
HAL Id: hal-01180864
https://hal.science/hal-01180864

Submitted on 28 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Uncontended Complexity of Anonymous
Consensus

Claire Capdevielle, Colette Johnen, Petr Kuznetsov, Alessia Milani

To cite this version:
Claire Capdevielle, Colette Johnen, Petr Kuznetsov, Alessia Milani. On the Uncontended Complexity
of Anonymous Consensus. [Research Report] University of Bordeaux LaBRI, UMR 5800, F-33400
Talence, France Telecom ParisTech. 2015. �hal-01180864�

https://hal.science/hal-01180864
https://hal.archives-ouvertes.fr

On the Uncontended Complexity of Anonymous Consensus∗

Claire Capdevielle1 Colette Johnen1 Petr Kuznetsov2

Alessia Milani1

1Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

2 Télécom ParisTech

Abstract

Consensus is one of the central distributed abstractions. By enabling a collection of processes
to agree on one of the values they propose, consensus can be used to implement any generic
replicated service in a consistent and fault-tolerant way.

In this paper, we study uncontended complexity of anonymous consensus algorithms, counting
the number of memory locations used and the number of memory updates performed in operations
that encounter no contention. We assume that contention-free operations on a consensus object
perform “fast” reads and writes, and resort to more expensive synchronization primitives, such
as CAS, only when contention is detected. We call such concurrent implementations interval-
solo-fast and derive the first nontrivial tight bounds on space complexity of anonymous interval-
solo-fast consensus.

1 Introduction

Consensus is one of the central distributed abstractions. By enabling a collection of processes to
agree on one of the values they propose, consensus can be used to implement any generic replicated
service in a consistent and fault-tolerant way. Therefore, complexity of consensus implementations
has become one of the most important topics in the theory of distributed computing.

It is known that consensus cannot be solved in an asynchronous read-write shared memory sys-
tem in a deterministic and fault-tolerant way [6,14]. The difficulty stems from handling contended
executions. One way to circumvent this impossibility is to only guarantee progress (using reads
and writes) in executions meeting certain conditions, e.g., in the absence of contention. Alterna-
tively, a process is guaranteed to decide in the wait-free manner, but stronger (and more expensive)
synchronization primitives, such as compare-and-swap, can be applied in the presence of contention.

We are interested in consensus algorithms in which a propose operation is allowed to apply
primitives other than reads and writes on the base objects only in the presence of interval contention,
i.e., when another propose operation is concurrently active. These algorithms are called interval-
solo-fast.

∗Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been carried out in
the frame of the Investments for the future Programme IdEx Bordeaux- CPU (ANR-10-IDEX-03-02). The third author
was supported by the Agence Nationale de la Recherche, under grant agreement N ANR-14-CE35-0010-01, project
DISCMAT.

Ideally, interval-solo-fast algorithms should have an optimized behavior in uncontended execu-
tions. It appears therefore natural to explore the uncontended complexity of consensus algorithms:
how many memory operations (reads and writes) can be performed and how many distinct memory
locations can be accessed in the absence of interval contention?

In general, interval-solo-fast consensus can be solved with only constant uncontended complex-
ity [15]. We therefore restrict our study to anonymous consensus algorithms, i.e., algorithms not
using process identifiers and, thus, programming all processes identically. Besides intellectual cu-
riosity, practical reasons to study anonymous algorithms in the shared memory model are discussed
in [8].

Our results. On the lower-bound side, we show that any anonymous interval-solo-fast consensus
algorithm exhibits non-trivial uncontended complexity that depends on n, the number of processes,
and m, where m is the size of the set V of input values that can be proposed. More precisely, we show
that, in the worst case, a propose operation running solo, i.e., without any other process invoking
propose, must write to Ω(min(

√
n, logm/ log logm)) distinct memory locations. This metrics, which

we call solo-write complexity, is upper-bounded by step complexity of the algorithm, i.e., the worst-
case number of all base-object primitives applied by an individual operation. In the special case of
input-oblivious algorithms, where the sequence of memory locations written in a solo execution does
not depend on the input value, we derive a stronger lower bound of Ω(

√
n) on solo-write complexity.

Our proof only requires the algorithm to ensure that operations terminate in solo executions, so the
lower bounds also hold for abortable [2, 9] and obstruction-free [11] consensus implementations.

On the positive side, we show that our lower bound is tight. Our matching consensus algorithm
is based on our novel value-splitter abstraction, extending the classical splitter mechanism [4,13,16],
interesting in its own right. Informally, a value-splitter exports a single operation split that takes a
value in a value set V as a parameter and returns a boolean response so that (1) if split(v) completes
before any other split operation starts, then it returns true, and (2) all processes that obtain true
proposed the same value.

We describe a simple transformation of a value-splitter into anonymous and interval-solo-fast
consensus, using the classical splitter-based algorithm and incurring constant overhead with re-
spect to the value-splitter complexity [15]. Then, we present two value-splitter read-write im-
plementations that combined with the consensus algorithm provide the matching upper bound
O(min(

√
n, logm/ log logm)).

The first one is a novel anonymous and input-oblivious implementation of a value-splitter that
exhibits O(

√
n) space and solo-write complexity.

The second one is not input-oblivious, and is a slight modification os the weak conflict detector
proposed in [1], exhibiting O(logm/ log logm) space and step complexity.

Our results are summarized in Table 1. It is interesting to notice that the step complexities
are O(n) for the first algorithm and O(logm/ log logm) for the second one. Aspnes and Ellen [1]
showed that any anonymous consensus protocol has to execute Ω(min(n, logm/ log logm)) steps in
solo executions. Thus, our consensus algorithms have also asympotically optimal step complexity.

Overall, our results imply the first nontrivial tight lower bound on the space complexity for
consensus known so far. Our results also show that there is an inherent gap between anonymous
and non-anonymous consensus algorithms: non-anonymous consensus has constant uncontended
complexity [15].

Related work. The idea of optimizing concurrent algorithms for uncontended executions was
suggested by Lamport in his fast mutual exclusion algorithm [13].

Fich et al. [5] have shown that any obstruction-free read-write (non-anonymous) consensus pro-
tocol must use Ω(

√
n) memory locations. Attiya et al. [2] showed that any step-solo-fast (where

operations only apply reads and writes in the absence of interleaving steps) either use O(
√
n) space

2

Input-oblivious Not input-oblivious

Ω(
√
n) Ω(min(

√
n, logm

log logm))

O(
√
n) if

√
n ≤ logm

log logm , O(
√
n) if

√
n ≥ logm

log logm , O(logm
log logm) [1, 15]

Table 1: Space and solo-write complexity for anonymous interval-solo-fast consensus

or incur O(
√
n) memory stalls per operation. No obstruction-free or step-solo-fast algorithm match-

ing these lower bounds is known so far: existing algorithms typically expose O(n) space complexity.
The proofs of these lower bounds cannot be used to derive complexity of solo executions.

Our value-splitter abstraction is inspired by the splitter mechanism in [4,16], originally suggested
by Lamport [13]. Differently from the original splitter object, more than one process can return
true but all these processes have the same input value. The novel input-oblivious value-splitter
implementation we present is inspired by the obstruction-free leader election algorithm recently
proposed by Giakkoupis et al. [7].

Bouzid et al. [3] presented an anonymous consensus algorithm with asymptotically optimal solo
write and step complexity. But it relies on a failure detector (can be transformed into obstruction-free
though) and requires unbounded space.

Roadmap. The rest of the paper is organized as follows. We give preliminary definitions in
Section 2. We present our lower bound in Section 3 and our upper bound in Section 4. We conclude
the paper in Section 5.

2 Preliminaries

The model of computation. We consider a standard asynchronous shared-memory model in
which n > 1 processes communicate by applying atomic (or linearizable [12]) primitive operations
on shared variables, called base objects. We assume every base object maintains a state and exports a
subset of the Read, Write and Compare-And-Swap (CAS) primitives. The primitive Read(R) returns
the value of R, and Write(R, v) sets the state of R to v. The primitive CAS(R, e, v) checks if the
state of R is e and, if so, sets the state of R to v and returns true; otherwise, the state remains
unchanged and false is returned. A register is a base object that exports only the Read and Write
primitives.

Algorithms and executions. To implement a (high-level) object from a set of base objects,
processes follow an algorithm. To avoid confusion between the base objects and the implemented
one, we reserve the term operation for the object being implemented and we call primitives the
operations on base objects. We say that an operation is performed on a high-level object and that
a primitive is applied to a base object.

Each process has a local state that consists of the values stored in its local variables and a
programme counter. A computation of the system proceeds in steps of an algorithm performed by
the processes. Each step is one of the following: (1) an invocation of a high-level operation, (2) a
primitive operation on a base object, (3) local computation that results in a change of a process’s
state, or (4) a response of a (high-level) operation. All steps may update the local state of the
process that performs it. A configuration specifies the state of each base object and the local state
of each process at one moment. In an initial configuration, all base objects have the initial values
specified by the algorithm and all processes are in their initial states.

A process is active if an operation has been invoked on the process but the operation has not yet

3

produced a matching response; otherwise the process is called idle. We assume that an operation can
only be invoked on an idle process and only active processes take steps. A configuration is quiescent
if every process is idle in it.

An execution fragment of an algorithm is a (possibly infinite) sequence C1, φ1, . . . , Ci, φi, . . .
of configurations alternating with steps, where each step is the application of a primitive φi to
configuration Ci resulting in configuration Ci+1. For any finite execution fragment α ending with
configuration C and any execution fragment α′ starting at C, the execution αα′ is the concatenation
of α and α′; in this case α′ is called an extension of α. An execution is an execution fragment
starting from the initial configuration C0.

In an infinite execution, a process is correct if it takes an infinite number of steps or is idle from
some point on. Otherwise, the process is called crashed.

In a solo execution, only one process takes steps. An operation invoked by a process in a given
execution is completed if its invocation is followed by a matching response. An operation invoked a
process p in an execution E is uncontended if no process other than p is active between its invocation
and response steps. We also say that p executes its operation in absence of interval contention.

Finally, we say that an operation executes in the absence of step contention if all the steps of
the operation are contiguous in the execution.

Consensus. The consensus object exports one operation propose(v), where v is an input taken
from some domain V (|V | ≥ 2). The output values must satisfy the following properties:

• Agreement : all output values are the same

• Validity : Every output value is one of the input values.

Properties of algorithms. An algorithm is wait-free if in every execution, each correct process
completes each its operation in a finite number of its own steps [10].

A wait-free algorithm is interval-solo-fast if, in absence of interval contention, a process only
applies Read and Write primitives. A wait-free algorithm is step-solo-fast [2] if a process is allowed
to apply only Reads and Writes in the absence of step contention.

An algorithm is input-oblivious if a process accesses the same sequence of base objects in any
solo execution of the algorithm, regardless of its input.

An algorithm is anonymous if it does not use process identifiers and is the same for all processes.
In this paper we are concerned with two complexity metrics: space complexity, i.e., the number

of base objects an algorithm uses, and solo-write complexity, i.e., the maximal number of writes
performed in a solo execution of a single operation of an algorithm, taken over all possible input
values. Note that solo-write complexity is upper-bounded by the step complexity of the algorithm,
i.e., the number of base-object accesses a single operation may perform.

3 Lower bounds for interval-solo-fast consensus

In this section, we consider any n-process anonymous implementation of interval-solo-fast con-
sensus with a set V of input values, |V | = m. We show that the implementation must use
Ω(min(

√
n, logm/ log logm)) base objects and must have an execution in which some propose oper-

ation, running solo, performs Ω(min(
√
n, logm/ log logm)) writes.

We also show that in the special case when the algorithm is, additionally, input-oblivious the
lower bounds become Ω(

√
n).

4

Overview. By the way of contradiction, assume that there exists an interval-solo-fast anonymous
consensus algorithm in which a set of at most k base objects are written in any solo execution, where
k < min(

√
n, fact−1(m)). Here fact−1 is the inverse of the factorial function fact(m) = m!. Recall

that fact−1(m) = Θ(logm/ log logm).
We are going to show that the algorithm has an execution in which two processes decide two

different values. In executions we are going to iteratively construct, no process encounters interval
contention and, thus, no process applies primitives other than Read and Write primitives.

Let C0 be the initial configuration of an interval-solo-fast consensus algorithm and let αu denote
the execution in which a process, starting from C0, invokes propose(u) and runs solo and until the
operation completes. Since the algorithm is anonymous, αu does not depend on the process identifier.

Since k < fact−1(m), we have k! < m and, thus, there must be two values v and w such that the
sequences of base objects written in αv and αw, in the order of the times they are first written, are
identical. (In an input-oblivious protocol, v and w can be any two distinct values, regardless of the
relation between m and k.) Let us denote this sequence by r1, . . . , rk.

To construct the desired execution with different decided values and establish a contradiction,
we assume that half of the processes propose v and the other half propose w. In each iteration of the
construction, we “wake up” a subset of the processes in each of the two halves and let them run as
clones, i.e., run them lock-step so that they ignore the presence of each other, until they are about
to write to not previously written base object for the first time. On the way, we carefully maintain
the invariant that each previously written base object is covered by enough processes (the processes
are about to write to it) in each of the two halves so that, in the subsequent iteration, we can extend
the execution in a way that “enough” processes cannot distinguish it from a solo run.

Using the assumption k <
√
n, we ensure that at the end of the kth iteration, we have at least

one process pi proposing v and at least one process pj proposing w, and both pi and pj believe that
they run solo. Moreover, each of the k base objects r1, . . . , rk is covered by at least one process
proposing v and at least one process proposing w. This way, we can extend the execution so that
both pi and pj run until completion, without being able to detect contention, and, thus, deciding v
and w, respectively.

Notation. We now introduce some instrumental notions and definition.
For u = v, w, 1 ≤ i ≤ k, let αi,u denote the longest prefix of αu in which all writes are on base

objects in {r1, . . . , ri}. Let α0,u denote the longest prefix of αu in which no writes takes place. Thus,
the next event of αu immediately after αi,u is a write on ri+1 for all 0 ≤ i ≤ k − 1 and αk,u = αu.

For j = 1, . . . , k, let xj,i,u denote the value of rj in the configuration after αi,u. Recall that for
j = i+ 1, . . . , k, no write on rj takes place in αi,u and, thus, xj,i,u is the initial value of rj .

For i, j = 1, . . . , k and u = v, w, let Ij,i,u be a binary indicator that rj is written in αi,u after the
last event of αi−1,u. Note that Ii,i,u = 1 for all i = 1, . . . , k, and Ij,i,u = 0 for all 1 ≤ i < j ≤ k.

For 1 ≤ i, j < k, let sj,i,u = min{` > i|` = k ∨ Ij,`,u = 1} − i is 1 plus the maximal number
of consecutive prefixes αt,u such that i < t < k and rj is not written in αt,u after the last event of
αt−1,u. Clearly, sj,i,u ≥ 1 and sj,k−1,u = 1, for all i, j = 1, . . . , k − 1. Also, it is easy to check that∑k−1

i=1 Ij,i,usj,i,u = k − j for all j = 1, . . . , k − 1. Thus,
∑k−1

`=1

∑k−1
j=1 Ij,`,usj,`,u = (k2 − k)/2.

Definition 1 A configuration Ci is called i-cloning, 1 ≤ i ≤ k, if it satisfies the following conditions:

• For each u = v, w, j = 1, . . . , i− 1, rj is covered by sj,i−1,u processes writing xj,i−1,u.

• For each u = v, w, there are at least (k2 − k + 2)/2 −
∑i−1

`=1

∑i−1
j=1 Ij,`,usj,`,u processes that do

not distinguish the execution from αi−1,u and, thus, cover base object ri.

5

• Each base object in {ri, . . . , rk} stores the initial value.

Lemma 2 The algorithm has a k-cloning configuration.

Proof. By induction on k, we construct a k-cloning configuration starting from the initial configu-
ration C0.

We divide the processes into two groups and of size (k2 − k + 2)/2 where every process in one
group proposes value v and every process in the other group proposes value w.

Base case. Let γ be the execution, starting at C0, in which the processes run solo, one by one,
until they are about to write to base object r1 for the first time. It is easy to see that, since no process
writes in γ, C1 = C0γ is a 1-cloning configuration. Indeed, half of the processes cannot distinguish
C0γ from α0,v and the other half from α0,w, and all base objects are in their initial states.
As an induction hypothesis, consider an i-cloning configuration Ci, for some 1 ≤ i < k.

Take u = v, w (in that order). For each j = 1, . . . , i − 1, we let one of the processes covering rj
with xj,i−1,u to complete its write. By the induction hypothesis, there are at least sj,i−1,u ≥ 1 such
processes.

Then we wake up (k2 − k + 2)/2 −
∑i−1

j=1

∑i−1
`=1 Ij,`,usj,`,u processes that cannot distinguish the

execution from αi−1,u and run them lock-step (without noticing each other) until they are about
to perform their write on ri+1. This execution exists, since no such process can distinguish the
execution from αi,u. If αi,u contains a write on some rm, m = 1, . . . , i, after the last event of
αi−1,u, then sm,i,u of these processes are stopped just before they perform the last write on rm
in αi+1,u. This can be done because Im,i,u = 1 for every such m and

∑i
`=1

∑i−1
j=1 Ij,`,usj,`,u ≤∑k−1

`=1

∑i−1
j=1 Ij,`,usj,`,u = (k2 − k)/2 < n/2. Let γ be the resulting extension of Ci and Ci+1 = Ciγ

be the resulting configuration. Notice that all base objects in {ri+1, . . . , rk} store the initial value in
Ci+1.

Consider any j = 1, . . . , i and u = v, w. If rj is not written in αi+1,u, then, by the induction
hypothesis and the construction of γ, it is covered by sj,i,u = sj,i−1,u − 1 processes writing xj,i,u =
xj,i−1,u. Otherwise, by construction, it is covered by sj,i,u processes writing xj,i,u.

Finally, for u = v, w, since
∑i

j=1 Ij,i,usj,i,u additional processes are used to cover base objects

r1, . . . , ri, at least (k2− k+ 2)/2−
∑i

`=1

∑i
j=1 Ij,`,usj,`,u remaining processes cannot distinguish Ciγ

from C0αi and, thus, these processes must cover ri+1.
Hence, Ci+1 is an (i+ 1)-cloning configuration. �

Theorem 3 Any anonymous n-process m-valued interval-solo-fast consensus algorithm
must have space complexity in Ω(min(

√
n, logm/ log logm)) and solo-write complexity

Ω(min(
√
n, logm/ log logm)). Moreover, if the algorithm is input-oblivious, then the bounds

become Ω(
√
n).

Proof. Suppose that an anonymous n-process m-valued solo-fast algorithm uses k base objects such
that n = k2 − k + 2.

By Lemma 2, there exists a k-cloning configuration Ck for some input values v and w. Note that
in Ck, for each u = v, w, every base object rj , j = 1, . . . , k, is covered by exactly sj,k−1,u = 1 process

writing value xj,k−1,u. Also, for each u = v, w, exactly n/2−
∑k−1

`=1

∑k−1
j=1 Ij,`,usj,`,u =

∑k−1
j=1(k− j) =

k(k− 1)/2 + 1− k(k− 1)/2 = 1 process cannot distinguish the execution from αk−1,u and, thus, this
process must cover rk.

For u = v, w (in any order), we let the single process covering rj , j = 1, . . . , k − 1 with value
xj,k−1,u perform its write. Then we let the single process proposing u and covering rk run solo.

6

Notice that the process cannot distinguish the execution from αk,u and, thus, it should eventually
terminate by outputting value u. In the resulting execution two different input values v and w are
decided, implying a contradiction.

Thus, any interval-solo-fast consensus algorithm has a solo execution in which
Ω(min(

√
n, logm/ log logm)) distinct base objects are written. Moreover, if the algorithm is

input-oblivious, then a k-cloning configuration exists for any two values u and w, and the lower
bounds become

√
n. �

Remark 1. Lemma 2 shows that having at least k2 − k + 2 processes is sufficient to construct a
k-cloning configuration and, thus, establish a contradiction. The lower bound can be refined to
(k2−k)/2+2 if we alternate the executions of processes proposing v with the executions of processes
proposing w in each iteration of the inductive construction of Ck. Indeed, if processes proposing
w were the last to execute in the construction of Ci, then every base object rj , j = 1, . . . , i − 1
stores xj,i−1,w, so in the next iteration, we may run processes proposing w first without the need to
use the processes covering rj with xj,i−1,w. This allows us to spare half of the covering processes,
implying (k2−k)/2 + 2 processes in total, which makes k closer to the upper bound

√
2n we present

in the next section. For the sake of simplicity, we chose to show the rougher (but asymptotically
equivalent) lower bound.

4 Optimal interval-solo-fast consensus

In this section we present an algorithm that implements an interval-solo-fast consensus. This
algorithm is similar to the splitter-based consensus algorithm in [15], except that we replace the
splitter object with the value-splitter object that we introduce in this paper.

Value-splitters : A splitter provides processes with a single operation split() that returns a
boolean response, so that (i) if a process runs solo, it must obtain true and (ii) true is returned
to at most one process. A value-splitter exports a single operation split(v) (v ∈ V , for some input
domain V) and relaxes property (ii) of splitters by allowing multiple processes to obtain true as long
as they have the same input value. More precisely:

Definition 4 A value-splitter supports a single operation, split(v), where v ∈ V , that returns a
boolean response, and ensures that in every execution:

1. Agreement. If invocations split(v) and split(v′) return true, then v = v′.

2. Solo execution. If a split(v) operation completes before any other split(v′) operation is in-
voked, then it returns true.

We use a value-splitter object to construct an anonymous consensus algorithm. The algorithm
incurs only a constant overhead with respect to the implementation of the value-splitter it uses and
is interval-solo-fast assuming that the underlying value-splitter is interval-solo-fast.

Then we describe two anonymous interval-solo-fast implementations of a value-splitter. The
first one is input-oblivious and exhibits O(

√
n) solo-write and space complexity, regardless of the

number m of possible inputs. The second one exhibits complexities O(logm/ log logm), regard-
less of the number of processes n. The two algorithms provide a matching upper bound to our
Ω(min(

√
n, logm/ log logm)) lower bound.

4.1 Consensus using value-splitter.

The pseudocode of our consensus algorithm is given in Algorithm 1. The value decided by the
consensus is written in a variable D, initially ⊥ /∈ V . The first steps by a process p are to check if D

7

stores a non-⊥ value and if yes, return this value. Otherwise, the process accesses the value-splitter
object V S.

If it obtains true from its invocation of V S.split(v), p writes its input value v in a register F .
Then, it reads a register Z to check if some other process has detected contention and if the value
of Z is false (no contention) p decides its own value. Before returning the decided value, process
p writes it in D. The write primitives on F and D, with a read of Z in between are intended to
ensure that either process p detects that some other process is around and resorts to applying a CAS
primitive on D, or the contending process adopts the input value of p.

If p obtains false from the value-splitter, it sets Z to true (contention is detected). Recall that
this may happen if more than one process accessed the value-splitter, regardless of their input values.
Then, p reads register F and, if F stores a non-⊥ value, adopts the value as its current proposal.
Finally, it applies the CAS primitive on D with its proposal and decides the value read in D.

Notice that, assuming that the value-splitter is interval-solo-fast, a process running in the absence
of interval contention reaches a decision applying only reads and writes.

Shared variables:
D, F , initially ⊥
Z, initially false
value-splitter V S

Procedure: propose(v)
1 if (t := Read(D)) 6= ⊥ then return t
2 if VS.split(v) then
3 Write(F, v);
4 if ¬Z then
5 Write(D, v);
6 return v

7 end

8 else
9 Write(Z, true);

10 if (t := Read(F)) 6= ⊥ then v := t;

11 end
12 CAS(D,⊥, v);
13 res := Read(D);

14 return res

Algorithm 1: Interval-solo-fast consensus

In the following we prove that Algorithm 1 indeed implements interval-solo-fast consensus, as-
suming that V S is an interval-solo-fast implementation of a value-splitter. We show that such
implementations exist in the next subsection.

Proofs of Algorithm 1

Lemma 5 (Agreement) No two processes return different values.

Proof. Given that only values written to D can be returned, it is sufficient to show that at most
one value can be written in D.

By the algorithm D is updated in lines 12 and 5. Note that, since a CAS succeeds in updating
the value of D in line 12 only if D stores ⊥ and, since D is updated with a non-⊥ value in V , at
most one process may succeed. D is updated at line 5 only if the corresponding process obtains true
from the value-splitter. By the Agreement property of value-splitters, at most one distinct value can
be written in D in line 5.

8

Thus, the only possibility for two different values to be written in D is when one process , say
p, applies a CAS in line 12 and updates D with a value v and another process writes v′ 6= v in D in
line 5.

Note that p must have obtained false from the value-splitter, otherwise it would try to update
D with value v. Thus, before applying CAS on D, p has read F in line 10. We establish the
contradiction by showing that p must have necessarily read v′ in F and adopt it as its preferred
value (line 10).

By the Agreement property of value-splitters, at most one non-⊥ value can be found in F .
Thus, since q has written v′ to F in line 3, the only possible case is that p reads F before any
other process writes to it. But then p has previously set the “contention flag” Z to true in line 9.
Therefore, after q writes v′ in F it must find Z set to true (“contention is detected”) and resort to
CAS instead of writing in D in line 5—a contradiction. �

Lemma 6 (Interval-solo-fast) Any operation that runs in the absence of interval contention ap-
plies only reads and writes.

Proof. If a process p invokes its propose operation and finds a non-⊥ value in D, then p returns
after having applied a single read on D, so the claim follows.

Otherwise, suppose that p initially finds D = ⊥ and applies the CAS primitive (line 12). We
show that there is an operation that overlaps with the propose of p.

By inspecting the pseudo-code, it is easy to see that p applies the CAS primitive only if (1) it
has read Z = true (line 4) or (2) it has obtained false from V S. In both cases, by the Solo Execution
property of value-splitters, there must be another process q that has invoked V S.split(v) before p
has completed its Propose operation.

By the algorithm, before completing its operation, q writes its decided (non-⊥) value in D. Given
that p has initially found ⊥ in D, we deduce that the operation of q has not completed before the
operation of p has started.

Thus, the two operations overlap. The assumption that the value-splitter is interval-solo-fast
and the fact the algorithm contains no loops or waiting statements, implies the claim. �

Finally, we use Lemmata 5 and 6 to prove:

Theorem 7 If V S is an interval-solo-fast implementation of a value-splitter, then Algorithm 1
implements interval-solo-fast consensus with space complexity O(k) and solo-write complexity O(s),
where k is the space complexity and s is the solo-write complexity of V S.

The complexity claims follow directly from the pseudo-code.

4.2 Interval-solo-fast value-splitter implementations.

Input-oblivious value-splitter. Algoritm 2 describes our anonymous and input-oblivious imple-
mentation of a value-splitter. The algorithm only uses an array R of k registers where k2−3k+6 > 2n
and is, trivially, interval-solo-fast. Thus, by Theorem 3, the space complexity of the algorithm is
asymptotically optimal.

In the algorithm, a process p performing operation split(v) tries to write its input value to
registers R[0], . . . , R[k − 1]. Each time, before writing to R[i], p reads i + 1 registers to verify that
R[0], . . . , R[i − 1] store v and R[i] stores the initial value ⊥. If this is not the case, contention is
detected and the operation returns false. After the last write to R[k−1], the operation returns true.
Note that several processes proposing the same value and executing lock-step may return true.

9

Shared variables:
Array of registers R[0 . . . k − 1] with k2 − 3k + 6 > 2n. Initially ⊥
Procedure: split(v)

1 Lastwritten := −1;
2 while (Lastwritten ≤ k − 1) do
3 i := 0;
4 while (i ≤ Lastwritten) do
5 if Read(R[i]) 6= v then return false
6 i+ +;

7 end
8 if Read(R[Lastwritten + 1]) 6= ⊥ then return false;
9 Lastwritten + +;

10 Write(R[Lastwritten], v);

11 end
12 return true;

Algorithm 2: Anonymous and input-oblivious value-splitter

Note also that the solo-write complexity of Algorithm 2 is k = O(
√
n). Since, for i = 1 to k,

in the ith iteration, a process reads i registers, the algorithm also has optimal step complexity of
O(n) [1].

time line

q reads w from R[j]p reads v from R[j]p writes v into R[i]

p
j
 writes w into R[j]

C'

Between the two read operations p
j
 has written

C' is the first configuration that follows the read R[i+1]=? by p and q : R[i+1]=?

p writes in R[i] before reads in R[j] : R[i]≠?

Figure 1: Execution for Lemma 8, assuming that p reads R[j] before q

The following lemma will be instrumental in showing that Algorithm 2 satisfies the Agreement
property of value-splitters.

Lemma 8 If an execution E, two processes p and q write in R[i] and R[i+1] for some 0 < i < k−1,
two different values v and w, then there is a set Pi of at least i processes (different from p and q)
and the following conditions are satisfied: (1) at the configuration that immediately succeeds the last
write operation executed by processes in Pi, R[i + 1] = ⊥; (2) E passes through a configuration C
such that R[i] 6= ⊥ in C and each process in Pi executes exactly one write operation after C.

Proof. Fix an i such that 0 < i < k − 1 and let p and q be two processes that write, respectively,
values v and w in both R[i] and R[i+ 1], where v 6= w.

By the pseudocode of Algorithm 2, before writing in R[i+1], a process reads R[0], R[1], . . . R[i+1],
and the value it reads from R[j] is its input value for 0 ≤ j ≤ i and the initial value for j = i+ 1.

Consider the sequences of read operations executed by p and q, respectively, after their write
in R[i] and before writing in R[i + 1]. Let C ′ be the configuration immediately after both p and q

10

perform their reads of R[i + 1] that return ⊥ in E. By the algorithm, writes in R[i + 1] by both p
and q follow C ′ in E.

Also, since for each j = 0, . . . , i− 1 p reads v in R[j] and q reads w in R[j], there is a process pj
that has written in R[j] between these two read operations. We show that this is the last write of
pj . Indeed, before performing the next write (on R[j + 1]), pj reads all registers and in particular
it will read R[i], where i > j. Since the write by pj follows the read on R[j] either by process p or
by process q, it follows the write into R[i] by the corresponding process. Thus, in the configuration
immediately before the write into R[j] by pj we have R[i] 6= ⊥. The check in line 8 implies that pj
cannot write to any register after R[j]. Note that pj must be different from p and q: otherwise, we
contradict the fact that both p and q write in R[i], i > j.

Finally, since the last write operation of pj preceeds configuration C ′, at the configuration
immediately after this write R[i + 1] stores the initial value. This is illustrated in Figure 1
for the case when p reads R[j] before q. Moreover, for each j, ` ∈ {0, 1, . . . i − 1} with j 6= `,
pj 6= pl. Thus, the set Pi of i processes pj , j = 1, . . . , i−1, satisfies the two conditions of the lemma. �

Lemma 9 (Agreement) There is at most one value v such that split(v) returns true.

Proof. Suppose, by contradiction, that split(v) invoked by process p and split(w) invoked by process
q both return true with v 6= w. Recall that a process has to write its input value in all the registers
to return true. Then for each 0 ≤ i ≤ k− 1, p and q have written in register R[i] the value v and w
respectively. For each i = 1, . . . k − 2, let Pi be the i processes, as defined in Lemma 8.

Consider any two set Pi, Pj , 0 < i < j < k − 1. We show that Pi ∩ Pj = ∅. Indeed, by the
definition of Pi, in the configuration when the processes in Pi have completed all their writes, R[i+1]
stores ⊥ and, by the algorithm, since j > i, R[j] also stores ⊥. But, by the definition of Pj , each
process in Pj has executed a write operation after a configuration where R[j] 6= ⊥. Thus, Pi and Pj

are disjoint.
Recall p and q write to R[k − 1] and, thus, do not belong to ∪k−2i=1 Pi. Hence, we have at least

2+
∑k−2

i=1 i = 2+ k2−3k+2
2 processes in total, which contradicts the hypothesis that k2−3k+6 > 2n. �

Theorem 10 Algorithm 2 is an interval-solo-fast anonymous input-oblivious implementation of a
value-splitter with solo-write and space complexities in O(

√
n).

Proof. Since only read-write registers are used, the algorithm is trivially interval-solo-fast.
By Lemma 9, the algorithm satisfies the Agreement property of value-splitters. We prove in the

following that the Solo execution property is also satisfied. Consider any solo execution E in which
a split(v) by a process p completes and suppose, by contradiction, that the operation returns false.
By inspecting the pseudocode, it is easy to see that the value of Lastwritten is equal to the index
of the last register p wrote or to −1 if no such writes exists. To return false p has either read a
value different from its input (line 5) or a value different from ⊥ in a register p has not yet written
(line 8). But this contradicts the fact that E is a solo execution. Thus, the algorithm satisfies the
Solo-Execution property of value-splitters.

�

Non-input-oblivious value-splitter. For completeness, we briefly describe an anonymous value-
splitter algorithm based on earlier work [1] that exhibits O(logm/ log logm) complexity.

11

A trivial adaptation of the weak conflict-detector proposed in [1] implements an interval-
solo-fast value-splitter. A weak conflict-detector exports a single operation check(v) with an input
v and return true (conflict is detected) or false (no conflict is detected). If no two operations are
invoked with different inputs, then no operation returns true, otherwise, at least one operation
returns false.

Our value-splitter implementation presented in Algorithm 3 is obtained by the weak conflict-
detector algorithm in [1], where the output is determined as the negation of the outcome of the weak
conflict-detector.

Shared variables:
Registers R[1..k], initially ⊥
Procedure: split(v)

1 for i := 1..k do
2 t := Read(R[πv(i)]);
3 if t = ⊥ then Write(R[πv(i)], v);
4 if t 6= v then return false;

5 end
6 return true;

Algorithm 3: Non-input-oblivious value-splitter

The algorithm uses an array R of k registers, where k! = m. Each input value v of a split
operation determines a unique permutation πv of the registers in R that is used as the order in
which the processes access the registers. Therefore, the algorithm is not input-oblivious. In its i-th
access, a process executing split(v) first reads register R[πv(i)]; if ⊥ is read, the process writes v
to it; If a value v′ 6= v is read, it returns false (contention is detected). If the process succeeds in
writing v in all registers prescribed by πv, it returns true. The algorithm is also trivially anonymous
and interval-solo-fast.

Theorem 11 Algorithm 3 implements anonymous interval-solo-fast m-valued value-splitter with
solo-write and space complexity in O(logm/ log logm).

Proof. If an operation split(v) runs solo, then no value other than v can be found in any R[πv(i)]
(line 2). Thus the Solo Execution property is ensured.

Suppose, by contradiction, that two operations, split(v), performed by pv, and split(v′), performed
by pv′ , return true. Let j, ` be two indexes in {1, . . . , k} such that j appears before ` in πv but `
appears before j in πv′ . By the algorithm, before returning true, pv and pv′ have read, respectively,
v and v′ in both R[j] and R[`].

Without loss of generality, let v be written to R[j] before v′ is written to R[`]. By the algorithm,
before any process performing split(v′) reads R[j] in line 2 (and, thus, writes v′ to R[j] in line 3), v′

has been written to R[`], and, by the assumption, v has been written to R[j]. Hence, the process
will not find ⊥ in R[j] and will not write to R[`]—a contradiction. Therefore, the algorithm satisfies
the Agreement property of a value-splitter.

Since every operation performs k writes and k reads, where k! = m, the step and space
complexities of the algorithm are O(logm/ log logm). �

5 Concluding remarks

In this paper, we present matching lower and upper bounds Θ(min(
√
n, logm/ log logm)) on

the space and solo-write complexity of anonymous interval-solo-fast consensus, which appears to be
the first non-trivial tight bound for consensus. Given non-anonymous algorithms can be achieved

12

with only constant space and step complexities [15], our results exhibits a complexity gap between
anonymous and non-anonymous consensus. The proof of our lower bound is based on constructing
executions in which no process is aware of interval contention and, thus, the lower bound also
applies to abortable [2, 9] consensus algorithms, where operations are allowed to return a specific
abort response when interval contention is detected, and be-reinvoked later. An interesting open
question is whether a matching abortable consensus algorithm can be found.

References

[1] J. Aspnes and F. Ellen. Tight bounds for adopt-commit objects. Theory of Computing Systems, 55(3):451–
474, 2014.

[2] H. Attiya, R. Guerraoui, D. Hendler, and P. Kuznetsov. The complexity of obstruction-free implemen-
tations. J. ACM, 56(4), 2009.

[3] Z. Bouzid, P. Sutra, and C. Travers. Anonymous agreement: The janus algorithm. In Principles of
Distributed Systems - 15th International Conference, OPODIS 2011, Toulouse, France, December 13-16,
2011. Proceedings, pages 175–190, 2011.

[4] H. Buhrman, J. A. Garay, J.-H. Hoepman, and M. Moir. Long-lived renaming made fast. In Proceedings
of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’95, pages
194–203, 1995.

[5] F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized synchronization. J. ACM,
45(5):843–862, Sept. 1998.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, Apr. 1985.

[7] G. Giakkoupis, M. Helmi, L. Higham, and P. Woelfel. An o(sqrt n) space bound for obstruction-free
leader election. In Distributed Computing - 27th International Symposium, DISC 2013, Jerusalem, Israel,
October 14-18, 2013. Proceedings, pages 46–60, 2013.

[8] R. Guerraoui and E. Ruppert. Anonymous and fault-tolerant shared-memory computing. Distributed
Computing, 20(3):165–177, 2007.

[9] V. Hadzilacos and S. Toueg. On deterministic abortable objects. In Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing, PODC ’13, pages 4–12, New York, NY, USA, 2013.
ACM.

[10] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, Jan. 1991.

[11] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues as an
example. In ICDCS, pages 522–529, 2003.

[12] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., 12(3):463–492, 1990.

[13] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5(1):1–11, Jan. 1987.

[14] M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous pro-
cesses. Advances in Computing Research, 4:163–183, 1987.

[15] V. Luchangco, M. Moir, and N. Shavit. On the uncontended complexity of consensus. In F. Fich, editor,
Distributed Computing, volume 2848 of Lecture Notes in Computer Science, pages 45–59. Springer Berlin
Heidelberg, 2003.

[16] M. Moir and J. H. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci. Comput. Program.,
25(1):1–39, Oct. 1995.

13

