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Abstract—In this paper, we study Bayesian and hybrid Cramér-Rao bounds (BCRB and HCRB) for the code-aided (CA), the 

data-aided (DA) and the non-data-aided (NDA) dynamical phase estimation of QAM modulated signals. We address the bounds 

derivation for both the off-line scenario, for which the whole observation frame is used, and the on-line which only takes into account the 

current and the previous observations. For the CA scenario we show that the computation of the Bayesian information matrix (BIM) 

and of the hybrid information matrix (HIM) is NP hard. We then resort to the belief-propagation (BP) algorithm or to the 

Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm to obtain some approximate values.  Moreover, in order to avoid the calculus of the inverse 

of the BIM and of the HIM, we present some closed form expressions for the various CRBs, which greatly reduces the computation 

complexity. Finally, some simulations allow us to compare the possible improvements enabled by the off-line and the CA scenarios. 

 

Index Terms—Bayesian Cramér-Rao Bound (BCRB), Code-Aided (CA) Bound, Data-Aided (DA) Bound, Dynamical Phase 

Estimation, Hybrid Cramér-Rao Bound (HCRB), Non-Data-Aided (NDA), On-line, Off-line 

 

I. INTRODUCTION 

S well-known, optimal estimators cannot always be built in practical implementations. Assessing the achievable estimation 

performance may be difficult, and one often has to resort to simulations and then compare the performance to some lower 

bounds corresponding to the optimum performance. Lower bounds give an indication of the performance limitations, and 

consequently, they can also be used to determine whether some imposed performance requirements are realistic or not.  Although 

there exists many lower bounds, the Cramér-Rao bounds (CRB) are the most commonly used [1]-[3] because they achieve a good 
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accuracy at the price of a reasonable computation difficulty.  

 There are three ways to use data in a telecommunication system [4]: data aided (DA), code aided (CA) and non data aided (NDA) 

estimations. Earlier attempts of signal synchronization in the low-SNR regime focused either on the so-called data-aided (DA) or 

non-data-aided (NDA) synchronization mode [5], [6]. On the one hand, DA parameter estimation techniques rely on the presence 

of pilot symbols in the data frame and may lead to unacceptable losses in terms of power and spectral efficiency. On the other hand, 

NDA synchronization algorithms drop some statistical information about the transmitted data and may lead to very poor results at 

low SNR. As a consequence, it was recognized [7],[8] that the only way to achieve a good performance compromise both in terms 

of acquisition time and steady-state accuracy (the so-called jitter variance) is to take advantage of the coding gain not only for data 

detection, but also for synchronization as well. This led to the notion of code aided (CA) synchronization, i.e., explicitly using the 

channel code structure and properties to perform a satisfying synchronization without any known pilot. 

 Many works concern the Cramér-Rao bounds for the carrier phase and frequency estimation. Most of them are related to 

constant (i.e., non-dynamic) carrier phase and frequency. For instance the CRB for phase and /or frequency estimation with known 

data has been derived in [9]-[11]. Some phase and frequency CRBs for DA and NDA PSK or QAM signals have been derived in 

[12]-[18]. In particular some analytical expressions of those CRBs at low SNR have been derived in [19],[20]. For PSK signals, the 

CRBs for DA and NDA estimators were computed in [21],[22] for both the case of phase estimation and the case of joint phase and 

frequency estimation. Still for the static carrier phase, the CA standard CRB (SCRB) has been derived in [23]-[25] using the first 

derivative of the log-likelihood function expressed in terms of the marginal a posteriori probabilities (APPs) of the coded symbols. 

One of the most important contributions of these papers is the application of the BCJR algorithm [37] to the APP computation 

which was first applied to calculate the APPs of the convolutional code (CC) aided SCRB [23] and was then extended to the 

evaluation of the APPs of turbo code (TC) aided SCRB in [24]. Moreover, the CA CRBs for joint static parameters estimation 

problem (carrier phase, carrier frequency and timing estimation) was achieved with the use of the BCJR algorithm in [25].  

However, in modern high rate communication systems, one cannot rely on a constant phase model and must take into account 

time-varying phase noise due to the oscillator instabilities [26]-[33]. To quantify the resulting performance degradation, [26] 

considered the data aided CRB for the frequency offset estimation with a phase noise variance. [31] has derived a Bayesian CRB 

(BCRB) for the NDA BPSK signal with dynamical phase offset. When a deterministic parameter (such as a linear drift) is jointly to 

be considered, the hybrid CRB (HCRB) is relevant; the HCRB was applied to the case of the dynamical phase estimation as briefly 

sketched in [32] for NDA BPSK signal and in [33] for coded QAM signals. The goal and the contribution of this paper is to give 

both the BCRB and the HCRB for the dynamical time-varying phase estimation in the case of QAM modulated signals and for the 

different scenarios (NDA, CA and DA). We present some closed form expressions for the various CRBs based on the second 

derivatives of the log-likelihood function; by detailing the derivations, we show that the exact calculation of the HCRB is 
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theoretically NP hard and cannot be easily calculated (the SCRB is just a special case of the HCRB). The obtained closed form 

expressions give a clearer insight of the corresponding information matrix elements and this enables us to justify some 

simplifications. Moreover, we display how the different bounds for the deterministic and stochastic parameters of interest behave 

in the different scenarios (off-line / on-line, DA / CA / NDA) and we give asymptotic results. Note that similarly to [31],[32] which 

provide a satisfying benchmark for the non coded BPSK phase estimation algorithm [34], these derived CRBs provide very good 

benchmarks for the more difficult QAM phase estimation algorithms both in NDA [35] and CA [36] scenarios. 

 This paper is thus organized as follows. In section II, we recall the various kinds of Cramér-Rao bounds. After describing the 

system model in section III, we derive the Bayesian and the hybrid Cramér-Rao bounds for off-line estimations for the DA, CA and 

NDA scenarios in section IV. The on-line bound is derived in section V and the different results are illustrated and interpreted in the 

final section.２ 

 

II. CRAMÉR-RAO BOUNDS REVIEW 

Different kinds of CRBs can be considered. In the following, we briefly describe the links between on one side the HCRB, and on 

the other side the standard CRB and the BCRB. 

We consider the most general case including both deterministic and random parameters for hybrid estimation. Denote this 

parameter vector as  ,
T

T T

r du u u  , where du  is assumed to be a   1n m   deterministic vector and ru  is assumed to be a 1m  

random vector with an a priori probability density function (pdf)  rp u . The true value of du  is denoted du . We consider  û y  as 

an estimator of u where y  is the observation vector. The HCRB satisfies the following inequality on the MSE 

       1

, | |
ˆ ˆ

r d d
d d

T

dE 

 

   
  y u u u u u

u y u u y u H u ,                 (1)  

where  dH u  is the so-called hybrid information matrix (HIM) and is defined as 

   , | |
log , |

r d d d d
d r dE p 

  
 

u

y u u u u u u
H u y u u .                (2) 

It is shown in [32] that inequality (1) is still respected when the deterministic and the random parts of the parameter vector are 

dependent. By expanding the log-likelihood as      log , | ln | , ln |r d r d r dp p p y u u y u u u u  , the HIM can be rewritten as 

 
２ The notational convention adopted is as follows: italic indicates a scalar quantity, as in a ; boldface indicates a vector quantity, as in a  and capital boldface 

indicates a matrix quantity as in A . The ( , )thm n  entry of matrix A  is denoted as  
,m n

A . The transpose matrix of A  is indicated by a superscript TA , and A is the 

determinant of A . n

ma  represents the vector  , ,
T

m na a , where m  and n are positive integers ( m n ).  Re a  and  Im a  are respectively the real and imaginary 

parts of a .  xyE  denotes the expectation over x  and y . u  and v

u
 represent the first and second order derivative operators. Finally, a  is designated as the 

value taken by variable a . 

 



 4 

     | |, ln |
r d d r d d d d

d d r r dE E p  
        

u

u u u u u u u u u
H u F u u u u ,            (3) 

where  ,d rF u u is the Fisher information matrix (FIM) [2] defined by  

   | , |
, ln | ,

r d d d d
d r d rE p 

  
 

u

y u u u u u u
F u u y u u .                      (4) 

In (3), the Fisher information matrix  ,d rF u u  gives the contribution of the observations whereas the second term on the right 

side corresponds to the contribution of the a priori distribution. It is then straightforward to re-obtain the standard and the Bayesian 

CRBs as particular cases. If du u , then H reduces to  

     | |
ln |d

d d d d d
d d dE p 

   
 

u

y u u u u u
H u F u y u ,                (5) 

and the inverse of (5) is just the standard CRB [1].   

If ru u , we have that 

   lnr

r r rr rE E p        
u

u u uH F u u ,                  (6) 

where  

   | ln |r

r rr rE p   
u

y u uF u y u                        (7) 

and the inverse of H  in (6) is the Bayesian CRB [2]. 

Because (5)-(6) can be considered as special cases of the general definition given in (3), in section IV, we first give the detailed 

derivation of the HCRB for the QAM dynamical phase estimation and it is then easy to obtain the BCRB for our problem. 

 

III. SYSTEM MODEL 

We consider the transmission over an additive white Gaussian noise (AWGN) channel of a modulated sequence  1, ,
T

Ls ss , 

where the symbols ls  belong to a constellation set  1, ,M Ms sS (M-QAM, M-PSK or M-APSK), affected  by some carrier phase 

offsets stacked in a vector  1, ,
T

L θ . Assuming that the timing recovery is perfect and that there is no inter-symbol interference 

(ISI), the sampled baseband signal  1, ,
T

Ly yy   is written as 

 l lj j

l l l l l ly s e n a jb e n      ,                   (8) 

where ls , l  and ln  are respectively the thl
 transmitted complex symbol ( l l ls a jb   with   0lE s   and  2 2 21

l M

l l s

s

E s s
M




 
S

 

is the transmitted signal power), the residual phase distortion that must be eliminated and the zero mean circular Gaussian noise 

with known variance 2

n .  
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 For the data-aided (DA) system, the transmitted symbols are known. As the observations and the transmitted symbols are 

independent and the additive noise is Gaussian distributed, the conditional probability based on the known phase θ  is 

   
 2 2

2 2 2
1 1

Re1
| exp exp 2

l
L j

L L
l ll l

l l

l ln n n

y s es y
p p y




  



 

       
       

        
 y |θ .           (9) 

 For the non-data-aided (NDA) system, the transmitted symbols are independent and identically distributed (i.i.d.). Hence the 

conditional probability based on the known phase θ  is 

   
 2 2

2 2 2
1 1

2Re1 1
| exp exp

l

l M

L j
L L

l ll l

l l

l l sn n n

y s es y
p p y

M




  



  

       
      

        
  

S

y |θ .          (10) 

 For the code-aided (CA) system, the independent and identically distributed (i.i.d.) condition between the transmitted symbols 

does not hold any more, instead the i.i.d. condition holds between the codewords. A message of K bits is encoded into a N  bit 

codeword    1 2, , , | 1, ,2K

N vc c c v  c c which is then in practice further mapped as a symbol vector       1 , ,v v L vs ss c c c . 

Hence, the conditional probability based on the known phase vector θ  is 

           

    

2 2

1 1

2 2
2

2 2 2
1 1

| | , | ,

Re1 1
exp exp 2 .

2

K K

K l

v v v v

v v

L j
L

l l vl v l

K
v ln n n

p p p p p

y s es y


  

 



 

     

        
      
       

 

 

y θ y c c θ c c y s s c θ s s c

cc
            (11) 

 We now consider the phase model. In practice, there is a constant frequency shift between the transmitter’s clock and the 

receiver’s clock. The corresponding phase distortion is linear. Furthermore, clocks are never perfect and oscillators suffer from 

jitters. This results in a Brownian phase model with a linear drift 

1l l lw     ,                     (12) 

where l  is the unknown phase offset at time l ,   is the unknown constant frequency offset (linear drift), lw  is a white Gaussian 

noise with zero mean and variance 2

w . This model is commonly used [26]-[34] in order to describe the behavior of practical 

oscillators for which the frequency is randomly perturbed. The corresponding conditional probability can be expressed as 

 
 

2

1

1 2

1
| , exp

22

l l

l l

ww

p
  

  






   
  

  

.                (13) 

Note that from (12), the joint pdf  |p θ  can be written as 

     1 1

2

| | ,
L

l l

l

p p p    



 θ  .                  (14) 

Since the observation ly  in (8) does not depend on the deterministic parameter  , we also have    | , |l l l lp y p y   . 
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IV. CRBS FOR THE DYNAMICAL PHASE ESTIMATION 

In practical receivers, phase estimation can actually be considered following two main scenarios: off-line and on-line. With 

off-line synchronization, the carrier phase offset θ  is not estimated until the whole observation frame y  has been received. In the 

rest of this section, we derive some analytical expressions for bounds corresponding to the off-line carrier phase offsets estimation. 

In a subsequent paragraph, these expressions will further allow us to find some bounds for the on-line scenario. 

The parameters of the phase model (12) include some random parameters  1, ,
T

L θ  (i.e. the dynamical phase) and a 

deterministic parameter   (i.e. the scalar linear drift), so that the parameter vector can be written as 

r

d 

   
    

  

u θ
u

u
.                      (15) 

Equation (3) thus becomes 

 
   

    

   

    

| | | |

| | , |

| | | |

|

ln | , ln | , ln | ln |

ln | , ln | , ln | ln |

,

T T

p p p p

E E E
p p p p

E



       

       

       

 

 


 



   

  

   



       
     
           

    



θ ξ θ

θ θ θ θ

θ y θ θξ ξ

θ ξ θ

θ

y θ y θ ξ θ ξ θ

H
y θ ξ y θ ξ θ θ

F 
   

    

| |

|

| |

ln | ln |

ln | ln |
T

p p

E
p p



   

   

   



 

 



 

  
   

     
 

θ

θ θ

θ

θ

θ ξ θ

θ
θ θ

.   (16) 

where  
   

    

| |

| ,

| |

ln | , ln | ,

,
ln | , ln | ,

T

p p

E
p p

   

 

   




 



 

  
 
   
 

θ ξ

θ θ

y θ ξ ξ

θ ξ

y θ y θ ξ

F θ
y θ ξ y θ ξ

. 

We then decompose the hybrid information matrix (HIM) H  into a block matrix that will be useful in the sequel 

11 12 11 12

21 22 12 22

T

   
    
   

H H H H
H

H H H H
,                    (17) 

where  

   

   

   

11 , | || |

12 21, | || |

22 , | || |

ln | , ln |          

ln | , ln |

ln | , ln | .  

T

E p E p

E p E p

E p E p

      

      

      

  

  

  

      
   

       
   

      
   

θ θ

θ θy θ θ

ξ ξ

θ θy θ θ

ξ ξ

ξ ξy θ θ

H y θ ξ θ ξ

H y θ ξ θ ξ H

H y θ ξ θ ξ       









.           (18) 

 From (8)-(11), one can see that the log likelihood function  ln | ,p y θ  does not depend on  ; consequently, the partial 

derivatives  
|

log | ,p


ξ

θ ξ ξ
y θ ξ  and  

|
log | ,p


ξ

ξ ξ ξ
y θ ξ  are both equal to zero. The hybrid block matrix can thus be written as: 

 
     

    

 
   

 

| |
1| , |

| |

1 | |

| |

| |

|

ln | ln |
ln | ,

ln | ln |0

ln | ln |

ln |

L

T

L

p p
E p

E E
p p

p p

E E
p



   
   

     

   



   

    




 





 
 

 

  

 

 

         
        

 

   


θ
θ θ θ
θy θ

θ θ

θ

θ

θ θ

θ θ

θ

θ ξ θ
y θ 0

H
θ θ0

θ ξ θ

F θ
θ   

|
ln |

T

p

   


 

 
 
  
 

θ

,       (19) 
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where  
  1| , |

1

ln | ,

0

L

L

E p
   

  



  
  

 
 

θ

θy θ
y θ 0

F θ
0

and 

   

 

 

11 | | , || |

12 21| |

22 | |

ln | , ln |

ln |

ln | .

T

E E p E p

E p

E p

        

   

   


   

 

 

        
    


     


   
 

θ θ

θ θθ y θ θ

ξ

θθ

ξ

ξθ

H y θ θ ξ

H θ ξ H

H θ ξ

.           (20) 

First, the DA and NDA scenarios are briefly reviewed in sections IV.A and IV.B, as a simplified version has already been 

presented in [33]. Then the more difficult to tackle CA scenario is detailed in section IV.C. 

A. Computation of  |
,E

 



 
 θ
F θ  for the DA scenario 

The evaluation of the term  |
,E

 



 
 θ
F θ  requires the computation of the FIM  ,F θ , which in turn requires the evaluation of 

the Hessian of the log-likelihood function  ln | ,p y θ . For both the DA and NDA scenarios, according to the observation model 

defined previously, after a marginalization on the independent symbols, and then using both the independence of the transmitted 

symbols and the whiteness of the noise, one finds that:  

       
1 1

ln | , ln | , , ln |
l

L L

l l l l l l

l s l

p p y s p s p y   
 

    
              

  θ θ θ

θ θ θy θ .          (21) 

 One can realize that each term of the sum (21) is a matrix with only one non-zero element at most, namely, 

   
,

ln | , ln |l ll l
p p y     

θ θ

θ θy θ .                  (22) 

As a direct consequence, the Hessian  ln | ,p θ

θ y θ  is a diagonal matrix with the thl  diagonal element given by (22). Moreover, 

because of the circularity of the observation noise, the expectation of (22) with respect to  |l lp y   does not depend on l . 

Discarding the last zero line and column, one then obtains 

 
|

,D LE J
 

  θ
F θ I                      (23) 

where LI  is the L L  identity matrix and DJ  is defined as follows 

 2

, | 2

ln | ,
.D

l

p
J E

 





 
  

 
y θ

y θ
                   (24) 

Starting from (9) with the DA scenario where    | , | , ,l l l l lp y p y s    and taking the first and the second derivatives, one easily 

obtains that  

     
2

2Imln | , ln | , , lj

l ll l l

l l n

y s ep p y s


  

  


 

 
 

y θ
               (25) 
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and 
     2 2

2 2 2

2Reln | , ln | , , lj

l ll l l

l l n

y s ep p y s


  

  


 

  
 

y θ
.              (26) 

So in the DA case, (24) becomes 

   2 2
DA

2 2

ln | , 2
2 SNRs

D

l n

p
J E

 

 

 
     

 
y,θ

y θ
,               (27) 

where the signal-to-noise ratio is defined as 2 2SNR s n  . 

 

B. Computation of  |
,E


 

 θ
F θ  for the NDA scenario 

 We now turn to the NDA scenario. With an appropriate marginalization on the transmitted symbols, we obtain by deriving (10) 

     
 ln | , ,

ln | ln | , ln | ,
.l M

l l l

sl l

l l l l

p y s
p p p y

 
  

   




  

  
   


Sy θ y θ

            (28) 

As the derivation is a linear operator, we find that 

 

 

 

 

 

 

 

| , ,
| , , | , ,

ln | ,

| , , | , , | ,

l M

l M l M

l M l M

l l l

l l l l l ls

s sl ll

l l l l l l l l l

s s

p y s
p y s p y s

p

p y s p y s p y

 
   

  

      



 

 


 

  
  




 

 

S

S S

S S

y θ
           (29) 

Moreover as
 

 

 ln | , , | , ,1

| , ,

l l l l l l

l l l l l

p y s p y s

p y s

   

   

 


 
, using (25) we have 

 
 

 
2

2Im| , ,
| , ,

lj

l ll l l

l l l

l n

y s ep y s
p y s


 

 
 







. 

Consequently we obtain   

 
 

 
2

2Imln | ,
Pr | , , ,

l

l M

j

l l

l l l

sl n

y s ep
s y




 
 











S

y θ
                                                    (30) 

where  
   

 

| , ,
Pr | , ,

| ,

l l l l

l l l

l l

p y s p s
s y

p y

 
 

 
  is the marginalized a posteriori probability (APP) of ls  based on the observation ly  

with known phase. 

Taking the second derivative of  ln | ,p y θ ,  using (25), (26), (30) and following a similar calculus, we further find that 

   

 

 

 

 

 
   

2 2

2 2

22

2

2

2 2

ln | , ln | ,

| , , | , ,

      
| , , | , ,

2Im 2Re
      Pr | , ,

l M l M

l M l M

l l

l l

l l

l l l l l l

s sl l

l l l l l l

s s

j j

l l l l

l l l

n n

p p y

p y s p y s

p y s p y s

y s e y s e
s y

 

  

 

   

 

   

 
 

 

 

  

 


 

   
 

   
 
  
 

  
  
   

 

 
S S

S S

y θ

 
 

2

2

2Im
Pr | , , .

l

l M l M

j

l l

l l l

s s n

y s e
s y



 




 

 
  
    

 
S S

    (31) 
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In general, the expectation of (31) with respect to  Pr | , ,l l ls y    does not have any simple analytical solution. Hence, in practice, 

we have to evaluate 

    2
NDA

| 2

ln | ,
D

l

p
J E

 





 
  

 
y,θ

y θ
                   (32) 

by numerical integration. 

 

C. Computation of  |
,E


 

 θ
F θ  for the CA scenario 

 For the CA scenario, because of the code structure, the independence condition between symbols does not hold anymore. Using 

(11), one has that 

          
2 2

1 1 1

ln | , ln | , , ln | , ,

K K L

v v l l l v l v

v v l

p p p p y s s p   
  

    
            

    
  y θ y c c θ c c c c c .       (33) 

From (70)-(72) in the Appendix, we show that the first and the second derivatives can respectively be expressed as 

 
 

  2

1

ln | , ,ln | ,
Pr | , ,

K

m m m v m

v

vm m

p y s sp  


 

 
 

 


cy θ
c c y θ ,            (34) 

for m n  

 
 

         2 2

1

ln | , , ln | , ,ln | , ln | , ln | ,
Pr | , ,

K

m m m v m n n n v n

v

vm n m n m n

p y s s p y s sp p p     


     

     
  

     


c cy θ y θ y θ
c c y θ ,   (35) 

and for m n  

 
 

       
2 222 2

2 2
1

ln | , , ln | , ,ln | , ln | ,
Pr | , ,

K

m m m v m m m m v m

v

vm m m m

p y s s p y s sp p    


   

        
               


c cy θ y θ

c c y θ .  (36) 

All these derivatives are too hard to use in practice because they all involve an exponential number of sums. We thus propose the 

following method to find a good approximation of these derivatives. From (34), the first derivative can be further expressed as 

follows 

 
 

  
  

  

    
 

2 2

1 1

2

1 1

ln | , , ln | , ,ln | ,
Pr | , , Pr , | , ,

ln | , ,
     Pr , | , , ,

K K

K

v

m m m v m m m m v m

v v m m v

v vm m m

M
m m i m

v m m v m i

v i m

y s s p y s sp
s s

p y s s
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The term  Pr | , ,m is s  y θ  in (39) is exactly the a posteriori probability of the code aided scenario.  

Similarly to the first derivative (39), the second derivatives (35) for n m  can be further expressed as 
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Like the term   Pr | , ,m is s  y θ  in (39), the term  
1 2

Pr , | , ,m i n is s s s   y θ  in (41) is also an a posteriori probability of the code 

aided scenario and it measures the dependency between the symbols in position n  and in position m . Actually the evaluation of 

 2 ln | ,

n m

p 

 



 

y θ
 in (41) for any couple of positions really burdens the computation complexity. If the codeword has been sufficiently 

interleaved, the term  
1 2

Pr , | , ,m i n is s s s   y θ  can be approximately expressed as the product of two independent probabilities, i.e. 

     
1 2 1 2

Pr , | , , Pr | , , Pr | , ,m i n i m i n is s s s s s s s      y θ y θ y θ . We can then further simplify (41) as 
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where the last equality comes from (39). 

The second derivative (36) for m n  can be similarly derived as below 
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We thus obtain the expression of the second derivatives as follows when the code has been sufficiently interleaved 
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y θ

y θ y θ
  (45) 

Actually, the calculation of  Pr | , ,m is s  y θ  is also NP hard (see (40)) and theoretically requires 2K  sums. In practice we just 

have to resort to some classical a posteriori probability (APP) decoding algorithms, namely the famous Bahl-Cocke-Jelinek-Raviv 

(BCJR) algorithm [37] or the belief propagation (BP) algorithm [38]-[40], in order to calculate the approximate value of 

 Pr | , ,m is s  y θ . In the rest of the paper, we assume that the code has been sufficiently interleaved so that (45) holds.Moreover, 

discarding the last zero line and column, the FIM then has an identity matrix form as 

   CA

D LE J  θ F θ I ,                     (46) 

where LI  is the L L  identity matrix and    2
CA

| 2

ln | ,
D

l

p
J E

 





 
  

 
y,θ

y θ
 can be obtained from (45) with a Monte Carlo 

simulation.                  

D. Computation of the HIM 

As mentioned in (17), the HIM can be divided into four submatrices; due to the model of Section III, assuming that we have no a 

priori knowledge on the initial phase, one obtains that the upper left part 11H , which corresponds to the random parameters θ , has 

a particular mathematical structure just like in [31] 

11
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H ,                    (47) 

where 
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1 .

w D
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A J
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                      (48) 

Using (14), 12H  and 22H  in (20) thus become: 
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H H 0 ,                 (49) 

  2

22 1 .wL  H                      (50) 

 

E. The Bayesian Cramér-Rao bounds (BCRBs) 

When there is no linear drift, the parameter vector u contains only random parameters θ , i.e. r u u θ . In this scenario, the 

BCRB is the lower bound of the MSE. Moreover, the Bayesian information matrix (BIM) LB  is equal to the upper left sub-matrix 

of the HIM, i.e. 

11L B H .                       (51) 

 The diagonal element 1

,L l l

  B of the inverse of matrix LB  is the off-line BCRB associated to the estimation of l . Furthermore, 

the corresponding analytical expression associated with the off-line BCRB has already been obtained in Appendix I. D of [31] 

       2 2 11 1 2 3 2 3 2 2 1 1 2

11 1 1 1 2 2 2 1 2 1 2, ,

1
2L L L L l L l L

Ll l l l
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b r r b r r b r r r r A 
                      H B

B
,       (52) 

where 
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and 
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              (54) 

 

F. The hybrid Cramér-Rao bounds (HCRBs) 

We now inverse the HIM to obtain the analytical expression of the HCRB. In the sequel, we shall need the expression of the 

elements of the first row of  1

11


H . We proceed similarly as in [32]. From (47), thanks to the cofactor expression of the matrix 

inversion formula we have 

 
1

1

11 11,
11

l

L l L ll

b
d bd




  
    H

H
,                  (55) 

where ld  is the determinant of the following l l  matrix lD  
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,                    (56) 

and ld  satisfies the following recursive equation  

2

1 2,l l ld Abd b d    with 0 1d   and 1d bA .                 (57) 

Similarly to Appendix I.A of [31], ld  can thus be rewritten as 1 1 2 2

l l

ld r r   , where 1r , 2r , 1  and 2  were given in (53) and 

(54). We then obtain from (55) 
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H
.               (58) 

Thanks to the block-matrix inversion formula [3], we now can find the expression of the inverse of the HIM 
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where 
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H H H ,                     (60) 

and 1 1 1

11 12 12 11

T

L   
V H H H H .                      (61) 

We start to compute   corresponding to the inverse of the minimum bound on . Due to the particular structures of matrices 11H  

and 12H  (see (47),(49)), we get  

 1 1

11 112 4 1,1 1,

1 2

L
w w

L


 

 
        H H ,                   (62) 

where 1

11 1,1

  H  and 1

11 1,L

  H  are given by (58). 

We now derive an analytical expression for the diagonal elements of the upper left part  1

11 L

 H V  corresponding to the 

minimum bound on θ  (see (59)). From the definition of LV in (61), the diagonal elements  
,L l l

V  can be written as 

     
2 2

1 1 1 1

11 11 11 114 4, 1, , 1, 1, 1

1 1
L l l l L l l L l

w w 

   

 
                 V H H H H .           (63) 

Inserting (58) into (63) and then into (59), we obtain the analytical expression of the upper diagonal elements 1

,l l

  H  i.e. the 

off-line HCRB associated to the estimation of l  (1 l L  ) 
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     (64) 

 Comparing to (52), we notice that the contribution of LV  in (64) is the additional uncertainty brought by the linear drift  . 

 

G. High SNR Asymptote Bound 

In the high-SNR range, there exists one constellation point max

ms  for the NDA case (resp. max

is  for the CA case) which has a 

dominant a posteriori probability. Substituting  maxPr | , , 1m m ms y     into (31) (resp.  maxPr | , , 1m ls s  y θ  into (45)), the second 

order derivatives can be respectively expressed as 
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Thus both NDA and CA scenarios are equivalent to the DA scenario at high SNR and one has 

     
2

NDA CA DA

2

2
2 SNRs

Dh Dh D

n

J J J



     .                 (66) 

We thus obtain the same result as in [31]; by introducing this value into the mathematical expression of the bound, we obtain 

similarly to section V of [31], an asymptotic bound which is under the bound itself. Note that a far more complex expression for 

 NDA

DlJ can be obtained at low SNR, and one can combine the low and high SNR HCRB asymptotes to lead to an asymptotic lower 

bound without any Monte-Carlo simulation. 

V. ON-LINE BOUNDS 

Up to this section, we have focused on the off-line scenario. We now show how the previous results can be directly used in the 

case of an on-line synchronization mode. In this mode, only the past and the current observations are available, i.e.  1 1, ,
Tl

ly yy  

where l L . Like in section III of [31], the on-line BCRB (resp. HCRB) associated to vector 1

L
y  is equal to entry  ,L L  of the 

inverse of the BIM (resp. HIM); one thus readily obtains the analytical expression of the on-line BCRB (from (52)) and on-line 

HCRB (from (64)) associated to the estimation of l  ( 3l  ) 

       2 2 12 3 2 3 2 2 1 1 2

1 1 1 2 2 2 1 2 1 2

1
2 ,

l

l l l l

l

C b r r b r r b r r r r A 
           B

B
             (67) 
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where 1r , 2r , 1 and 2  are given by (53),(54), and  11 lH  is a l l  matrix with the same form as 11H of equation (47).  

 

VI. DISCUSSION 

We now display simulation results with Gray mapping QAM symbols for different scenarios. For the code aided scenario, we 

use a recursive systematic rate 1 2  turbo code (mother code rate 1 3 ) whose generator polynomials are 1 OCTG 37  and 2 OCTG 21  

with a S random interleaver [41]. Since turbo code can be described by means of a trellis, the marginal APPs can be efficiently 

computed by the famous BCJR algorithm [37].  
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Fig. 1 NDA (left), CA (right) and DA HCRB  for different constellations as a function of the SNR 

 

We start with figure 1 displaying the behavior of the HCRB on  as a function of the SNR; we compare the performance of NDA 

(on the left), CA (on the right) and DA scenarios for various constellations. At high SNR, we first see that HCRB   converges to its 

horizontal asymptote (  2 1w L  ) for here a symbol block length 72L  . The observation noise has then no influence on the 

estimation of the linear drift and clearly, for a larger block length or a smaller phase noise, the asymptote would be lower. Then at 

median SNR, HCRB  leaves its asymptote and this happens at a larger SNR if a larger constellation is used. Note that the CA 

scenario allows to have better performance that the NDA aided scenario. 
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Fig. 2 QPSK CRB curves for the various block positions when the SNR = 0 dB 

 

In figure 2, we now turn to the behavior of the dynamic phase bound and display some results for QPSK modulated signals as a 

function of the position in the block ( 288L  ). We first remark that in all the cases (BCRB/HCRB and DA/CA/NDA), the off-line 

scenario always gives a better result that the corresponding on-line result. To be more precise, the on-line curves always benefit 

from more and more observations until they saturate; at the last position the on-line bound corresponds exactly to the off-line bound. 

Contrarily to the on-line scenario, for the off-line scenario the best phase estimate is achieved at midblock, whereas they become 

poorer at the block border. This comes from the fact in the center position of the phase vector, one has more adjacent (past or future) 

and strongly correlated variables (see the phase model of (12)) than at the border of the block. Also logically, the DA scenario 

achieves a better performance than the CA aided scenario and even more than the NDA scenario. The BCRB provides the lower 

bound for this general block-phase estimation framework with a known linear drift   (or 0  ), whereas the HCRB provides the 

lower bound with an unknown linear drift  . The HCRB is always lower bounded by the BCRB for any position in the block but for 

such a block length, there is almost no loss of information due to the linear drift for the off-line case in the center position so that the 

HCRB almost corresponds to the BCRB. 

 

Instead of looking at the different positions for a given SNR, we now display HCRB curves as function of the SNR for the phase 

at the central position of the block. Figure 3 displays results for the BPSK modulated signal. For codes that are described by means 

of a trellis, the marginal symbol APPs in (40) and (42) can be approximately computed from the trellis state APPs and state 

transition APPs, which in turn can be determined efficiently by the famous BCJR algorithm. Like already observed on figure 2, one 

can see on figure 3 that the off-line scenario allows better results than the on-line scenario and also that the NDA case is worse 

compared to the CA and to the DA cases. Here, it is important to note that one can expect a better performance with the NDA 
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 Fig. 3 BPSK NDA, turbo-CA and DA HCRB curves (left) and corresponding DJ  (right) as functions of the SNR 

 

off-line scenario rather than with the CA on-line scenario. Stated in other words, in general, one can expect more benefits from the 

estimation method (off-line/on-line) rather than the way of using data (DA, CA or NDA). This can also be observed for other 

modulations and other coding schemes (e.g. simple convolutional codes) and this is a general tendency; however the results are not 

always totally so simple as displayed in the following figure 4 with a 16QAM modulation and some additional parameters must be 

taken into account. 
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Fig. 4  16 QAM NDA, turbo-CA and DA HCRBs for  two different phase variances (left) and corresponding DJ  (right) as functions of the SNR  

To get more insight into those curves we also display the various DJ  as functions of the SNR on the right side of figure 3 and 4. 

From the asymptote analysis of Section IV.G, we know that at high SNR, DJ  is just proportional to the SNR (see (66)) but 

watching the left part of these figures, we can see that at lower SNR , DJ behaves like a non linear amplifier of SNR and behaves 

differently according to the DA, CA, and NDA scenarios. This behaviour allows predicting exactly where the different bounds 

leave their asymptote. The DJ  curves also give an indication whether one can expect a large deviation from the asymptote; but one 

also has to take into account the phase variance value to know the exact behaviour of the bounds (see figure 4 for two different 

phase variances). 

 

Finally, figure 5 (resp. figure 6) displays for the off-line scenario, the NDA (resp. CA) HCRB on k  as a function of the SNR in 

the center position for various constellations. Like it was observed on previous figures, the on-line scenario would give exactly 

similar results that are not displayed here. 
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Fig. 5  NDA HCRB curves in the center position for different constellations and for two different phase variances 
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Fig. 6 CA HCRB curves in the center position for different constellations and for two different phase variances 

 

 At high SNR, we notice that the various on-line and off-line CRBs logically merge and do not depend on the constellation. In 

this range of SNR, the received constellations are reliable enough to make a correct decision and the information provided by 

each observation ly  is preponderant over the a priori knowledge of θ . In this case it is sufficient to only take into account the 

present observation ly  in order to estimate l  and this is why the various constellation bounds merge. Furthermore, this is 

also the reason why the NDA and CA CRBs logically tend to the DA CRBs. As the a priori distribution of θ  has no influence, 

the estimation problem tends to a deterministic phase estimation problem where we estimate L  independent phase l  with L  

independent observations. 

 In mid-range SNRs whose values are different with the different constellations, the HCRBs leave their asymptotes. One 

observation is thus not sufficient to estimate the phase offset while a block of more observations should be used to improve 
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the estimation performance. This also explains why the NDA CRBs do not merge anymore with the DA CRBs. Moreover, we 

note that every time the density of the constellation is increased by a factor of 4, (i.e. the constellation size is multiplied by 4), 

the threshold where the NDA bounds leave the DA bound is increased by 6dB. Contrarily to the NDA CRBs, the CA CRBs 

continue to coincide with the DA CRBs till a SNR at least 6dB lower than the one of the NDA CRBs. Obviously, the 

performance prominently benefits from the decoding.  

 At low SNRs, the CA CRBs do not merge anymore with the DA CRBs. The observation noise becomes preponderant 

compared to the phase noise and directly affects the estimation performance; also, the lack of knowledge on   further 

deteriorates the observed performance. Note that the NDA bound for the robust real BPSK scheme has not the same slope 

than the other complex constellations NDA bounds. 

 

VII. CONCLUSION 

In this paper, we have derived the on-line and off-line Bayesian Cramér-Rao bounds (BCRBs) and hybrid Cramér-Rao bounds 

(HCRBs) for the QAM dynamic phase estimation in data-aided (DA), non-data-aided (NDA) and code-aided (CA) scenarios. We 

were able to provide closed-form expressions for a realistic dynamic phase model and for realistic telecommunication systems 

involving turbo-codes and large constellations. We have shown that off-line bounds allow to have better performance than on-line 

bounds. Moreover, most of the time, NDA off-line bounds are eager to provide better performance than CA on-line bounds. We 

also saw that the often studied BPSK case does not tell the whole story and that there is some space for additional CA 

synchronization gain at low SNR for larger constellations. These bounds provide a powerful tool for the communication system 

design in stressing environments. 
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APPENDIX 

From (33), one can readily obtain the first derivative  
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Note that (69) can be further simplified as  
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For n m , taking the second derivative, one obtains  
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For n m , the second derivative becomes 
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