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I. INTRODUCTION

S well-known, optimal estimators cannot always be built in practical implementations. Assessing the achievable estimation performance may be difficult, and one often has to resort to simulations and then compare the performance to some lower bounds corresponding to the optimum performance. Lower bounds give an indication of the performance limitations, and consequently, they can also be used to determine whether some imposed performance requirements are realistic or not. Although there exists many lower bounds, the Cramé r-Rao bounds (CRB) are the most commonly used [START_REF] Fisher | On the mathematical foundations of theoretical statistics[END_REF]- [START_REF] Kay | Fundamentals of Statistical Signal Processing Estimation Theory[END_REF] because they achieve a good accuracy at the price of a reasonable computation difficulty.

There are three ways to use data in a telecommunication system [START_REF] Herzet | Code-aided turbo synchronization[END_REF]: data aided (DA), code aided (CA) and non data aided (NDA) estimations. Earlier attempts of signal synchronization in the low-SNR regime focused either on the so-called data-aided (DA) or non-data-aided (NDA) synchronization mode [START_REF] Meyr | Digital Communication Receivers Synchronization, Channel Estimation and Signal Processing[END_REF], [START_REF] Mengali | Synchronization Techniques for Digital Receivers[END_REF]. On the one hand, DA parameter estimation techniques rely on the presence of pilot symbols in the data frame and may lead to unacceptable losses in terms of power and spectral efficiency. On the other hand, NDA synchronization algorithms drop some statistical information about the transmitted data and may lead to very poor results at low SNR. As a consequence, it was recognized [START_REF] Berrou | Turbo-Information Processing Algorithms, Implementations & Applications[END_REF], [START_REF] Berrou | Turbo Processing[END_REF] that the only way to achieve a good performance compromise both in terms of acquisition time and steady-state accuracy (the so-called jitter variance) is to take advantage of the coding gain not only for data detection, but also for synchronization as well. This led to the notion of code aided (CA) synchronization, i.e., explicitly using the channel code structure and properties to perform a satisfying synchronization without any known pilot.

Many works concern the Cramé r-Rao bounds for the carrier phase and frequency estimation. Most of them are related to constant (i.e., non-dynamic) carrier phase and frequency. For instance the CRB for phase and /or frequency estimation with known data has been derived in [START_REF] Rife | Single-tone Parameter Estimation from Discrete-Time Observations[END_REF]- [START_REF] Noels | Pilot-Symbol Assisted Carrier Synchronization Cramé r-Rao Bound and Synchronizer Performance[END_REF]. Some phase and frequency CRBs for DA and NDA PSK or QAM signals have been derived in [START_REF] Cowley | Phase and frequency estimation for PSK packets Bounds and algorithms[END_REF]- [START_REF] Rice | Cramé r-Rao lower bounds for QAM phase and frequency estimation[END_REF]. In particular some analytical expressions of those CRBs at low SNR have been derived in [START_REF] Steendam | Low-SNR Limit of the Cramé r-Rao Bound for Estimating the Carrier Phase and Frequency of a PAM, PSK or QAM Waveform[END_REF], [START_REF] Steendam | Performance Bounds in Synchronization for Low Signal to Noise Ratios[END_REF]. For PSK signals, the CRBs for DA and NDA estimators were computed in [START_REF] Noels | The true Cramé r-Rao Bound for Carrier Frequency Estimation from a PSK Signal[END_REF], [START_REF] Noels | True Cramé r-Rao Bounds for Carrier and Symbol Synchronization[END_REF] for both the case of phase estimation and the case of joint phase and frequency estimation. Still for the static carrier phase, the CA standard CRB (SCRB) has been derived in [START_REF] Noels | The True Cramé r-Rao Bound for Estimating the Carrier Phase of a Convolutionally Encoded PSK Signal[END_REF]- [START_REF] Noels | Carrier and Clock recovery in (turbo) coded systems Cramé r-Rao Bound and Synchronizer Performance[END_REF] using the first derivative of the log-likelihood function expressed in terms of the marginal a posteriori probabilities (APPs) of the coded symbols.

One of the most important contributions of these papers is the application of the BCJR algorithm [START_REF] Bahl | Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate[END_REF] to the APP computation which was first applied to calculate the APPs of the convolutional code (CC) aided SCRB [START_REF] Noels | The True Cramé r-Rao Bound for Estimating the Carrier Phase of a Convolutionally Encoded PSK Signal[END_REF] and was then extended to the evaluation of the APPs of turbo code (TC) aided SCRB in [START_REF] Noels | The Cramé r-Rao Bound for Phase Estimation from Coded Linearly Modulated Signals[END_REF]. Moreover, the CA CRBs for joint static parameters estimation problem (carrier phase, carrier frequency and timing estimation) was achieved with the use of the BCJR algorithm in [START_REF] Noels | Carrier and Clock recovery in (turbo) coded systems Cramé r-Rao Bound and Synchronizer Performance[END_REF].

However, in modern high rate communication systems, one cannot rely on a constant phase model and must take into account time-varying phase noise due to the oscillator instabilities [START_REF] Barbieri | On the Cramé r-Rao Bound for Carrier Frequency Estimation in the Presence of Phase Noise[END_REF]- [START_REF] Yang | Approximate Expressions for Cramé r-Rao Bounds of Code Aided QAM Dynamical Phase Estimation[END_REF]. To quantify the resulting performance degradation, [START_REF] Barbieri | On the Cramé r-Rao Bound for Carrier Frequency Estimation in the Presence of Phase Noise[END_REF] considered the data aided CRB for the frequency offset estimation with a phase noise variance. [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramé r-Rao Bound for Dynamical Phase Offset Estimation[END_REF] has derived a Bayesian CRB (BCRB) for the NDA BPSK signal with dynamical phase offset. When a deterministic parameter (such as a linear drift) is jointly to be considered, the hybrid CRB (HCRB) is relevant; the HCRB was applied to the case of the dynamical phase estimation as briefly sketched in [START_REF] Bay | On the Hybrid Cramé r-Rao bound and its Application to Dynamical Phase Estimation[END_REF] for NDA BPSK signal and in [START_REF] Yang | Approximate Expressions for Cramé r-Rao Bounds of Code Aided QAM Dynamical Phase Estimation[END_REF] for coded QAM signals. The goal and the contribution of this paper is to give both the BCRB and the HCRB for the dynamical time-varying phase estimation in the case of QAM modulated signals and for the different scenarios (NDA, CA and DA). We present some closed form expressions for the various CRBs based on the second derivatives of the log-likelihood function; by detailing the derivations, we show that the exact calculation of the HCRB is theoretically NP hard and cannot be easily calculated (the SCRB is just a special case of the HCRB). The obtained closed form expressions give a clearer insight of the corresponding information matrix elements and this enables us to justify some simplifications. Moreover, we display how the different bounds for the deterministic and stochastic parameters of interest behave in the different scenarios (off-line / on-line, DA / CA / NDA) and we give asymptotic results. Note that similarly to [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramé r-Rao Bound for Dynamical Phase Offset Estimation[END_REF], [START_REF] Bay | On the Hybrid Cramé r-Rao bound and its Application to Dynamical Phase Estimation[END_REF] which provide a satisfying benchmark for the non coded BPSK phase estimation algorithm [START_REF] Yang | Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation -Application to BPSK Modulated Signals[END_REF], these derived CRBs provide very good benchmarks for the more difficult QAM phase estimation algorithms both in NDA [START_REF] Yang | Smoothing PLLs for QAM Dynamical Phase Estimation[END_REF] and CA [START_REF] Yang | Near MAP Smoothing Loops for Code Aided QAM Dynamical Phase Estimation[END_REF] scenarios. This paper is thus organized as follows. In section II, we recall the various kinds of Cramé r-Rao bounds. After describing the system model in section III, we derive the Bayesian and the hybrid Cramé r-Rao bounds for off-line estimations for the DA, CA and NDA scenarios in section IV. The on-line bound is derived in section V and the different results are illustrated and interpreted in the final section. 2

II. CRAMÉR-RAO BOUNDS REVIEW

Different kinds of CRBs can be considered. In the following, we briefly describe the links between on one side the HCRB, and on the other side the standard CRB and the BCRB.

We consider the most general case including both deterministic and random parameters for hybrid estimation. 
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where   d Hu is the so-called hybrid information matrix (HIM) and is defined as
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It is shown in [START_REF] Bay | On the Hybrid Cramé r-Rao bound and its Application to Dynamical Phase Estimation[END_REF] that inequality (1) is still respected when the deterministic and the random parts of the parameter vector are dependent. By expanding the log-likelihood as 
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and the inverse of ( 5) is just the standard CRB [START_REF] Fisher | On the mathematical foundations of theoretical statistics[END_REF].

If r  uu , we have that     ln r r r r rr E E p        u u u u H F u u , (6) 
where

    | ln | r rr rr Ep     u y u u F u y u (7) 
and the inverse of H in ( 6) is the Bayesian CRB [START_REF] Trees | Detection, Estimation and Modulation Theory[END_REF].

Because ( 5)-( 6) can be considered as special cases of the general definition given in (3), in section IV, we first give the detailed derivation of the HCRB for the QAM dynamical phase estimation and it is then easy to obtain the BCRB for our problem.

III. SYSTEM MODEL

We consider the transmission over an additive white Gaussian noise (AWGN) channel of a modulated sequence For the data-aided (DA) system, the transmitted symbols are known. As the observations and the transmitted symbols are independent and the additive noise is Gaussian distributed, the conditional probability based on the known phase θ is 
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)
For the non-data-aided (NDA) system, the transmitted symbols are independent and identically distributed (i.i.d.). Hence the conditional probability based on the known phase θ is 
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)
For the code-aided (CA) system, the independent and identically distributed (i.i.d.) condition between the transmitted symbols does not hold any more, instead the i.i.d. condition holds between the codewords. A message of K bits is encoded into a

N bit codeword     12 , , , | 1, ,2 K Nv c c c v    cc
which is then in practice further mapped as a symbol vector

        1 ,, v v L v ss  s c c c .
Hence, the conditional probability based on the known phase vector θ is [START_REF] Noels | Pilot-Symbol Assisted Carrier Synchronization Cramé r-Rao Bound and Synchronizer Performance[END_REF] We now consider the phase model. In practice, there is a constant frequency shift between the transmitter's clock and the receiver's clock. The corresponding phase distortion is linear. Furthermore, clocks are never perfect and oscillators suffer from jitters. This results in a Brownian phase model with a linear drift
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where l  is the unknown phase offset at time l ,  is the unknown constant frequency offset (linear drift), l w is a white Gaussian noise with zero mean and variance 2 w  . This model is commonly used [START_REF] Barbieri | On the Cramé r-Rao Bound for Carrier Frequency Estimation in the Presence of Phase Noise[END_REF]- [START_REF] Yang | Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation -Application to BPSK Modulated Signals[END_REF] in order to describe the behavior of practical oscillators for which the frequency is randomly perturbed. The corresponding conditional probability can be expressed as
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)
Note that from [START_REF] Cowley | Phase and frequency estimation for PSK packets Bounds and algorithms[END_REF], the joint pdf   | p  θ can be written as
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)
Since the observation l y in (8) does not depend on the deterministic parameter  , we also have 

   | , | l l l l p y p y     .

IV. CRBS FOR THE DYNAMICAL PHASE ESTIMATION

In practical receivers, phase estimation can actually be considered following two main scenarios: off-line and on-line. With off-line synchronization, the carrier phase offset θ is not estimated until the whole observation frame y has been received. In the rest of this section, we derive some analytical expressions for bounds corresponding to the off-line carrier phase offsets estimation.

In a subsequent paragraph, these expressions will further allow us to find some bounds for the on-line scenario.

The parameters of the phase model ( 12) include some random parameters

  1 ,, T L   θ
(i.e. the dynamical phase) and a deterministic parameter  (i.e. the scalar linear drift), so that the parameter vector can be written as

r d       u θ u u . ( 15 
)
Equation ( 3) thus becomes
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)
where
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We then decompose the hybrid information matrix (HIM) H into a block matrix that will be useful in the sequel 
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where
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From ( 8)- [START_REF] Noels | Pilot-Symbol Assisted Carrier Synchronization Cramé r-Rao Bound and Synchronizer Performance[END_REF], one can see that the log likelihood function are both equal to zero. The hybrid block matrix can thus be written as:
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where
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First, the DA and NDA scenarios are briefly reviewed in sections IV.A and IV.B, as a simplified version has already been presented in [START_REF] Yang | Approximate Expressions for Cramé r-Rao Bounds of Code Aided QAM Dynamical Phase Estimation[END_REF]. Then the more difficult to tackle CA scenario is detailed in section IV.C. For both the DA and NDA scenarios, according to the observation model defined previously, after a marginalization on the independent symbols, and then using both the independence of the transmitted symbols and the whiteness of the noise, one finds that:
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)
One can realize that each term of the sum ( 21) is a matrix with only one non-zero element at most, namely,
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)
As a direct consequence, the Hessian

  ln | , p   θ θ y θ
is a diagonal matrix with the th l diagonal element given by [START_REF] Noels | True Cramé r-Rao Bounds for Carrier and Symbol Synchronization[END_REF]. Moreover, because of the circularity of the observation noise, the expectation of ( 22) with respect to   y s e p p y s
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)
So in the DA case, [START_REF] Noels | The Cramé r-Rao Bound for Phase Estimation from Coded Linearly Modulated Signals[END_REF] becomes
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)
where the signal-to-noise ratio is defined as We now turn to the NDA scenario. With an appropriate marginalization on the transmitted symbols, we obtain by deriving ( 10)

        ln | , , ln | ln | , ln | , . lM l l l s ll l l l l p y s p p p y                      S y θ y θ (28) 
As the derivation is a linear operator, we find that
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Moreover as 25), ( 26), [START_REF]Digital Video Broadcasting (DVB); Second Generation Framing Structure, Channel Coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications[END_REF] and following a similar calculus, we further find that [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramé r-Rao Bound for Dynamical Phase Offset Estimation[END_REF] In general, the expectation of [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramé r-Rao Bound for Dynamical Phase Offset Estimation[END_REF] 

      ln | , , | , , 1 | , ,
                 
  | , E     θ F θ for the CA scenario
For the CA scenario, because of the code structure, the independence condition between symbols does not hold anymore. Using [START_REF] Noels | Pilot-Symbol Assisted Carrier Synchronization Cramé r-Rao Bound and Synchronizer Performance[END_REF], one has that

            22 11 1 ln | , ln | , , ln | , , KK L v v l l l v l v vv l p p p p y s s p                                  y θ y c c θ c c c c c . ( 33 
)
From ( 70)-(72) in the Appendix, we show that the first and the second derivatives can respectively be expressed as 

        2 1 ln | , , ln | , Pr | , , K m m m v m v v mm p y s s p           c y θ c c y θ , (34) 
for mn                  2 
                              
 cc y θ y θ y θ c c y θ , [START_REF] Yang | Smoothing PLLs for QAM Dynamical Phase Estimation[END_REF] and

for mn                2 2 2 2 2 22 1 ln | , , ln | , , ln | , ln | , Pr | , , K m m m v m m m m v m v v m m m m p y s s p y s s pp                                       cc y θ y θ c c y θ . ( 36 
)
All these derivatives are too hard to use in practice because they all involve an exponential number of sums. We thus propose the following method to find a good approximation of these derivatives. From [START_REF] Yang | Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation -Application to BPSK Modulated Signals[END_REF], the first derivative can be further expressed as follows 
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where

  1, if 0, otherwise. v mi mi ss ss        cc (38) 
Thus

            2 11 2 1 ln | , ln | , , Pr , , | , , 2Im Pr | , , , K m M m m i m v m m v m i iv mm j M mi mi i n p p y s s s s s s y s e ss                        y θ c c c y θ y θ (39) 
where

            22 11 Pr | , , Pr , , | , , Pr , | , , KK v m i v m m v m i v m m v m i vv s s s s s s s s s s                 cc y θ c c c y θ c c c y θ . ( 40 
)
The term  

Pr | , , mi ss   y θ
in ( 39) is exactly the a posteriori probability of the code aided scenario.

Similarly to the first derivative [START_REF] Kim | A Computational Model for Combined Causal and Diagnostic Reasoning in Inference Systems[END_REF], the second derivatives [START_REF] Yang | Smoothing PLLs for QAM Dynamical Phase Estimation[END_REF] for nm  can be further expressed as 

                          1 1 2 2 2 1 2 1 ln | , , ln | , , ln | , ln | , ln | , Pr , , | , , ln | , Pr , , , , | , , 
K K m m m v m n n n v n v m m v n n v v n m m n m n m m i v m m v m i n n v n i v p y
                                             c c y θ y θ y θ c c c c y θ c c c c y θ                   2 
                                            y θ y θ
y θ y θ y θ [START_REF] Divsalar | Turbo Codes for PCS Applications[END_REF] where can be approximately expressed as the product of two independent probabilities, i.e. 
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where the last equality comes from [START_REF] Kim | A Computational Model for Combined Causal and Diagnostic Reasoning in Inference Systems[END_REF].

The second derivative [START_REF] Yang | Near MAP Smoothing Loops for Code Aided QAM Dynamical Phase Estimation[END_REF] for mn  can be similarly derived as below 
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We thus obtain the expression of the second derivatives as follows when the code has been sufficiently interleaved 

            2 
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Actually, the calculation of  

Pr | , , mi ss   y θ
is also NP hard (see [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference (Revised Second Printing)[END_REF]) and theoretically requires 2 K sums. In practice we just have to resort to some classical a posteriori probability (APP) decoding algorithms, namely the famous Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [START_REF] Bahl | Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate[END_REF] or the belief propagation (BP) algorithm [START_REF] Pearl | Reverend Bayes on Inference Engines a Distributed Hierarchical Approach[END_REF]- [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference (Revised Second Printing)[END_REF], in order to calculate the approximate value of

  Pr | , , mi ss   y θ
In the rest of the paper, we assume that the code has been sufficiently interleaved so that (45) holds.Moreover, discarding the last zero line and column, the FIM then has an identity matrix form as 

    CA DL EJ    θ F θ I , (46) 

D. Computation of the HIM

As mentioned in [START_REF] Noels | True Cramé r-Rao Bound for Estimating Synchronization Parameters from a Linearly Modulated Bandpass Signal with Unknown Data Symbols[END_REF], the HIM can be divided into four submatrices; due to the model of Section III, assuming that we have no a priori knowledge on the initial phase, one obtains that the upper left part 11 H , which corresponds to the random parameters θ , has a particular mathematical structure just like in [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramé r-Rao Bound for Dynamical Phase Offset Estimation[END_REF] 11 1 , , 1

1, 1 0 0 1 1 0 00 0 1 1 0 0 1 1 A A b A A            H , ( 47 
)
T T ww L        H H 0 , ( 49 
)   2 22 1. w L   H (50)

E. The Bayesian Cramé r-Rao bounds (BCRBs)

When there is no linear drift, the parameter vector u contains only random parameters θ , i.e. 

         2 2 1 1 1 2 3 2 3 2 2 1 1 2 11 1 1 1 2 2 2 1 2 1 2 ,, 1 2 L L L L l L l L L l l l l L b r r b r r b r r r r A                             HB B , ( 52 
)
where

    1 22 1 1 22 2 1 1 1 4 2, 1 1 1 4 2, w D w D w D w D r J J r J J                           (53) and             1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 4 1 2 2 1 4 , 1 4 1 2 2 1 4 . D w D w D w D w D w D w J J J J J J                                                        (54)

F. The hybrid Cramé r-Rao bounds (HCRBs)

We now inverse the HIM to obtain the analytical expression of the HCRB. In the sequel, we shall need the expression of the elements of the first row of 1 11  H . We proceed similarly as in [START_REF] Bay | On the Hybrid Cramé r-Rao bound and its Application to Dynamical Phase Estimation[END_REF]. From (47), thanks to the cofactor expression of the matrix inversion formula we have   (54). We then obtain from (55)

      1 1 1 1 11 1 1 1 2 2 2 1, 11 l L l L l l b r r b r r b              H H . ( 58 
)
Thanks to the block-matrix inversion formula [START_REF] Kay | Fundamentals of Statistical Signal Processing Estimation Theory[END_REF], we now can find the expression of the inverse of the HIM 

L T                H V H H H HH , ( 59 
)
where 11

1 12 11 12 2 1 T w L      H H H , (60) 
L ll l L l l L l ww                            V H H H H . ( 63 
)
Inserting (58) into (63) and then into (59), we obtain the analytical expression of the upper diagonal elements 
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Comparing to (52), we notice that the contribution of L V in (64) is the additional uncertainty brought by the linear drift  .

G. High SNR Asymptote Bound

In the high-SNR range, there exists one constellation point max 

                        y θ (65) 
Thus both NDA and CA scenarios are equivalent to the DA scenario at high SNR and one has

      2 NDA CA DA 2 2 2 SNR s Dh Dh D n J J J        . ( 66 
)
We thus obtain the same result as in [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramé r-Rao Bound for Dynamical Phase Offset Estimation[END_REF]; by introducing this value into the mathematical expression of the bound, we obtain similarly to section V of [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramé r-Rao Bound for Dynamical Phase Offset Estimation[END_REF], an asymptotic bound which is under the bound itself. Note that a far more complex expression for

  NDA Dl J
can be obtained at low SNR, and one can combine the low and high SNR HCRB asymptotes to lead to an asymptotic lower bound without any Monte-Carlo simulation.

V. ON-LINE BOUNDS

Up to this section, we have focused on the off-line scenario. We now show how the previous results can be directly used in the case of an on-line synchronization mode. In this mode, only the past and the current observations are available, i.e.

 

11 ,,

T l l yy 
where lL  . Like in section III of [START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramé r-Rao Bound for Dynamical Phase Offset Estimation[END_REF], the on-line BCRB (resp. HCRB) associated to vector 1 L y is equal to entry   , LL of the inverse of the BIM (resp. HIM); one thus readily obtains the analytical expression of the on-line BCRB (from (52)) and on-line HCRB (from (64)) associated to the estimation of
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where 1 r , 2 r , 1  and 2  are given by ( 53),(54), and

 

11 l H is a ll  matrix with the same form as 11 H of equation (47).

VI. DISCUSSION

We now display simulation results with Gray mapping QAM symbols for different scenarios. For the code aided scenario, we use a recursive systematic rate 12 turbo code (mother code rate 13) whose generator polynomials are with a S random interleaver [START_REF] Divsalar | Turbo Codes for PCS Applications[END_REF]. Since turbo code can be described by means of a trellis, the marginal APPs can be efficiently computed by the famous BCJR algorithm [START_REF] Bahl | Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate[END_REF]. ). We first remark that in all the cases (BCRB/HCRB and DA/CA/NDA), the off-line scenario always gives a better result that the corresponding on-line result. To be more precise, the on-line curves always benefit from more and more observations until they saturate; at the last position the on-line bound corresponds exactly to the off-line bound.

-5 0 5 10 15 20 25 30 -38.4 -38.2 -38 -37.8 -37.6 -37.4 -37.2 -37 -36.8 -36.6 SNR (dB) MSE (dB) 
HCRB  (  = 0.03rad,  w 2 = 0.01rad 2 ) NDA, 256QAM, L = 72 NDA, 64QAM, L = 72 NDA, 16QAM, L = 72 NDA, QPSK, L = 72 NDA, BPSK, L = 72 DA, L = 72 -5 0 5 10 15 20 -38.5 -38 -37.5 -37 -36.5 -36 -35.5 SNR (dB) MSE (dB) 
HCRB  (  = 0.03rad,  w 2 = 0.01rad 2 ) CA, 256QAM, L = 72 CA, 64QAM, L = 72 CA, 16QAM, L = 72 CA, QPSK, L = 72 CA, BPSK, L = 72 DA, L = 72
Contrarily to the on-line scenario, for the off-line scenario the best phase estimate is achieved at midblock, whereas they become poorer at the block border. This comes from the fact in the center position of the phase vector, one has more adjacent (past or future) and strongly correlated variables (see the phase model of ( 12)) than at the border of the block. Also logically, the DA scenario achieves a better performance than the CA aided scenario and even more than the NDA scenario. The BCRB provides the lower bound for this general block-phase estimation framework with a known linear drift  (or 0   ), whereas the HCRB provides the lower bound with an unknown linear drift  . The HCRB is always lower bounded by the BCRB for any position in the block but for such a block length, there is almost no loss of information due to the linear drift for the off-line case in the center position so that the HCRB almost corresponds to the BCRB.

Instead of looking at the different positions for a given SNR, we now display HCRB curves as function of the SNR for the phase at the central position of the block. Figure 3 displays results for the BPSK modulated signal. For codes that are described by means of a trellis, the marginal symbol APPs in [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference (Revised Second Printing)[END_REF] and [START_REF]ETSI EN 300 744[END_REF] can be approximately computed from the trellis state APPs and state transition APPs, which in turn can be determined efficiently by the famous BCJR algorithm. Like already observed on figure 2, one can see on figure 3 that the off-line scenario allows better results than the on-line scenario and also that the NDA case is worse compared to the CA and to the DA cases. Here, it is important to note that one can expect a better performance with the NDA off-line scenario rather than with the CA on-line scenario. Stated in other words, in general, one can expect more benefits from the estimation method (off-line/on-line) rather than the way of using data (DA, CA or NDA). This can also be observed for other modulations and other coding schemes (e.g. simple convolutional codes) and this is a general tendency; however the results are not always totally so simple as displayed in the following figure 4 with a 16QAM modulation and some additional parameters must be taken into account. To get more insight into those curves we also display the various D J as functions of the SNR on the right side of figure 3 and4.

From the asymptote analysis of Section IV.G, we know that at high SNR, D J is just proportional to the SNR (see (66)) but watching the left part of these figures, we can see that at lower SNR , D J behaves like a non linear amplifier of SNR and behaves differently according to the DA, CA, and NDA scenarios. This behaviour allows predicting exactly where the different bounds leave their asymptote. The D J curves also give an indication whether one can expect a large deviation from the asymptote; but one also has to take into account the phase variance value to know the exact behaviour of the bounds (see figure 4 for two different phase variances).

Finally, figure 5 (resp. figure 6) displays for the off-line scenario, the NDA (resp. CA) HCRB on k  as a function of the SNR in the center position for various constellations. Like it was observed on previous figures, the on-line scenario would give exactly similar results that are not displayed here. 
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  an a priori probability density function (pdf)   r p u . The true value of d u is denoted d u . We consider   ûy as an estimator of u where y is the observation vector. The HCRB satisfies the following inequality on the MSE

  gives the contribution of the observations whereas the second term on the right side corresponds to the contribution of the a priori distribution. It is then straightforward to re-obtain the standard and the Bayesian CRBs as particular cases. If d  uu , then H reduces to

.nS

  QAM, M-PSK or M-APSK), affected by some carrier phase offsets stacked in a vector   Assuming that the timing recovery is perfect and that there is no inter-symbol interference (ISI), the sampled baseband signal are respectively the th l transmitted complex symbol ( is the transmitted signal power), the residual phase distortion that must be eliminated and the zero mean circular Gaussian noise with known variance 2 n  .

  the computation of the FIM   ,  F θ , which in turn requires the evaluation of the Hessian of the log-likelihood function

I

  | ll py  does not depend on l  .Discarding the last zero line and column, one then obtains is the LL  identity matrix and D J is defined as follows

  is also an a posteriori probability of the code aided scenario and it measures the dependency between the symbols in position n and in position m . Actually the evaluation of ) for any couple of positions really burdens the computation complexity. If the codeword has been sufficiently interleaved, the term  

whereLI

  is the LL  identity matrix and 

rB

  uu θ . In this scenario, the BCRB is the lower bound of the MSE. Moreover, the Bayesian information matrix (BIM) L B is equal to the upper left sub-matrix of the HIM, i.e. is the off-line BCRB associated to the estimation of l  . Furthermore, the corresponding analytical expression associated with the off-line BCRB has already been obtained in Appendix I. D of[START_REF] Bay | Analytic and Asymptotic Analysis of Bayesian Cramé r-Rao Bound for Dynamical Phase Offset Estimation[END_REF] 

dand 2 

 2 is the determinant of the following ll  matrix were given in (53) and

  compute  corresponding to the inverse of the minimum bound on  . Due to the particular structures of matrices 11 are given by (58).We now derive an analytical expression for the diagonal elements of the upper left part   minimum bound on θ (see (59)). From the definition of L V in (61), the diagonal elements   ,
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  with respect to  

		Pr | , , l l l sy  does not have any simple analytical solution. Hence, in practice,
	we have to evaluate		
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the estimation performance. This also explains why the NDA CRBs do not merge anymore with the DA CRBs. Moreover, we note that every time the density of the constellation is increased by a factor of 4, (i.e. the constellation size is multiplied by 4), the threshold where the NDA bounds leave the DA bound is increased by 6dB. Contrarily to the NDA CRBs, the CA CRBs continue to coincide with the DA CRBs till a SNR at least 6dB lower than the one of the NDA CRBs. Obviously, the performance prominently benefits from the decoding.

 At low SNRs, the CA CRBs do not merge anymore with the DA CRBs. The observation noise becomes preponderant compared to the phase noise and directly affects the estimation performance; also, the lack of knowledge on  further deteriorates the observed performance. Note that the NDA bound for the robust real BPSK scheme has not the same slope than the other complex constellations NDA bounds.

VII. CONCLUSION

In this paper, we have derived the on-line and off-line Bayesian Cramé r-Rao bounds (BCRBs) and hybrid Cramé r-Rao bounds (HCRBs) for the QAM dynamic phase estimation in data-aided (DA), non-data-aided (NDA) and code-aided (CA) scenarios. We were able to provide closed-form expressions for a realistic dynamic phase model and for realistic telecommunication systems involving turbo-codes and large constellations. We have shown that off-line bounds allow to have better performance than on-line bounds. Moreover, most of the time, NDA off-line bounds are eager to provide better performance than CA on-line bounds. We also saw that the often studied BPSK case does not tell the whole story and that there is some space for additional CA synchronization gain at low SNR for larger constellations. These bounds provide a powerful tool for the communication system design in stressing environments.