called intervalsolo-fast.

Ideally, interval-solo-fast algorithms should have an optimized behavior in uncontended executions. It appears therefore natural to explore the uncontended complexity of consensus algorithms: how many memory operations (reads and writes) can be performed and how many distinct memory locations can be accessed in the absence of interval contention?

In general, interval-solo-fast consensus can be solved with only constant uncontended complexity [START_REF] Luchangco | On the uncontended complexity of consensus[END_REF]. We therefore restrict our study to anonymous consensus algorithms, i.e., algorithms not using process identifiers and, thus, programming all processes identically. Besides intellectual curiosity, practical reasons to study anonymous algorithms in the shared memory model are discussed in [START_REF] Guerraoui | Anonymous and fault-tolerant shared-memory computing[END_REF]. Our results. On the lower-bound side, we show that any anonymous interval-solo-fast consensus algorithm exhibits non-trivial uncontended complexity that depends on n, the number of processes, and m, where m is the size of the set V of input values that can be proposed. More precisely, we show that, in the worst case, a propose operation running solo, i.e., without any other process invoking propose, must write to Ω(min(√ n, log m/ log log m)) distinct memory locations. This metrics, which we call solo-write complexity, is upper-bounded by step complexity of the algorithm, i.e., the worstcase number of all base-object primitives applied by an individual operation. In the special case of input-oblivious algorithms, where the sequence of memory locations written in a solo execution does not depend on the input value, we derive a stronger lower bound of Ω(√ n) on solo-write complexity. Our proof only requires the algorithm to ensure that operations terminate in solo executions, so the lower bounds also hold for abortable [START_REF] Attiya | The complexity of obstruction-free implementations[END_REF][START_REF] Hadzilacos | On deterministic abortable objects[END_REF] and obstruction-free [START_REF] Herlihy | Obstruction-free synchronization: Double-ended queues as an example[END_REF] consensus implementations.

On the positive side, we show that our lower bound is tight. Our matching consensus algorithm is based on our novel value-splitter abstraction, extending the classical splitter mechanism [START_REF] Buhrman | Long-lived renaming made fast[END_REF][START_REF] Lamport | A fast mutual exclusion algorithm[END_REF][START_REF] Moir | Wait-free algorithms for fast, long-lived renaming[END_REF], interesting in its own right. Informally, a value-splitter exports a single operation split that takes a value in a value set V as a parameter and returns a boolean response so that (1) if split(v) completes before any other split operation starts, then it returns true, and (2) all processes that obtain true proposed the same value.

We describe a simple transformation of a value-splitter into anonymous and interval-solo-fast consensus, using the classical splitter-based algorithm and incurring constant overhead with respect to the value-splitter complexity [START_REF] Luchangco | On the uncontended complexity of consensus[END_REF]. Then, we present two value-splitter read-write implementations that combined with the consensus algorithm provide the matching upper bound O(min(√ n, log m/ log log m)). The first one is a novel anonymous and input-oblivious implementation of a value-splitter that exhibits O(√ n) space and solo-write complexity. The second one is not input-oblivious, and is a slight modification os the weak conflict detector proposed in [START_REF] Aspnes | Tight bounds for adopt-commit objects[END_REF], exhibiting O(log m/ log log m) space and step complexity.

Our results are summarized in Table 1. It is interesting to notice that the step complexities are O(n) for the first algorithm and O(log m/ log log m) for the second one. Aspnes and Ellen [START_REF] Aspnes | Tight bounds for adopt-commit objects[END_REF] showed that any anonymous consensus protocol has to execute Ω(min(n, log m/ log log m)) steps in solo executions. Thus, our consensus algorithms have also asympotically optimal step complexity.

Overall, our results imply the first nontrivial tight lower bound on the space complexity for consensus known so far. Our results also show that there is an inherent gap between anonymous and non-anonymous consensus algorithms: non-anonymous consensus has constant uncontended complexity [START_REF] Luchangco | On the uncontended complexity of consensus[END_REF]. Related work. The idea of optimizing concurrent algorithms for uncontended executions was suggested by Lamport in his fast mutual exclusion algorithm [START_REF] Lamport | A fast mutual exclusion algorithm[END_REF].

Fich et al. [START_REF] Fich | On the space complexity of randomized synchronization[END_REF] have shown that any obstruction-free read-write (non-anonymous) consensus protocol must use Ω(√ n) memory locations. Attiya et al. [START_REF] Attiya | The complexity of obstruction-free implementations[END_REF] showed that any step-solo-fast (where operations only apply reads and writes in the absence of interleaving steps) either use O(

√ n) space Input-oblivious Not input-oblivious Ω(√ n) Ω(min(√ n, log m log log m)) O(√ n) if √ n ≤ log m log log m , O(√ n) if √ n ≥ log m log log m , O(log m log log m) [1, 15]
Table 1: Space and solo-write complexity for anonymous interval-solo-fast consensus or incur O(√ n) memory stalls per operation. No obstruction-free or step-solo-fast algorithm matching these lower bounds is known so far: existing algorithms typically expose O(n) space complexity. The proofs of these lower bounds cannot be used to derive complexity of solo executions.

Our value-splitter abstraction is inspired by the splitter mechanism in [START_REF] Buhrman | Long-lived renaming made fast[END_REF][START_REF] Moir | Wait-free algorithms for fast, long-lived renaming[END_REF], originally suggested by Lamport [START_REF] Lamport | A fast mutual exclusion algorithm[END_REF]. Differently from the original splitter object, more than one process can return true but all these processes have the same input value. The novel input-oblivious value-splitter implementation we present is inspired by the obstruction-free leader election algorithm recently proposed by Giakkoupis et al. [START_REF] Giakkoupis | An o(sqrt n) space bound for obstruction-free leader election[END_REF].

Bouzid et al. [START_REF] Bouzid | Anonymous agreement: The janus algorithm[END_REF] presented an anonymous consensus algorithm with asymptotically optimal solo write and step complexity. But it relies on a failure detector (can be transformed into obstruction-free though) and requires unbounded space. Roadmap. The rest of the paper is organized as follows. We give preliminary definitions in Section 2. We present our lower bound in Section 3 and our upper bound in Section 4. We conclude the paper in Section 5.

Preliminaries

The model of computation. We consider a standard asynchronous shared-memory model in which n > 1 processes communicate by applying atomic (or linearizable [START_REF] Herlihy | Linearizability: A correctness condition for concurrent objects[END_REF]) primitive operations on shared variables, called base objects. We assume every base object maintains a state and exports a subset of the Read, Write and Compare-And-Swap (CAS) primitives. The primitive Read(R) returns the value of R, and Write(R, v) sets the state of R to v. The primitive CAS(R, e, v) checks if the state of R is e and, if so, sets the state of R to v and returns true; otherwise, the state remains unchanged and false is returned. A register is a base object that exports only the Read and Write primitives.

Algorithms and executions. To implement a (high-level) object from a set of base objects, processes follow an algorithm. To avoid confusion between the base objects and the implemented one, we reserve the term operation for the object being implemented and we call primitives the operations on base objects. We say that an operation is performed on a high-level object and that a primitive is applied to a base object.

Each process has a local state that consists of the values stored in its local variables and a programme counter. A computation of the system proceeds in steps of an algorithm performed by the processes. Each step is one of the following: (1) an invocation of a high-level operation, (2) a primitive operation on a base object, (3) local computation that results in a change of a process's state, or (4) a response of a (high-level) operation. All steps may update the local state of the process that performs it. A configuration specifies the state of each base object and the local state of each process at one moment. In an initial configuration, all base objects have the initial values specified by the algorithm and all processes are in their initial states.

A process is active if an operation has been invoked on the process but the operation has not yet produced a matching response; otherwise the process is called idle. We assume that an operation can only be invoked on an idle process and only active processes take steps. A configuration is quiescent if every process is idle in it.

An execution fragment of an algorithm is a (possibly infinite) sequence C 1 , φ 1 , . . . , C i , φ i , . . . of configurations alternating with steps, where each step is the application of a primitive φ i to configuration C i resulting in configuration C i+1 . For any finite execution fragment α ending with configuration C and any execution fragment α starting at C, the execution αα is the concatenation of α and α ; in this case α is called an extension of α. An execution is an execution fragment starting from the initial configuration C 0 .

In an infinite execution, a process is correct if it takes an infinite number of steps or is idle from some point on. Otherwise, the process is called crashed.

In a solo execution, only one process takes steps. An operation invoked by a process in a given execution is completed if its invocation is followed by a matching response. An operation invoked a process p in an execution E is uncontended if no process other than p is active between its invocation and response steps. We also say that p executes its operation in absence of interval contention.

Finally, we say that an operation executes in the absence of step contention if all the steps of the operation are contiguous in the execution.

Consensus. The consensus object exports one operation propose(v), where v is an input taken from some domain V (|V | ≥ 2). The output values must satisfy the following properties:

• Agreement: all output values are the same • Validity: Every output value is one of the input values.

Properties of algorithms. An algorithm is wait-free if in every execution, each correct process completes each its operation in a finite number of its own steps [START_REF] Herlihy | Wait-free synchronization[END_REF].

A wait-free algorithm is interval-solo-fast if, in absence of interval contention, a process only applies Read and Write primitives. A wait-free algorithm is step-solo-fast [START_REF] Attiya | The complexity of obstruction-free implementations[END_REF] if a process is allowed to apply only Reads and Writes in the absence of step contention.

An algorithm is input-oblivious if a process accesses the same sequence of base objects in any solo execution of the algorithm, regardless of its input.

An algorithm is anonymous if it does not use process identifiers and is the same for all processes.

In this paper we are concerned with two complexity metrics: space complexity, i.e., the number of base objects an algorithm uses, and solo-write complexity, i.e., the maximal number of writes performed in a solo execution of a single operation of an algorithm, taken over all possible input values. Note that solo-write complexity is upper-bounded by the step complexity of the algorithm, i.e., the number of base-object accesses a single operation may perform.

Overview. By the way of contradiction, assume that there exists an interval-solo-fast anonymous consensus algorithm in which a set of at most k base objects are written in any solo execution, where k < min(√ n, fact -1 (m)). Here fact -1 is the inverse of the factorial function fact(m) = m!. Recall that fact -1 (m) = Θ(log m/ log log m).

We are going to show that the algorithm has an execution in which two processes decide two different values. In executions we are going to iteratively construct, no process encounters interval contention and, thus, no process applies primitives other than Read and Write primitives.

Let C 0 be the initial configuration of an interval-solo-fast consensus algorithm and let α u denote the execution in which a process, starting from C 0 , invokes propose(u) and runs solo and until the operation completes. Since the algorithm is anonymous, α u does not depend on the process identifier.

Since k < fact -1 (m), we have k! < m and, thus, there must be two values v and w such that the sequences of base objects written in α v and α w , in the order of the times they are first written, are identical. (In an input-oblivious protocol, v and w can be any two distinct values, regardless of the relation between m and k.) Let us denote this sequence by r 1 , . . . , r k .

To construct the desired execution with different decided values and establish a contradiction, we assume that half of the processes propose v and the other half propose w. In each iteration of the construction, we "wake up" a subset of the processes in each of the two halves and let them run as clones, i.e., run them lock-step so that they ignore the presence of each other, until they are about to write to not previously written base object for the first time. On the way, we carefully maintain the invariant that each previously written base object is covered by enough processes (the processes are about to write to it) in each of the two halves so that, in the subsequent iteration, we can extend the execution in a way that "enough" processes cannot distinguish it from a solo run.

Using the assumption k < √ n, we ensure that at the end of the kth iteration, we have at least one process p i proposing v and at least one process p j proposing w, and both p i and p j believe that they run solo. Moreover, each of the k base objects r 1 , . . . , r k is covered by at least one process proposing v and at least one process proposing w. This way, we can extend the execution so that both p i and p j run until completion, without being able to detect contention, and, thus, deciding v and w, respectively.

Notation. We now introduce some instrumental notions and definition.

For u = v, w, 1 ≤ i ≤ k, let α i,u denote the longest prefix of α u in which all writes are on base objects in {r 1 , . . . , r i }. Let α 0,u denote the longest prefix of α u in which no writes takes place. Thus, the next event of α u immediately after α i,u is a write on r i+1 for all 0 ≤ i ≤ k -1 and α k,u = α u .

For j = 1, . . . , k, let x j,i,u denote the value of r j in the configuration after α i,u . Recall that for j = i + 1, . . . , k, no write on r j takes place in α i,u and, thus, x j,i,u is the initial value of r j .

For i, j = 1, . . . , k and u = v, w, let I j,i,u be a binary indicator that r j is written in α i,u after the last event of α i-1,u . Note that I i,i,u = 1 for all i = 1, . . . , k, and I j,i,u = 0 for all 1 ≤ i < j ≤ k.

For 1 ≤ i, j < k, let s j,i,u = min{ > i| = k ∨ I j, ,u = 1} -i is 1 plus the maximal number of consecutive prefixes α t,u such that i < t < k and r j is not written in α t,u after the last event of α t-1,u . Clearly, s j,i,u ≥ 1 and s j,k-1,u = 1, for all i, j = 1, . . . , k -1. Also, it is easy to check that k-1 i=1 I j,i,u s j,i,u = k -j for all j = 1, . . . , k -1. Thus, k-1

=1 k-1 j=1 I j, ,u s j, ,u = (k 2 -k)/2. Definition 1 A configuration C i is called i-cloning, 1 ≤ i ≤ k, if it
satisfies the following conditions:

• For each u = v, w, j = 1, . . . , i -1, r j is covered by s j,i-1,u processes writing x j,i-1,u .

• For each u = v, w, there are at least (k 2 -k + 2)/2 -i-1 =1 i-1 j=1 I j, ,u s j, ,u processes that do not distinguish the execution from α i-1,u and, thus, cover base object r i .

• Each base object in {r i , . . . , r k } stores the initial value.

Lemma 2

The algorithm has a k-cloning configuration.

Proof. By induction on k, we construct a k-cloning configuration starting from the initial configuration C 0 .

We divide the processes into two groups and of size (k 2 -k + 2)/2 where every process in one group proposes value v and every process in the other group proposes value w.

Base case. Let γ be the execution, starting at C 0 , in which the processes run solo, one by one, until they are about to write to base object r 1 for the first time. It is easy to see that, since no process writes in γ, C 1 = C 0 γ is a 1-cloning configuration. Indeed, half of the processes cannot distinguish C 0 γ from α 0,v and the other half from α 0,w , and all base objects are in their initial states. As an induction hypothesis, consider an i-cloning configuration C i , for some 1 ≤ i < k.

Take u = v, w (in that order). For each j = 1, . . . , i -1, we let one of the processes covering r j with x j,i-1,u to complete its write. By the induction hypothesis, there are at least s j,i-1,u ≥ 1 such processes.

Then we wake up (k

2 -k + 2)/2 -i-1 j=1 i-1
=1 I j, ,u s j, ,u processes that cannot distinguish the execution from α i-1,u and run them lock-step (without noticing each other) until they are about to perform their write on r i+1 . This execution exists, since no such process can distinguish the execution from α i,u . If α i,u contains a write on some r m , m = 1, . . . , i, after the last event of α i-1,u , then s m,i,u of these processes are stopped just before they perform the last write on r m in α i+1,u . This can be done because I m,i,u = 1 for every such m and

i =1 i-1 j=1 I j, ,u s j, ,u ≤ k-1 =1 i-1 j=1 I j, ,u s j, ,u = (k 2 -k)/2 < n/2.
Let γ be the resulting extension of C i and C i+1 = C i γ be the resulting configuration. Notice that all base objects in {r i+1 , . . . , r k } store the initial value in C i+1 .

Consider any j = 1, . . . , i and u = v, w. If r j is not written in α i+1,u , then, by the induction hypothesis and the construction of γ, it is covered by s j,i,u = s j,i-1,u -1 processes writing x j,i,u = x j,i-1,u . Otherwise, by construction, it is covered by s j,i,u processes writing x j,i,u .

Finally, for u = v, w, since i j=1 I j,i,u s j,i,u additional processes are used to cover base objects r 1 , . . . , r i , at least (k 2 -k + 2)/2 -i =1 i j=1 I j, ,u s j, ,u remaining processes cannot distinguish C i γ from C 0 α i and, thus, these processes must cover r i+1 .

Hence, C i+1 is an (i + 1)-cloning configuration.

Theorem 3 Any anonymous n-process m-valued interval-solo-fast consensus algorithm must have space complexity in Ω(min(√ n, log m/ log log m)) and solo-write complexity Ω(min(√ n, log m/ log log m)). Moreover, if the algorithm is input-oblivious, then the bounds become Ω(√ n).

Proof. Suppose that an anonymous n-process m-valued solo-fast algorithm uses k base objects such that n = k 2 -k + 2. By Lemma 2, there exists a k-cloning configuration C k for some input values v and w. Note that in C k , for each u = v, w, every base object r j , j = 1, . . . , k, is covered by exactly s j,k-1,u = 1 process writing value x j,k-1,u . Also, for each u = v, w,

exactly n/2 -k-1 =1 k-1 j=1 I j, ,u s j, ,u = k-1 j=1 (k -j) = k(k -1)/2 + 1 -k(k -1)/2 =
1 process cannot distinguish the execution from α k-1,u and, thus, this process must cover r k .

For u = v, w (in any order), we let the single process covering r j , j = 1, . . . , k -1 with value x j,k-1,u perform its write. Then we let the single process proposing u and covering r k run solo.

Notice that the process cannot distinguish the execution from α k,u and, thus, it should eventually terminate by outputting value u. In the resulting execution two different input values v and w are decided, implying a contradiction.

Thus, any interval-solo-fast consensus algorithm has a solo execution in which Ω(min(√ n, log m/ log log m)) distinct base objects are written. Moreover, if the algorithm is input-oblivious, then a k-cloning configuration exists for any two values u and w, and the lower bounds become √ n.

Remark 1. Lemma 2 shows that having at least k 2 -k + 2 processes is sufficient to construct a k-cloning configuration and, thus, establish a contradiction. The lower bound can be refined to (k 2 -k)/2 + 2 if we alternate the executions of processes proposing v with the executions of processes proposing w in each iteration of the inductive construction of C k . Indeed, if processes proposing w were the last to execute in the construction of C i , then every base object r j , j = 1, . . . , i -1 stores x j,i-1,w , so in the next iteration, we may run processes proposing w first without the need to use the processes covering r j with x j,i-1,w . This allows us to spare half of the covering processes, implying (k 2 -k)/2 + 2 processes in total, which makes k closer to the upper bound √ 2n we present in the next section. For the sake of simplicity, we chose to show the rougher (but asymptotically equivalent) lower bound.

Optimal interval-solo-fast consensus

In this section we present an algorithm that implements an interval-solo-fast consensus. This algorithm is similar to the splitter-based consensus algorithm in [START_REF] Luchangco | On the uncontended complexity of consensus[END_REF], except that we replace the splitter object with the value-splitter object that we introduce in this paper.

Value-splitters : A splitter provides processes with a single operation split() that returns a boolean response, so that (i) if a process runs solo, it must obtain true and (ii) true is returned to at most one process. A value-splitter exports a single operation split(v) (v ∈ V , for some input domain V) and relaxes property (ii) of splitters by allowing multiple processes to obtain true as long as they have the same input value. More precisely: Definition 4 A value-splitter supports a single operation, split(v), where v ∈ V , that returns a boolean response, and ensures that in every execution:

1. Agreement. If invocations split(v) and split(v) return true, then v = v .

2. Solo execution. If a split(v) operation completes before any other split(v) operation is invoked, then it returns true.

We use a value-splitter object to construct an anonymous consensus algorithm. The algorithm incurs only a constant overhead with respect to the implementation of the value-splitter it uses and is interval-solo-fast assuming that the underlying value-splitter is interval-solo-fast.

Then we describe two anonymous interval-solo-fast implementations of a value-splitter. The first one is input-oblivious and exhibits O(√ n) solo-write and space complexity, regardless of the number m of possible inputs. The second one exhibits complexities O(log m/ log log m), regardless of the number of processes n. The two algorithms provide a matching upper bound to our Ω(min(√ n, log m/ log log m)) lower bound.

4.1 Consensus using value-splitter.

The pseudocode of our consensus algorithm is given in Algorithm 1. The value decided by the consensus is written in a variable D, initially ⊥ / ∈ V . The first steps by a process p are to check if D stores a non-⊥ value and if yes, return this value. Otherwise, the process accesses the value-splitter object V S.

If it obtains true from its invocation of V S.split(v), p writes its input value v in a register F . Then, it reads a register Z to check if some other process has detected contention and if the value of Z is false (no contention) p decides its own value. Before returning the decided value, process p writes it in D. The write primitives on F and D, with a read of Z in between are intended to ensure that either process p detects that some other process is around and resorts to applying a CAS primitive on D, or the contending process adopts the input value of p.

If p obtains false from the value-splitter, it sets Z to true (contention is detected). Recall that this may happen if more than one process accessed the value-splitter, regardless of their input values. Then, p reads register F and, if F stores a non-⊥ value, adopts the value as its current proposal. Finally, it applies the CAS primitive on D with its proposal and decides the value read in D.

Notice that, assuming that the value-splitter is interval-solo-fast, a process running in the absence of interval contention reaches a decision applying only reads and writes. Thus, the only possibility for two different values to be written in D is when one process , say p, applies a CAS in line 12 and updates D with a value v and another process writes v = v in D in line 5.

Note that p must have obtained false from the value-splitter, otherwise it would try to update D with value v. Thus, before applying CAS on D, p has read F in line 10. We establish the contradiction by showing that p must have necessarily read v in F and adopt it as its preferred value (line 10).

By the Agreement property of value-splitters, at most one non-⊥ value can be found in F . Thus, since q has written v to F in line 3, the only possible case is that p reads F before any other process writes to it. But then p has previously set the "contention flag" Z to true in line 9. Therefore, after q writes v in F it must find Z set to true ("contention is detected") and resort to CAS instead of writing in D in line 5-a contradiction.

Lemma 6 (Interval-solo-fast) Any operation that runs in the absence of interval contention applies only reads and writes.

Proof. If a process p invokes its propose operation and finds a non-⊥ value in D, then p returns after having applied a single read on D, so the claim follows.

Otherwise, suppose that p initially finds D = ⊥ and applies the CAS primitive (line 12). We show that there is an operation that overlaps with the propose of p.

By inspecting the pseudo-code, it is easy to see that p applies the CAS primitive only if (1) it has read Z = true (line 4) or (2) it has obtained false from V S. In both cases, by the Solo Execution property of value-splitters, there must be another process q that has invoked V S.split(v) before p has completed its Propose operation.

By the algorithm, before completing its operation, q writes its decided (non-⊥) value in D. Given that p has initially found ⊥ in D, we deduce that the operation of q has not completed before the operation of p has started.

Thus, the two operations overlap. The assumption that the value-splitter is interval-solo-fast and the fact the algorithm contains no loops or waiting statements, implies the claim.

Finally, we use Lemmata 5 and 6 to prove: Theorem 7 If V S is an interval-solo-fast implementation of a value-splitter, then Algorithm 1 implements interval-solo-fast consensus with space complexity O(k) and solo-write complexity O(s), where k is the space complexity and s is the solo-write complexity of V S.

The complexity claims follow directly from the pseudo-code.

Interval-solo-fast value-splitter implementations.

Input-oblivious value-splitter. Algoritm 2 describes our anonymous and input-oblivious implementation of a value-splitter. The algorithm only uses an array R of k registers where k 2 -3k+6 > 2n and is, trivially, interval-solo-fast. Thus, by Theorem 3, the space complexity of the algorithm is asymptotically optimal.

In the algorithm, a process p performing operation split(v) tries to write its input value to registers R[0], . . . , R[k -1]. Each time, before writing to R[i], p reads i + 1 registers to verify that R[0], . . . , R[i -1] store v and R[i] stores the initial value ⊥. If this is not the case, contention is detected and the operation returns false. After the last write to R[k -1], the operation returns true. Note that several processes proposing the same value and executing lock-step may return true.

with only constant space and step complexities [START_REF] Luchangco | On the uncontended complexity of consensus[END_REF], our results exhibits a complexity gap between anonymous and non-anonymous consensus. The proof of our lower bound is based on constructing executions in which no process is aware of interval contention and, thus, the lower bound also applies to abortable [START_REF] Attiya | The complexity of obstruction-free implementations[END_REF][START_REF] Hadzilacos | On deterministic abortable objects[END_REF] consensus algorithms, where operations are allowed to return a specific abort response when interval contention is detected, and be-reinvoked later. An interesting open question is whether a matching abortable consensus algorithm can be found.

Lower bounds for interval-solo-fast consensusIn this section, we consider any n-process anonymous implementation of interval-solo-fast consensus with a set V of input values, |V | = m. We show that the implementation must use Ω(min(√ n, log m/ log log m)) base objects and must have an execution in which some propose operation, running solo, performs Ω(min(√ n, log m/ log log m)) writes. We also show that in the special case when the algorithm is, additionally, input-oblivious the lower bounds become Ω(√ n).

* Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been carried out in the frame of the Investments for the future Programme IdEx Bordeaux-CPU (ANR-10-IDEX-03-02). The third author was supported by the Agence Nationale de la Recherche, under grant agreement N ANR-14-CE35-0010-01, project DISCMAT.

In the following we prove that Algorithm 1 indeed implements interval-solo-fast consensus, assuming that V S is an interval-solo-fast implementation of a value-splitter. We show that such implementations exist in the next subsection.

Proofs of Algorithm 1

Lemma 5 (Agreement) No two processes return different values.

Proof. Given that only values written to D can be returned, it is sufficient to show that at most one value can be written in D.

By the algorithm D is updated in lines 12 and 5. Note that, since a CAS succeeds in updating the value of D in line 12 only if D stores ⊥ and, since D is updated with a non-⊥ value in V , at most one process may succeed. D is updated at line 5 only if the corresponding process obtains true from the value-splitter. By the Agreement property of value-splitters, at most one distinct value can be written in D in line 5. Algorithm 2: Anonymous and input-oblivious value-splitter Note also that the solo-write complexity of Algorithm 2 is k = O(√ n). Since, for i = 1 to k, in the ith iteration, a process reads i registers, the algorithm also has optimal step complexity of O(n) [START_REF] Aspnes | Tight bounds for adopt-commit objects[END_REF].

Between the two read operations p j has written C' is the first configuration that follows the read R[i+1]=? by p and q : R[i+1]=? p writes in R[i] before reads in R[j] : R[i]≠? The following lemma will be instrumental in showing that Algorithm 2 satisfies the Agreement property of value-splitters.

Lemma 8 If an execution E, two processes p and q write in R[i] and R[i+1] for some 0 < i < k -1, two different values v and w, then there is a set P i of at least i processes (different from p and q) and the following conditions are satisfied: (1) at the configuration that immediately succeeds the last write operation executed by processes in

and each process in P i executes exactly one write operation after C.

Proof. Fix an i such that 0 < i < k -1 and let p and q be two processes that write, respectively, values v and w in both

By the pseudocode of Algorithm 2, before writing in

, and the value it reads from R[j] is its input value for 0 ≤ j ≤ i and the initial value for j = i + 1.

Consider the sequences of read operations executed by p and q, respectively, after their write in R[i] and before writing in R[i + 1]. Let C be the configuration immediately after both p and q perform their reads of R[i + 1] that return ⊥ in E. By the algorithm, writes in R[i + 1] by both p and q follow C in E.

Also, since for each j = 0, . . . , i -1 p reads v in R[j] and q reads w in R[j], there is a process p j that has written in R[j] between these two read operations. We show that this is the last write of p j . Indeed, before performing the next write (on R[j + 1]), p j reads all registers and in particular it will read R[i], where i > j. Since the write by p j follows the read on R[j] either by process p or by process q, it follows the write into R[i] by the corresponding process. Thus, in the configuration immediately before the write into R[j] by p j we have R[i] = ⊥. The check in line 8 implies that p j cannot write to any register after R[j]. Note that p j must be different from p and q: otherwise, we contradict the fact that both p and q write in R[i], i > j.

Finally, since the last write operation of p j preceeds configuration C , at the configuration immediately after this write R[i + 1] stores the initial value. This is illustrated in Figure 1 for the case when p reads R[j] before q. Moreover, for each j, ∈ {0, 1, . . . i -1} with j = , p j = p l . Thus, the set P i of i processes p j , j = 1, . . . , i-1, satisfies the two conditions of the lemma.

Lemma 9 (Agreement)

There is at most one value v such that split(v) returns true.

Proof. Suppose, by contradiction, that split(v) invoked by process p and split(w) invoked by process q both return true with v = w. Recall that a process has to write its input value in all the registers to return true. Then for each 0 ≤ i ≤ k -1, p and q have written in register R[i] the value v and w respectively. For each i = 1, . . . k -2, let P i be the i processes, as defined in Lemma 8.

Consider any two set P i , P j , 0 < i < j < k -1. We show that P i ∩ P j = ∅. Indeed, by the definition of P i , in the configuration when the processes in P i have completed all their writes, R[i+1] stores ⊥ and, by the algorithm, since j > i, R[j] also stores ⊥. But, by the definition of P j , each process in P j has executed a write operation after a configuration where R[j] = ⊥. Thus, P i and P j are disjoint.

Recall p and q write to R[k -1] and, thus, do not belong to ∪ k-2 i=1 P i . Hence, we have at least

processes in total, which contradicts the hypothesis that k 2 -3k+6 > 2n.

Theorem 10 Algorithm 2 is an interval-solo-fast anonymous input-oblivious implementation of a value-splitter with solo-write and space complexities in O(√ n).

Proof. Since only read-write registers are used, the algorithm is trivially interval-solo-fast. By Lemma 9, the algorithm satisfies the Agreement property of value-splitters. We prove in the following that the Solo execution property is also satisfied. Consider any solo execution E in which a split(v) by a process p completes and suppose, by contradiction, that the operation returns f alse. By inspecting the pseudocode, it is easy to see that the value of Lastwritten is equal to the index of the last register p wrote or to -1 if no such writes exists. To return f alse p has either read a value different from its input (line 5) or a value different from ⊥ in a register p has not yet written (line 8). But this contradicts the fact that E is a solo execution. Thus, the algorithm satisfies the Solo-Execution property of value-splitters.

Non-input-oblivious value-splitter. For completeness, we briefly describe an anonymous valuesplitter algorithm based on earlier work [START_REF] Aspnes | Tight bounds for adopt-commit objects[END_REF] that exhibits O(log m/ log log m) complexity.

A trivial adaptation of the weak conflict-detector proposed in [START_REF] Aspnes | Tight bounds for adopt-commit objects[END_REF] implements an intervalsolo-fast value-splitter. A weak conflict-detector exports a single operation check(v) with an input v and return true (conflict is detected) or false (no conflict is detected). If no two operations are invoked with different inputs, then no operation returns true, otherwise, at least one operation returns false.

Our value-splitter implementation presented in Algorithm 3 is obtained by the weak conflictdetector algorithm in [START_REF] Aspnes | Tight bounds for adopt-commit objects[END_REF], where the output is determined as the negation of the outcome of the weak conflict-detector.

Shared variables:

Registers R[1..k], initially ⊥ Procedure: split(v)

5 end 6 return true; Algorithm 3: Non-input-oblivious value-splitter The algorithm uses an array R of k registers, where k! = m. Each input value v of a split operation determines a unique permutation π v of the registers in that is used as the order in which the processes access the registers. Therefore, the algorithm is not input-oblivious. In its i-th access, a process executing split(v) first reads register R[π v (i)]; if ⊥ is read, the process writes v to it; If a value v = v is read, it returns false (contention is detected). If the process succeeds in writing v in all registers prescribed by π v , it returns true. The algorithm is also trivially anonymous and interval-solo-fast. Proof. If an operation split(v) runs solo, then no value other than v can be found in any R[π v (i)] (line 2). Thus the Solo Execution property is ensured.

Suppose, by contradiction, that two operations, split(v), performed by p v , and split(v), performed by p v , return true. Let j, be two indexes in {1, . . . , k} such that j appears before in π v but appears before j in π v . By the algorithm, before returning true, p v and p v have read, respectively, v and v in both R[j] and R[].

Without loss of generality, let v be written to R[j] before v is written to R[]. By the algorithm, before any process performing split(v) reads R[j] in line 2 (and, thus, writes v to R[j] in line 3), v has been written to R[], and, by the assumption, v has been written to R[j]. Hence, the process will not find ⊥ in R[j] and will not write to R[]-a contradiction. Therefore, the algorithm satisfies the Agreement property of a value-splitter.

Since every operation performs k writes and k reads, where k! = m, the step and space complexities of the algorithm are O(log m/ log log m).

Concluding remarks

In this paper, we present matching lower and upper bounds Θ(min(√ n, log m/ log log m)) on the space and solo-write complexity of anonymous interval-solo-fast consensus, which appears to be the first non-trivial tight bound for consensus. Given non-anonymous algorithms can be achieved