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This paper proposes a near-maximum a posteriori smoothing algorithm for the dynamical carrier phase estimation of coded quadrature amplitude modulation (QAM) signals. This low-complexity near-optimum smoothing is obtained by averaging phase-locked loops (PLLs) with possibly the aid of the decoded a posteriori information. The proposed code-aided smoothing algorithm performs near the off-line Bayesian and hybrid Cramer-Rao bounds (BCRBs and HCRBs) of interest. It has a gain of several decibels compared to the conventional on-line loop and is able to track frequency offsets.

I. INTRODUCTION

odern communications systems have to cope with more and more stressing conditions (low signal-to-noise ratios (SNRs), high data rate). As phase estimation is processed at the front-end of digital receivers, phase errors rapidly degrade the overall performance of communication systems and consequently phase synchronization has become one of the most critical tasks that a receiver has to operate. To solve this challenging phase synchronization problem, many signal processing techniques have been proposed. Among Bayesian methods, [START_REF] Colavolpe | Noncoherent iterative (Turbo) decoding[END_REF] proposed a non-coherent method based on a truncated memory, [START_REF] Colavolpe | Algorithms for iterative decoding in the presence of strong phase noise[END_REF]- [START_REF] Dauwels | Phase estimation by message passing[END_REF] executed message passing algorithms based on factor graphs and the algorithms

Names

Near-MAP Smoothing Loops for Code Aided QAM Dynamical Carrier Phase Estimation M proposed in [START_REF] Nissila | Adaptive Iterative Detectors for Phase-Uncertain Channels via Variational Bounding[END_REF], [START_REF] Lin | The variational inference approach to joint data detection and phase noise estimation in OFDM[END_REF] are based on the variational Bayesian methods. [START_REF] Amblard | Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops[END_REF] composed a partical filtering with a phase-locked loop technique and found some interest to partical filtering when there are abrupt changes in the phase trajectory. A BCJR based Gaussian sum smoother was proposed in [START_REF] Lehmann | A Gaussian Sum Approach to Blind Carrier Phase Estimation and Data Detection in Turbo Coded Transmissions[END_REF] for convolutional turbo code aided dynamical phase estimation, and was derived by extending the original BCJR algorithm [START_REF] Bahl | Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate[END_REF] to the case of joint phase estimation and decoding. However, in the general case, Bayesian methods are far more complex to implement than deterministic methods and thus deterministic phase algorithms have been employed so far in real systems. The most commonly used deterministic methods are based on the EM algorithm [START_REF] Nissila | An EM approach to carrier phase recovery in AWGN channel[END_REF], [START_REF] Noels | Turbo synchronization: an EM algorithm interpretation[END_REF] or on gradient-like phase locked loops (PLL) techniques.

PLL are traditionally known as low-cost algorithms that lead to a good asymptote performance for on-line estimation [START_REF] Gardner | Phaselock Techniques[END_REF]. Their performance can even be improved at low SNRs within the turbo-receiver concept [START_REF] Zhang | Iterative Carrier Phase Recovery suited for Turbo-Coded systems[END_REF]- [START_REF] Noels | Effectiveness Study of Code-Aided and Non-Code-Aided ML-Based Feedback Phase Synchronizers[END_REF]. Rather than considering actual on-line estimation for which estimated values only depend on past observations, one may also consider off-line estimators involving both past and future observations; such a data block approach is a very natural way to proceed, as modern systems use error correcting codes. Bayesian and hybrid Cramer-Rao bounds (BCRBs and HCRBs), associated to this dynamical phase synchronization problem, have been considered in some recent contributions [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramer-Rao Bound for Dynamical Phase Offset Estimation[END_REF]- [START_REF] Yang | Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation -Application to BPSK Modulated Signals[END_REF] and they allow to measure the performance of such algorithms; they clearly show the superiority of the off-line approach, compared to the on-line approach. Contrarily to the performance of [START_REF] Zhang | Iterative Carrier Phase Recovery suited for Turbo-Coded systems[END_REF]- [START_REF] Noels | Effectiveness Study of Code-Aided and Non-Code-Aided ML-Based Feedback Phase Synchronizers[END_REF] limited by the on-line bound, [START_REF] Yang | Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation -Application to BPSK Modulated Signals[END_REF] analyzed a smoothing PLL (S-PLL) algorithm based on two on-line PLLs that was proposed without any performance evaluation in [START_REF] Geller | Procédé d'estimation de la phase et du gain de données d'observation transmises sur un canal de transmission[END_REF]. [START_REF] Yang | Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation -Application to BPSK Modulated Signals[END_REF] derived the S-PLL algorithm for a non-coded BPSK system and it is well known that it is not difficult to achieve synchronization in such a context. [START_REF] Yang | Smoothing PLLs for QAM Dynamical Phase Estimation[END_REF] and [START_REF] Noels | A Low-Complexity Iterative Phase Noise Tracker for coded Bit-Interleaved CPM Signals in AWGN[END_REF] extended the study of the S-PLL algorithm to other telecommunication formats.

In this paper, we extend the analysis of the S-PLL to the useful case in practice of channel encoded QAM modulated systems. We derive our algorithm from the definition of the code-aided (CA) a posteriori probabilities (APPs) and we then compare its performance with Cramer-Rao bounds of interest. However, we have to point out that the computation complexity of the true maximum a posteriori (MAP) algorithm for the CA scenario exponentially increases with the block length and is impossible to achieve in practice. Nevertheless, the near-MAP algorithm derived via some approximations is able to reach the lower bound over a very wide SNR range. Moreover, we prove the asymptotic convergence of the algorithm towards the Bayesian Cramer-Rao bound illustrate. We also illustrate the respective gains brought by the on-line/off-line and code-aided/non-data-aided scenarios.

The rest of the paper is structured as follows. The system model is described in Section II. After briefly reviewing the MAP estimation principle in Section III, a code-aided near-MAP estimation framework is derived in Section IV. In Section V, we prove the asymptotic convergence of the algorithm. Some practical considerations are then discussed in the next section and numerical results are presented in section VII, where we illustrate the algorithm performances and compare them to the Cramer-Rao bounds of interest. Finally, in Section VIII, some concluding remarks are made.

II. SYSTEM MODEL

We consider the transmission of symbols l s belonging to a constellation set 

where at time l, l s is the th l transmitted complex symbol, l  is the perturbing phase that must be estimated and the last term l n in the right-hand side of (1) is a circular Gaussian noise with zero-mean and variance 2 n  .

For the code-aided system, we assume that K bits are encoded into a codeword

    12 , , , | 1, ,2 K Nv c c c v    cc of N bits which are further mapped as a constellation vector         1 ,, v v L v ss  s c c
c . In this scenario, the independent and identically distributed (i.i.d.) law among the transmitted symbols does not hold any more, instead, the i.i.d. law holds among all the 2 K elements of the codebook. So the conditional probability density based on the known phase vector θ can be written as
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We now consider the phase model. Due to the imperfections of the oscillator, the receiver suffers from jitter.

Moreover, due to the lack of knowledge about the transmitter's clock, there exists a constant frequency shift in the receiver's clock. This results on a classical Brownian phase model with a linear drift

1 l l l w        , (3) 
where at time l , l w is Gaussian distributed with zero mean and variance 2 w  ,  is the unknown constant frequency offset (linear drift) and l  is the unknown phase offset. This model [START_REF] Noels | A Low-Complexity Iterative Phase Noise Tracker for coded Bit-Interleaved CPM Signals in AWGN[END_REF]- [START_REF] Mcneill | Jitter in ring oscillators[END_REF] has been widely used to describe the behavior of practical oscillators for which the frequency is randomly perturbed. The corresponding conditional probability can be written as

    2 1 1 2 1 | exp 2 2 ll ll p                  . ( 4 
)

III. MAP ESTIMATION AND CONDITIONAL GRADIENT ASCENT ALGORITHM

The maximum a posteriori (MAP) estimation of the phase vector θ given the observation y is given by

      ˆarg max ln , arg max ln | ln p p p           θθ θ y θ y θ θ , (5) 
where   , p y θ may also be expressed as

    , , , pp   s y θ y θ s . ( 6 
)
Computing θ is usually not a trivial problem and one can consider the following methods.

First-order Optimality Condition: The solution of (5) must also satisfy the following necessary condition of optimality 

  ln , 0 p   θ θ θ y θ , (7) where 1 , 
          1 ˆˆl n , i i i mm m p           y θ , (8) 
    1 ˆîi ll    , lm  (9) 
where 0   .

3. Repeat 1 and 2 until convergence.

It is easy to see that this algorithm is nothing but a conditional gradient ascent algorithm. By definition, ˆf θ is a fixed

point of this algorithm iff   ln , 0 f m p     y θ , m  (10) 
i.e., any stationary point of

  ln ,
p y θ is a fixed point of the algorithm. Comparing with [START_REF] Amblard | Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops[END_REF], we therefore see that the MAP estimate θ is necessarily a fixed point of the above algorithm.

IV. DERIVATION OF THE NEAR-MAP CODE AIDED ALGORITHM

For this particular problem of estimating time-varying phase offsets, the model in ( 1)-( 4) implies that 
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)
Based on this model, we now derive the explicit expression of the error-term used by the gradient ascent algorithm

      ˆˆl n , ln | ln p p p    y θ y θ θ (14) 
where
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and [START_REF] Yang | Bayesian and Hybrid Cramer-Rao Bounds for the Carrier Recovery under Dynamic Phase Uncertain Channels[END_REF] By setting the error-term to zero, we further obtain the following expressions

    11 ˆ2 ln 2 ln . m m m m m p p                θ θθ θ θ
                    2 1 1 1 1 2 2 1 1 2 2 1 1 1 1 1 ln | , , Pr | , , , 1 ln | , , ln | , , 1 1 Pr | , , Pr | , , , 1 2 2 ln Pr | , , K K K v v v m m m v m m m m v m m m v m v v v m m L v y s s m y s s y s s mL y                                                                    c c c y θ c c c c y θ c c y θ c c y θ     2 1 | , , , . K L L L v L v L ss mL                     c (17)
All these derivatives are too hard to use in practice because they all involve an exponential number of sums. We thus propose the following method to find a good approximation of these derivatives. From [START_REF] Yang | Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation -Application to BPSK Modulated Signals[END_REF], the terms containing an exponential number of sums can be further expressed as follows
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where

  1, if 0, otherwise. v m i m i s s s s         cc (19) 
Thus
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where
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)
The term   as the decoded information, there do exist tractable decoding algorithms for approximate and even accurate computations. For example, the belief propagation (BP) algorithm [START_REF] Pearl | Reverend Bayes on inference engines: A distributed hierarchical approach[END_REF], [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Revised Second Printing)[END_REF] [START_REF] Mcneill | Jitter in ring oscillators[END_REF] where the terms defined as
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and
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can be regarded as first order PLL outputs aided with the decoded information

    Pr | , , mi ss   y θ ,   F m  and   B m
 being respectively updated in the increasing (Forward) and decreasing (Backward) time directions. The physical meaning of ( 22) can thus be interpreted as follows; for the first position 25)-( 26), we replace these true phase values by their estimates [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF] Then the so-called smoothing PLL (or S-PLL) [START_REF] Yang | Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation -Application to BPSK Modulated Signals[END_REF], [START_REF] Yang | Smoothing PLLs for QAM Dynamical Phase Estimation[END_REF] can be written as [START_REF] Bahl | Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate[END_REF] Note that for a BPSK non coded system, (26) just reduces to equation [START_REF] Geller | Procédé d'estimation de la phase et du gain de données d'observation transmises sur un canal de transmission[END_REF] of [START_REF] Yang | Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation -Application to BPSK Modulated Signals[END_REF]. The expression "Smoothing loops" stems from the estimation procedure; the S-PLL encompasses one classical forward PLL and one backward PLL working in the reverse time direction towards the beginning of the block. One can note that this algorithm reminds Kalman smoothing valid for linear Gaussian problems. After that both loops respectively finish their estimations on the whole block, the final operation just globally averages the estimated phases of the forward and the backward loops as displayed by Fig. 1 and commented in the next section. In this section, we relate the performance of the proposed algorithm to the Bayesian Cramer-Rao bound (BCRB) associated to the estimation of m  . We first briefly recall the main expressions of the Cramer-Rao bounds. We then derive a linear model for the error term, which is valid for moderate-to-high SNR and for small phase errors. Finally, we show that the proposed algorithm asymptotically converges towards the BCRB, as long as our linear model is valid.
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Cramer-Rao bound: One traditionally distinguishes between two kinds of Cramer-Rao bounds (CRBs), i.e. the standard and the Bayesian CRB respectively dedicated to deterministic and Bayesian parameters. The standard CRB lower-bounds the conditional mean square error (MSE) of any unbiased estimator, i.e.,

        2 ˆ. m m m E SCRB     y θ y (27) 
It is defined as the inverse of the Fisher information matrix and can be expressed as

      2 2 2 ln | ln | . m mm pp EE                         y θ y θ
y θ y θ F [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Revised Second Printing)[END_REF] Note that in the above definition of the SCRB, we have assumed that all lm   are perfectly known. Note also that the SCRB is in general a function of the particular realization of m  . In the particular model we consider, due to the rotational invariance, it is however easy to show that the SCRB is independent on m  , i.e.,

  const m SCRB   .
The BCRB is a lower bound on the mean squared error which can be achieved by any estimator, i.e.,

        2 , ˆ. m m m E BCRB     y θ y ( 29 
)
The BCRB is equal to the inverse of the Bayesian Fisher information matrix, which is defined as
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)
Linear approximation of the error term: We derive here a "small-phase error/high SNR" model and successively consider approximations of the terms in [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramer-Rao Bound for Dynamical Phase Offset Estimation[END_REF], i.e., [START_REF] Bay | On the Hybrid Cramer-Rao bound and its application to dynamical phase estimation[END_REF] and ( 16). 

Moreover, if we assume a sufficiently high SNR, the last equation becomes [START_REF] Divsalar | Turbo codes for PCS applications[END_REF] where in standard PLL schemes, the parameters   m g θ and   m h θ are usually referred as the gain and the noise of the loop, respectively [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramer-Rao Bound for Dynamical Phase Offset Estimation[END_REF]. It turns out that these parameters can be related to the SCRB of the problem. In particular, we have (by definition)

            
    1 mm g SCRB    θ (33)
and with a direct calculus

                              2 2 1 ln | | 1 | | | 0 (as | 1), | ln | |. m m m m mm m pp E h p d p d p d p d p p E h p d SCRB                                   (34) 
In other words, the smaller the SCRB, the higher (the amplitude of) the loop gain and the smaller the loop noise.

These connections between the loop gain and noise and the SCRB will be useful in the characterization of the performance of the proposed algorithm.

2) Approximation of ( 16): similarly assuming θ θ , the second term in ( 14) may be approximated as

  11 ˆ2 2 ln . m m m m p              θ θθ θ (35)
Using the model described by equation ( 3), we obtain

  11 ˆ22 ˆ2 2 2 ln . m m l m l m m l l m w w w w p                        θ θθ θ (36)
Putting for any index m, [START_REF] Divsalar | Turbo codes for PCS applications[END_REF] and (36) into (13), we obtain the following linear model

                      1 ˆ2 1 22 1 1 2 22 ln , 21 ˆ1 ˆ, m m l l m m m m m m m m m l l m m m m l l ww p g h g h w w BCRB h w w                                           θ θθ y θ θ θ θθ θ ( 37 
)
where the last equality comes from [START_REF] Yang | Bayesian and Hybrid Cramer-Rao Bounds for QAM Dynamical Phase Estimation[END_REF] and the fact that

  2 22 ln 2 . m p E           θ θ (38) 
Performance study: Here, we show that, as long as the linear model (37) is valid, the proposed algorithm converges towards the BCRB. By definition, the estimate after convergence must be such that

  ln , 0 m p     θ θθ y θ
for any m.

Using (37), this is equivalent to the following condition

       1 1 2 1 ˆ. m m m m l l BCRB h w w            θ (39)
Squaring both sides and taking the expectation with respect to y and θ , we obtain

                              2 2 2 22 1 , , 1 , 1 , 4 4 2 2 1 1 2 2 m m m m l l l m l m BCRB E E h E w E w E w h E w h                
Now, the five terms in the right-hand side of (40) are respectively equal to

        2 1 , mm E h SCRB    y θ θ (see equation (34)) (41)         22 2 1 ll E w E w     θθ , ( 42 
)         , 1 , 0 l m l m E w h E w h   y θ y θ θθ , (43) 
Substituting ( 41)-( 43) into (40), we finally obtain

      2 , ˆ. m m m E BCRB     y θ Q.E.D. ( 44 
)
This asymptotic result will be illustrated in section VII.

VI. COMMENTS ON THE S-PLL ALGORITHM

Before illustrating the algorithm performance, we address several practical considerations. In order to overcome the initial transient problem, the S-PLL can be initialized as heuristically proposed by Cochran [START_REF] Cochran | Carrier Phase Synchronization by Reverse Playback[END_REF] and depicted on Fig. 1.

Without any a priori knowledge on the initial phase, a forward loop   ˆF m  runs, as traditionally, from the beginning of the block with an arbitrary initial value, towards the end of the considered block ( see on Fig. 1 the curve labeled as "Forward 1"). Then a backward PLL   ˆB m  is initialized with the final value estimated by the forward PLL and is recursively updated from the end to the beginning of the considered block, running in the reverse time direction (see on Fig. 1 the curve labeled as "Backward 1"). This process can then be iterated several times, i.e. the estimation error at the end of the previous backward loop can be used as the estimation error at the beginning of the next recursion ("Forward 2"), and globally S-PLL N forward and backward recursions can sequentially be proceeded till the convergence of the loops. Note that though this procedure (see [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF]) is efficient to get rid of the initial transient, it however only leads to on-line performance. The on-line algorithm can be further improved at low SNR within the turbo-receiver framework [START_REF] Noels | Performance Analysis of ML-Based Feedback Carrier Phase Synchronizers for Coded Signals[END_REF], [START_REF] Noels | Effectiveness Study of Code-Aided and Non-Code-Aided ML-Based Feedback Phase Synchronizers[END_REF] but it cannot exceed the on-line Cramer-Rao bounds. To take advantage of the clear superiority of the off-line bounds compared to the on-line bounds [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramer-Rao Bound for Dynamical Phase Offset Estimation[END_REF], [START_REF] Bay | On the Hybrid Cramer-Rao bound and its application to dynamical phase estimation[END_REF], [START_REF] Yang | Bayesian and Hybrid Cramer-Rao Bounds for QAM Dynamical Phase Estimation[END_REF], [START_REF] Yang | Approximate Expressions for Cramer-Rao Bounds of Code Aided QAM Dynamical Phase Estimation[END_REF], it is absolutely necessary to average the forward and the backward estimates as described by equation ( 26).

In the previous initial forward-backward recursions, the S-PLL algorithm is initialized with symbols having an equal a posteriori probability because the soft decoding process has not yet been performed at this stage. The phases of the received symbols are then updated with the initial phase outputs of the S-PLL algorithm (after S-PLL N forward and backward recursions) and a soft decoding can then be operated. As depicted on the right hand sight of Fig. 2, some symbol a posteriori probabilities can then be obtained from the soft decoder's output and fed back to the S-PLL algorithm which then proceeds a more accurate phase estimation. However, one might rather choose to only proceed non-code-aided off-line synchronization. In this case it is sufficient to process the S-PLL N initial forward and backward recursions without the need for feeding back the soft decoder's output. Results comparing the coded and non-coded off-line scheme will be displayed in the following paragraph. Also, similarly to turbo decoding, one might divide each received symbol blocks into sub-blocks; a S-PLL algorithm can then be deployed in parallel on each of the smaller blocks and this can shorten the processing time.

Soft Decoder
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Fig. 2 The simulation platform Finally we give a brief analysis about the algorithm implementation complexity. The classical on-line PLL has a very low gradient-like complexity and has been employed in real systems for several decades. The complexity price for the off-line improvement is only twice that of the on-line algorithm due to combining two traditional PLLs. In addition to the traditional memorization of L symbols, we need to store 2L phase values. For the non-coded off-line scenario, we need to proceed S-PLL N forward-backward recursions ( S-PLL 3 N  in practice) which involves a very reasonable delay.

VII. SIMULATION RESULTS

We assume that messages are encoded by the recursive systematic rate-12 turbo code with generator polynomials ; the N bit codewords are then interleaved by a S-random interleaver [START_REF] Divsalar | Turbo codes for PCS applications[END_REF] and mapped by a conventional Gray mapper. After passing through the phase uncertain channel, blocks of L complex-valued symbols (BPSK, QAM) are finally received by the carrier recovery block such as depicted by Fig. 2. MSEs are evaluated over 10 5 Monte Carlo trials and the corresponding curves are noted "Sim" in the following figures. Moreover, we also use the following notations: "On-Line" means that the MSE is the conventional forward estimation without any backward estimation, and "Off-Line" means that the MSE is measured after S-PLL 3 N  forward and backward iterations. Figure 3 compares different on-line and off-line MSE performance to Bayesian CRBs [START_REF] Yang | Bayesian and Hybrid Cramer-Rao Bounds for QAM Dynamical Phase Estimation[END_REF], [START_REF] Yang | Approximate Expressions for Cramer-Rao Bounds of Code Aided QAM Dynamical Phase Estimation[END_REF] for a block of L=72 coded QPSK modulated signals. For the on-line scenario, the MSE lowers down towards the on-line BCRB as more and more samples are processed. However, the off-line estimator performance is always better than the on-line estimator performance. This is because the off-line estimator is able to reach the off-line BCRB which is a few dBs under the on-line BCRB. As also illustrated by figure 4 and figure 5, DA and NDA curves would lead to similar conclusions, the non-coded performance being itself inferior to the coded-scheme, especially at low SNR.

We now display various results where very well in a large SNR range (see figure 4). At high SNR, each current observation is reliable enough to estimate the current phase shift and there is neither a gain with a block proceeding nor any phase synchronization problem. At more realistic average to low SNRs, as it was already depicted on figure 3 for any position, the off-line approach allows to benefit from a gain of several dBs. The reason for this result is that one observation is not sufficient to correctly estimate the symbols while a block of more observations should be used to improve the estimation performance. At low SNR, when the code is not efficient anymore, the CA curves leave the DA curves. The superiority of the off-line bound is even enhanced when there is a linear drift as illustrated on the following figure 5. The conclusions for figure 5 with a linear drift are similar to figure 4 but we can specify three more facts. First, the MSEs must now be compared to Hybrid CRBs because there is a (large) deterministic linear drift  and all the curves are poorer than the curves obtained with no linear drift. Second, for SNRs spanning from mid-range to low range, the on-line scheme is not able to reach anymore its HCRB; this comes from the classical fact that a traditional PLL becomes biased for larger and larger linear drift (see for instance [START_REF] Yang | Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation -Application to BPSK Modulated Signals[END_REF]). Third, the CA MSEs leave their asymptote regime at lower SNRs than the NDA curves and this might be useful for terminals forced to work at low SNRs. Finally, figure 7 represents the BER curves for various scenarios (off-line/on-line, NDA/CA) for a QPSK modulated signal. Clearly, the off-line scenario is superior to its on-line counterpart; also, the CA scheme allows to gain up to 1 dB compared to the NDA scheme for the off-line scenario. We note with interest that a CA off-line scheme is able to work at about 0.5 dB from the perfect phase recovery scheme (AWGN channel).

VIII. CONCLUSION

In this paper, we derived a near-MAP phase estimator for generally coded and modulated symbols which is made out of two first order PLLs possibly aided by some decoded a posteriori information. The MSE performance of the S-PLL provides a gain of several decibels when compared to a classical forward on-line algorithm; it can reach the Cramer-Rao bounds of interest over a wide range of SNRs and we proved the asymptotic convergence. Moreover, it is to be high-lighted that low-complexity NCA off-line schemes often give better results than the classical turbo recovery (CA on-line PLLs). Smoothing loops do not suffer from a poor transient behavior and are robust against frequency offsets. They are easy to implement, especially compared to CA (such as turbo) phase recovery schemes and thus, they (50)
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  M-PSK or M-QAM) over an additive white Gaussian noise (AWGN) channel, additionally affected by some carrier phase offsets l  . The sequence of symbols are stacked in the symbols vector Assuming that the timing recovery is perfect, the sampled baseband signal inter-symbol interference (ISI) and can thus be written as

  ) is exactly the a posteriori probability (APP) of the code-aided scenario. Generally, is NP hard due to 2 K sums involved. However, if we consider the term

1 m

 1  , the MAP estimator is estimated from 2  with a backward PLL and for the last position mL  , the MAP estimator is estimated from 1 L   with a forward PLL; for the middle range positions 1 mL , the MAP phase estimator averages the values of the forward and of the backward PLLs. Since in practice it is impossible to know the actual phase values 1 m   , m  , and 1 m   in the forward and backward loops defined in (
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 1 Fig. 1 MSEs of the various estimation schemes along time

1 )

 1 Approximation of (15): if θ θ is valid, the first term in (14) can be approximated by its first-order Taylor expansion

  Fig. 3 MSE curves for the various positions in the block at two different SNRs.

  Instead of looking at the different positions for some given SNRs, we now display the phase estimation error curves as function of the SNR in the central position of the block.

Fig. 4 QPSK

 4 Fig. 4 QPSK performance in the center position versus SNR with no linear drift

  Fig. 5 QPSK performance in the center position versus SNR, with a linear drift
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 67 Fig. 6 16QAM performance in the center position versus SNR for two different linear drifts

  the normalized a posteriori probability (APP) of the codeword v c . Assuming that we do not have any priori information about 1  (i.e.

  ,

	L        θ	T	. (7) defines therefore	L necessary conditions of optimality.
	Gradient Ascent Optimization: Consider the following iterative algorithm
	1. Pick  1, , lL  	
	2. Update θ as follows	

APPENDIX

DERIVATIONS OF ERROR TERMS

The first derivative of   ln , p y θ can be calculated from ( 11)-( 12) ; for 1 mL  , we thus get

y s s p p p y s s p y s s p p y s s p