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CONVERGENCE OF A LINEARLY TRANSFORMED PARTICLE
METHOD FOR AGGREGATION EQUATIONS

MARTIN CAMPOS PINTO, JOSÉ A. CARRILLO, FRÉDÉRIQUE CHARLES,
AND YOUNG-PIL CHOI

Abstract. We study a linearly transformed particle method for the aggre-
gation equation with smooth or singular interaction forces. For the smooth
interaction forces, we provide convergence estimates in L1 and L∞ norms de-
pending on the regularity of the initial data. Moreover, we give convergence
estimates in bounded Lipschitz distance for measure valued solutions. For
singular interaction forces, we establish the convergence of the error between
the approximated and exact flows up to the existence time of the solutions in
L1 ∩ Lp norm.

1. Introduction

In this work, we are interested in showing the convergence of approximated
particle schemes to the Cauchy problem for the so-called aggregation equation.
This equation determines the evolution of a probability density ρ(t, x) defined by

(1.1)


∂tρ(t, x) +∇ · (ρu)(t, x) = 0, x ∈ Rd, t > 0,

u(t, x) = −(∇W ∗ ρ(t))(x), x ∈ Rd, t > 0,

ρ(0, x) = ρ0(x) ≥ 0, x ∈ Rd.

Here, −∇W (x − y) measures the interaction force that an infinitesimal particle
located at y ∈ Rd will exert on a particle located at x ∈ Rd. As a result, we will
call W the interaction potential. Since the total mass is preserved, without loss of
generality, we assumeˆ

Rd

ρ(t, x) dx =
ˆ
Rd

ρ0(x) dx = 1 ∀t ≥ 0.

The microscopic dynamics of N particles Xi, i = 1, . . . ,N , interacting through the
potential W are given by

(1.2) Ẋi = −
∑
j 6=i

mj ∇W (Xi −Xj) , i = 1, . . . ,N ,

where the inertia term is assumed to be negligible compared to friction [45, 46].
The macroscopic dynamics (1.1) consists of a continuity equation where the velocity
field is given by u(t, x) = −(∇W ∗ ρ(t))(x), which is the mean-field limit of the
microscopic system when N → ∞ under certain conditions on the potential [32,
37, 18, 20].

Equation (1.1) has attracted lots of attention in the recent years for three rea-
sons: its gradient flow structure [43, 26, 49, 1, 27], the blow-up dynamics for fully
attractive potentials [7, 20, 9, 25], and the rich variety of steady states and their
bifurcations both at the discrete (1.2) and the continuous (1.1) level of descriptions
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[35, 36, 6, 47, 22, 21, 9, 2, 3, 50, 51, 4, 15, 19]. Furthermore, these systems are
ubiquitous in mathematical modelling appearing in granular media models [5, 43],
swarming models for animal collective behavior [33, 42, 24], equilibrium states for
self-assembly and molecules [34, 48, 52, 38], and mean-field games in socioeconomics
[31, 11] among others.

We will focus the rest of the introduction on the well-posedness of the continuous
equation (1.1) and the numerical methods proposed for its approximation. The
equation (1.1) has the formal structure of being a gradient flow of a functional in
the set of probability measures. Indeed, defining the interaction energy as

F [µ] := 1
2

ˆ
Rd

ˆ
Rd

W (x− y) dµ(x) dµ(y)

for any probability measure µ, we find u = −∇ δF
δµ where δF

δµ is the formal variation
of the functional F [µ]. This observation leads to a natural formal Lyapunov func-
tional for the solutions of equation (1.1). In fact, we expect solutions to satisfy the
identity

d

dt
F [ρ(t)] = −

ˆ
Rd

|∇W ∗ ρ(t)|2ρ(t) dx

for all t ≥ 0. This structure can be rendered fully rigorous for C1-potentials [1]
and it allows for mildly singular potentials at the origin [20, 21, 25] provided the
interaction potential has some convexity property called λ-convexity.

On the other hand, global in time unique weak measure solutions can be con-
structed for any probability measure as initial data under suitable smoothness as-
sumptions on the interaction potential. In this work, whenever we refer to smooth
potentials, we mean that the interaction potential satisfies ∇W ∈ W1,∞(Rd). For
smooth potentials, the approach introduced by Dobrushin for the Vlasov equa-
tion [32] using the bounded Lipschitz distance between probability measures, see
[37, 18, 14] for further details, gives a well-posedness theory of weak measure solu-
tions.

However, many of the interesting features related to blow-up dynamics and sta-
tionary states happen for potentials that are singular at the origin. Typical exam-
ples to bear in mind are combinations of repulsive attractive power-law potentials
of the form W (x) = |x|a

a −
|x|b
b with −d ≤ b < a and the convention |x|

0

0 = log |x|,
or fully attractive potentials W (x) = |x|a

a with a > −d, suitably cut-off at infinity.
In this work, whenever we refer to singular potentials we mean that the interaction
potential is not smooth but satisfies

|∇W (x)| ≤ C

|x|α
and |D2W (x)| ≤ C

|x|1+α with − 1 < α < d− 1

for some constant C > 0, and in addition we assume that ∇W is bounded away
from the origin if α < 0. These conditions allow for singularities at the origin up
to Newtonian but not including it. In particular, our singular potentials are such
that ∇W ∈ W1,q

loc (Rd) with a range depending on α: 1 ≤ q < d
α+1 . Note that the

power-law potentials satisfy locally the conditions of being a singular potential in
the range 2 − d < b < 2 for repulsive-attractive and in the range 2 − d < a < 2
for fully attractive. The various well-posedness theories for measure solutions fail
as soon as the potential becomes singular at the origin. However, weak solutions
in Lebesgue spaces can be obtained. A local-in-time well-posedness theory was
obtained in [10, 18] for initial data in (L1 ∩ Lp)(Rd) with p = q′ the conjugate
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exponent of q, and in [7, 9] a local-in-time well-posedness theory for initial data
in (L1 ∩L∞)(Rd) was developed for singularities up to and including a Newtonian
singularity at the origin, corresponding to α = d − 1. In this work, we will use
the setting introduced in [18]. The Newtonian case is very specific because of the
relation between the divergence of the velocity field and the density becomes local.

Under the above assumptions of either smooth or singular potentials, the proofs
of the global-in-time well-posedness of weak measure solutions and the local-in-time
well-posedness of weak solutions for initial data in (L1 ∩ Lp)(Rd) spaces are essen-
tially based on the fact that the velocity field is regular enough to have meaningful
characteristics. It is proved in [32, 37, 10, 18] that the velocity field of the con-
structed solutions is continuous in time and Lipschitz continuous in space. Then,
the flow map Φt(x), defined by the unique solution of the characteristic system

dX

dt
(t) = u(t,X(t)),

X(s) = x,

is a diffeomorphism for all times t ≥ 0. In all cases, the solution built in [32, 37, 10,
18] is obtained by characteristics and given by ρ(t) = Φt#ρ0. Here, T #µ denotes
the push-forward of a measure through a measurable map T : Rd −→ Rd defined
as T #µ[K] := µ[T −1(K)] for all Borel sets K ⊂ Rd, or equivalentlyˆ

Rd

ϕd(T #µ) =
ˆ
Rd

(ϕ ◦ T ) dµ for all ϕ ∈ Cb(Rd) .

A very interesting question is the rigorous derivation of the continuum descrip-
tion (1.1) starting from the microscopic dynamics (1.2) for both regular and singular
potentials. This is the so-called mean-field limit problem. The mean-field limit re-
sults contain as a by-product convergence results for the classical particle method.
More precisely, proving that (1.1) is the mean-field limit of the system (1.2) as
N →∞ is equivalent to show that the empirical measure

µN (t) = 1
N

N∑
i=1

δXi(t)

converges weakly in measure sense to the solution of (1.1) provided that this weak
convergence holds initially. Even if the particle method is proved to be convergent
of order 1

N , the convergence error is only controlled in the bounded Lipschitz or
Wasserstein-type distances between measures [32, 37, 18, 20].

Vortex-blob methods, originally introduced for the 2D Euler equations for in-
compressible fluids, see [44] and the references therein, have also been adapted
recently to the aggregation equation [8] with fixed shapes, where the approximate
densities are shown to converge with arbitrary orders but only in negative Sobolev
norms.Particle methods were also used in plasma physics for the Vlasov-Poisson
system [30], where they are usually called smooth Particle In Cell (PIC) methods.

In the Linearly Transform Particle (LTP) method, introduced by Campos Pinto
in [12] following an idea of Cohen and Perthame [29], particles are pushed on to
discrete times according to an approximation of the exact flow as in standard par-
ticle methods. Moreover, particles have their own shape, which is transformed in
the discrete evolution in order to better approach the local flow using a lineariza-
tion of the exact flow. To our knowledge the LTP method has only been used for a
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linear transport equation [29] or for a Vlasov-Poisson system [13] involving measure-
preserving characteristic flows. The technical difficulties posed by the deformation
of the flows in our present case have been overcome by detailed estimates of the
Jacobian matrices and determinants. These estimates have allowed us to control
the error on the densities via the errors of the flows to finally obtain the conver-
gence results. Certain Sobolev regularity is needed on the initial data to obtain
convergence of the LTP method in Lebesgue spaces for both smooth and singular
potentials. However, a general result of convergence for weak measure solutions is
obtained in an appropriate distance for measures.

Let us finally mention that other numerical methods have been proposed in the
literature for the aggregation equation. In [16], the authors proposed a finite volume
scheme which is shown to be energy preserving, i.e., it keeps the property that the
energy functional is dissipated along the semidiscrete flow. Finite volume and finite
difference schemes have been shown to be convergent to weak measure solutions of
the aggregation equations for mildly singular potentials in [41, 25].

In this work, we extend the LTP method to the aggregation equation seen as one
of the most important representatives of a class of nonlinear continuity equations
with non divergence free velocity fields in any dimensions. We start by summarizing
the basic ideas of the numerical LTP method in Section 2 together with the prelim-
inaries and notations used in this work. Section 3 is devoted to give convergence
results for smooth potentials in Lebesgue spaces. Depending on the regularity of
the initial data, we will be able for smooth potentials to control errors in L1 and
L∞. For initial data just being a probability measure, we will show in Section 4 the
convergence in bounded Lipschitz distance. In the case of singular potentials, we
will control in Section 5 the error upto the existence time of the solution of (1.1)
in L1 and Lp with p suitably chosen. We finally show in Section 6 the performance
of this method in one dimension validating the numerical implementation with ex-
plicit solutions and making use of it to study certain not well-known qualitative
features of the evolution of (1.1) with several smooth and singular potentials.

2. Preliminaries

2.1. Basic properties of the exact flow. In the setting of our main results, the
velocity field of the exact solution to (1.1) is always continuous in t and Lipschitz
continuous in x. The solution of the characteristic system

dX

dt
(t) = u(t,X(t))

X(s) = x,

is well-defined and it has unique global in time solutions for all initial data x ∈ Rd.
Moreover, the general solution of the characteristic system is a diffeomorphism in
Rd. The general flow map will be denoted by F s,t(x) for all t, s ∈ R and x ∈ Rd.

As discussed in the introduction, the solutions to (1.1) can always be expressed
as ρ(t) = F 0,t#ρ0 or equivalently as

ρ(t, x) = ρ0 (F t,0(x)
)
jt,0(x) with jt,0(x) = det(J t,0(x)), J t,0(x) = DF t,0(x) .

The flow map satisfies

(2.1) F s,t(x) = x+
ˆ t

s

u(τ, F s,τ (x))dτ = x−
ˆ t

s

(∇W ∗ ρ(τ))(F s,τ (x))dτ,



LINEARLY TRANSFORMED PARTICLE METHOD FOR AGGREGATION EQUATIONS 5

and the Jacobian matrix and its determinant satisfy the differential equations

(2.2) d

dt
Js,t(x) = Du(t, F s,t(x))Js,t(x) and d

dt
js,t(x) = ∇·u(t, F s,t(x))js,t(x).

Using u(τ, y) = −(∇W ∗ ρ(τ))(y), this yields

Js,t(x)− Id =
ˆ t

s

Du(τ, F s,τ (x))Js,τ (x)dτ

= −
ˆ t

s

(D2W ∗ ρ(τ))(F s,τ (x))Js,τ (x)dτ(2.3)

and

js,t(x) = exp
(
−
ˆ t

s

∇ · u(τ, F s,τ (x)dτ
)

= exp
(
−
ˆ t

s

(∆xW ∗ ρ(τ))(F s,τ (x))dτ
)
.(2.4)

Estimates are then easily derived when u ∈ L∞(0,∞;W1,∞(Rd)). We will write
L := supt∈[0,∞) ‖u(t, ·)‖W1,∞ . For instance, using (2.2) and Js,s(x) = Id we find

(2.5) sup
x∈Rd

|Js,t(x)| ≤ exp (CL|t− s|) ,

and in particular the characteristic flow is Lipschitz (relative to any norm in Rd),

(2.6) |F s,t|Lip ≤ exp (CL|t− s|) .

Furthermore, we derive from (2.3) and (2.5) that

(2.7) sup
x∈Rd

|Id − Js,t(x)| ≤ (t− s) exp (CL|t− s|)

and using (2.4) we also find

(2.8) exp (−CL|t− s|) ≤ js,t(x) ≤ exp (CL|t− s|) for x ∈ Rd

and

(2.9) ‖js,t − 1‖L∞ ≤ CL|t− s| exp (CL(t− s)) .

Let us remark that the previous estimates (2.5)-(2.9) can also be obtained in a time
interval [0, T ] for locally Lipschitz velocity fields u ∈ L∞(0, T ;W1,∞(Rd)) for some
T > 0, with constant LT := supt∈[0,T ] ‖u(t, ·)‖W1,∞ . These estimates will be used
in Section 5, where the dependence on T of the Lipschitz constant will be omitted
for the sake of simplicity.

2.2. Linearly Transformed Particles. As in standard particle methods, the den-
sity ρ is represented with weighted macro-particles, and as in smooth particle meth-
ods, particles have here a finite and smooth shape. Thus, we approximate the initial
density ρ0 on a Cartesian grid of size h > 0 by

(2.10) ρ0
h(x) =

∑
k∈Zd

ωkϕ
0
h,k(x)

with particle shapes obtained by scaling and translating a reference function, i.e.,

(2.11) ϕ0
h,k(x) = 1

hd
ϕ

(
x− x0

k

h

)
, x0

k = kh.
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Here the reference shape is assumed to have a compact support supp(ϕ) ⊂ B(0, Ro),
be bounded and satisfy∑

k∈Zd

ϕ(x− k) = 1 for x ∈ Rd and
ˆ
Rd

ϕ = 1.

In this work we will require that the shape functions are Lipschitz, and we can
either consider for the reference shape the tensor-product hat function

(2.12) ϕ(x) =
∏

1≤i≤d
max(1− |xi|, 0).

or the B3-spline

(2.13) ϕ(x) = 1
6

 (2− |x|)3 if 1 ≤ |x| < 2,
4− 6x2 + 3|x|3 if 0 ≤ |x| < 1,

0 otherwise.

As for the weights ωk = ωk(h, ρ0), they are usually defined as

(2.14) ωk =
ˆ
x0

k
+[−h

2 ,
h
2 ]d

ρ0(x)dx,

however this will not be sufficient to prove the convergence of our particle scheme
without additional smoothness assumptions on the initial density ρ0. Indeed, using
standard arguments (see e.g. [12, 28]) based on the fact that the approximation
ρ0 7→ ρ0

h =
∑
k∈Zd ωkϕ

0
h,k is local, bounded in any Lp space and preserves the affine

functions, one easily verifies the following estimate.

Proposition 1. If ρ0
h is initialized as in (2.10) with weights and shape function

given by (2.14) and (2.11), respectively, then we have

(2.15) ‖ρ0 − ρ0
h‖Lp ≤ Chs‖ρ0‖Ws,p

for s ∈ {0, 1, 2}, 1 ≤ p ≤ ∞ and a constant C independent of ρ0.

In our analysis we will need second-order estimates which are then available for
ρ0 ∈ W2,p(Rd). However, if we allow negative weights then second-order estimates
are also available in a dual norm, as follows. Consider weights defined as

(2.16) ωk =
ˆ
Rd

ϕ̃0
h,k(x)ρ0(x)dx

with integration kernels bi-orthogonal to the shape functions in the sense that

(2.17)
ˆ
Rd

ϕ0
h,kϕ̃

0
h,k′ = δk,k′

holds with δk,k′ the Kronecker symbol. Similar to the shape functions, they can
be obtained by scaling and translating a reference ϕ̃ (assumed again compactly
supported, bounded and satisfying (2.2)) with a different normalization, namely

(2.18) ϕ̃0
h,k(x) = ϕ̃

(
x− x0

k

h

)
.

For instance if ϕ is the above tensor-product hat function (2.12) then for the in-
tegration kernel we may take ϕ̃(x) =

∏
i≤d
( 3

21[− 1
2 ,

1
2 ] − 1

21[−1,− 1
2 ]∪[ 1

2 ,1]
)
(xi), see

Figure 1.
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Figure 1. A piecewise affine shape function and its bi-orthogonal
kernel (dotted line). Both functions vanish outside [−1, 1].

Notice that estimate (2.15) still holds with these weights. Now, from the duality
(2.17) we can derive a convenient second-order estimate which only relies on the
first-order smoothness of ρ0. It is expressed in the dual norm

‖w‖W−1,p := sup
v∈W1,q(Rd)

〈w, v〉/‖v‖W1,q ,

where q is the conjugate exponent of p and 〈w, v〉 is the duality pair that coincides
with the integral of the product wv as soon as the latter is integrable.

Proposition 2. If ρ0
h is initialized as in (2.10) with shape functions and weights

satisfying properties (2.11)-(2.2) and (2.16)-(2.18), we have

(2.19) ‖ρ0 − ρ0
h‖W−1,p ≤ Ch2‖ρ0‖W1,p

for 1 ≤ p ≤ ∞, with a constant C independent of h.

Proof. It follows from the duality relation (2.17) that 〈ρ0 − ρ0
h, ϕ̃

0
h,k〉 = 0 for all k.

In particular, given v ∈ W1,∞(Rd) we have

〈ρ0 − ρ0
h, v〉 = 〈ρ0 − ρ0

h, v − ṽh〉

with ṽh :=
∑
k∈Zd〈v, ϕ0

h,k〉ϕ̃0
h,k and standard arguments show that the approxima-

tion v 7→ ṽh satisfies an error estimate similar to (2.15) for s = 1. Using the Hölder
inequality this gives

〈ρ0 − ρ0
h, v〉 ≤ ‖ρ0 − ρ0

h‖Lp‖v − ṽh‖Lq ≤ Ch2‖ρ0‖W1,p‖v‖W1,q

and the proof is completed due to the definition of the W−1,p(Rd) norm. �

We observe that both the above initializations yield

(2.20) sup
k∈Zd

|ωk| ≤ Chd/q‖ρ0‖Lp where 1
q + 1

p = 1 ,

and since the shape functions are assumed to be non-negative, (2.2) gives

(2.21) ‖ρ0
h‖L1 ≤

∑
k∈Zd

|ωk| ≤ C‖ρ0‖L1 ≤ C ,

with a constant depending only on ϕ̃.
We now describe the LTP method. As mentioned in the introduction, compared

to standard particle methods, the LTP method follows the shape of smooth par-
ticles. Therefore we need to track not only the particle positions but also their
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deformations given by the Jacobian matrices. Given discrete trajectories xnk ap-
proximating the exact ones F 0,tn(x0

k) on the discrete times

tn := n∆t, n = 0, 1, . . . , N := T/∆t,

and non singular approximations Jnk of the forward Jacobian matrices J tn,tn+1(xnk ),
the particle shapes ϕn+1

h,k are recursively defined as the push-forward of ϕnh,k along
the affine flow

(2.22) Fnh,k : x 7→ xn+1
k + Jnk (x− xnk ) ,

which approximates the exact flow F tn,tn+1 around xnk . Here xn+1
k can also be seen

as an approximation to F tn,tn+1(xnk ), as will be specified below. In short, we define

ϕn+1
h,k := Fnh,k#ϕnh,k = 1

jnk
ϕnh,k ◦ (Fnh,k)−1 ,

where jnk := det(Jnk ) > 0. Starting from ϕ0
h,k defined as in (2.11), this gives particles

of the form

(2.23) ϕnh,k(x) := 1
hnk
ϕ

(
Dn
k (x− xnk )

h

)
,

where the deformation matrix Dn
k and the particle volume hnk are defined by

(2.24)
{
Dn+1
k := Dn

k (Jnk )−1

hn+1
k := jnk h

n
k = det(Jnk )hnk

with
{
D0
k := Id

h0
k := hd

.

It follows from the above process that Dn
k is an approximation to the backward

Jacobian matrix J tn,0(xnk ), whereas hnk approximates the elementary volume hd
multiplied by the Jacobian determinant of the forward flow F 0,tn at x0

k. Moreover,
the particle shape ϕnh,k is the push-forward of ϕ0

h,k along the integrated flow

(2.25) F
n

h,k := Fn−1
h,k ◦ · · · ◦ F

0
h,k : x 7→ xnk + J

n

k (x− x0
k) where J

n

k := (Dn
k )−1

which can be seen as a linearization of F 0,tn around x0
k (for n = 0 we set F 0

h,k = I

since D0
k = Id). Indeed, it follows from the above definitions that

(2.26) ϕnh,k = F
n

h,k#ϕ0
h,k ,

and we easily verify that

hnk = hd det(Jn−1
h,k ) · · · det(J0

h,k) = hd

det(Dn
h,k) ≈ h

d det(J0,tn(x0
k)).

Finally, the LTP approximation of the density at time tn is defined as

(2.27) ρnh(x) :=
∑
k∈Zd

ωkϕ
n
h,k(x)

with weights ωk constant in time and computed as in (2.14) or (2.16). According
to (2.26), we have

´
ϕnh,k =

´
ϕ0
h,k =

´
ϕ, and thus the conservation of mass

(
´
ρnh =

´
ρ0
h) holds at the discrete level. Moreover, using the fact that the particle

shapes are non-negative, we find as in (2.21)

(2.28) ‖ρnh‖L1 ≤
∑
k∈Zd

‖ωkϕnh,k‖L1 =
∑
k∈Zd

|ωk| ≤ C‖ρ0‖L1 = C, n ≥ 0.
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2.3. Approximated Jacobian matrices and particle positions. To complete
the description of the numerical method (2.23)-(2.24), (2.27), we are left to specify
how to compute the particle center xn+1

k and the discrete Jacobian matrix Jnk
involved in the affine flow (2.22). Before doing so we observe that if the matrices
D2W (x) and D2W (y) commute for all x and y, then the exact solution to the ODE
(2.2) takes an exponential form. However, in the general case the matrix J tn,tn+1(x)
is not equal to

(2.29) J̃ tn,tn+1(x) := exp
(
−
ˆ tn+1

tn

(D2W ∗ ρ(τ))(F tn,τ (x))dτ
)

but the difference is small, as shown next.

Proposition 3. If u ∈ L∞(0, T ;W1,∞(Rd)), then we have

|J̃ tn,tn+1(x)− J tn,tn+1(x)| ≤ C(∆t)2 for x ∈ Rd,

with a constant C independent of n ≤ N − 1 and ∆t.

Proof. Given n ≤ N − 1 and x ∈ Rd, we denote for simplicity
B(τ) = B(τ, tn, x) := (D2W ∗ ρ(τ))(F tn,τ (x))

and we observe that |B(τ)| ≤ L = supt≤T |u(t)|W1,∞ for all τ ∈ [tn, tn+1]. From
(2.3) we have J tn,tn+1(x) = Id−

´ tn+1
tn

B(τ)dτ +
´ tn+1
tn

B(τ)(Id−J tn,τ (x))dτ , hence
the difference E(x) := J̃ tn,tn+1(x)− J tn,tn+1(x) can be decomposed into

E(x) =
∞∑
m=2

(−1)m

m!

(ˆ tn+1

tn

B(τ)dτ
)m

︸ ︷︷ ︸
=:(a)

+
ˆ tn+1

tn

B(τ)(Id − J tn,τ (x))dτ︸ ︷︷ ︸
=:(b)

.

From the above bound for B we readily find (a) ≤
∑∞
m=2

1
m! (C∆t)m ≤ C(∆t)2.

Turning to (b), we use again (2.3) to write

|(b)| =
∣∣∣∣ˆ tn+1

tn

B(τ)
(ˆ τ

tn

B(t)J tn,t(x)dt
)
dτ

∣∣∣∣ ≤ C ˆ tn+1

tn

ˆ τ

tn

|J tn,t(x)|dtdτ ≤ C(∆t)2

where we have used (2.5) in the last inequality. The result follows. �

At time tn+1, xn+1
k is an approximation of F tn,tn+1(xnk ) which is the solution at

time tn+1 of the ODE

(2.30)


dX̃k(t)
dt

= u(t, X̃k(t)) = −(∇W ∗ ρ(t))(X̃k(t)),

X̃k(tn) = xnk .

Then we can define xn+1
k as the approximation given by a numerical scheme dis-

cretizing (2.30) when replacing the exact density ρ at discrete times in [tn, tn+1]
by its LTP approximation ρnh. In the convergence analysis, we consider particle
trajectories xnk and approached Jacobian matrices Jnk defined by an explicit Euler
scheme:

(2.31)


xn+1
k := xnk −∆t (∇W ∗ ρnh)(xnk ),

Jnk := e−∆t (D2W∗ρn
h)(xn

k ) =
∞∑
m=0

(−1)m

m!
[
∆t ((D2W ∗ ρnh)(xnk )

]m
.
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Note that this expression can be seen as an approximation to (2.29) using a rectan-
gular rule in the time integral (here will not take into account the approximation
error of convolution products). Accordingly, we set
(2.32) jnk = det(Jnk ) = exp (−∆t(∆xW ∗ ρnh)(xnk )) .
Using (3.1) and the L1 bound (2.28) on ρnh, we see that this approximation yields

|Jnk − Id| =

∣∣∣∣∣
∞∑
m=1

(−1)m

m! (∆t)m((D2W ∗ ρnh)(xnk ))m
∣∣∣∣∣ ≤

∞∑
m=1

1
m! (C∆t)m ≤ C∆teC∆t.

Clearly, higher-order time discretizations are also possible.

Remark 1. When d > 1, computing the exponential of a d × d matrix is costly.
Another possibility is to approximate J tn,tn+1(xnk ) by

J̃nk = Id −∆t (D2W ∗ ρnh)(xnk ) .
It is easily verified that the difference between these approximations satisfies

sup
0≤n≤ T

∆t

sup
k∈Z

∥∥J̃nk − Jnk ∥∥ = O
(
∆t2

)
as long as we have ∇W ∈ W1,q(Rd) and sup0≤n≤ T

∆t
‖ρnh‖Lp ≤ C with p = q′.

2.4. General strategy of the convergence proofs. In order to establish error
estimates for the approximation of the density ρ(tn) by ρnh we will use Gronwall
arguments that involve errors on the flows and on the Jacobian determinants. Since
the velocity fields depend nonlinearly on the densities, we need to couple these errors
with the density approximation error, and since the k-th particle is pushed forward
by the approximated flow Fnh,k during the time interval [tn, tn+1], we need to control
the local error between this approximation and the exact flow F tn,tn+1 . To this end
we define a first error term on the support of the smooth particles,
(2.33) enF := sup

k∈Zd

‖F tn,tn+1 − Fnh,k‖L∞(Sn
h,k

) with Snh,k := supp
(
ϕnh,k

)
.

In our analysis, we shall also need to track the error on an extended domain which
accounts for the deformation of the particle support by the exact flow, namely
(2.34) ẽnF := sup

k∈Zd

‖F tn,tn+1 − Fnh,k‖L∞(S̃n
h,k

) with S̃nh,k := Snh,k ∪ F tn+1,tn(Sn+1
h,k ).

The error corresponding to the integrated flow (2.25) is then defined as

eF
n := sup

k∈Zd

‖F 0,tn − Fnh,k‖L∞(S0
h,k

).

Using the fact that the exact flow is Lipschitz, see (2.6), it is easy to bound this
term by accumulating the local flow errors, eF n ≤ C exp(CT )(e0

F + · · ·+en−1
F ), but

in the analysis we will need a finer control, see Lemma 4 below. We will also need
to control the error of the Jacobian determinants for each particle, thus we define

(2.35) enj := sup
k∈Zd

∥∥∥∥ 1
jtn,tn+1(x) −

1
jnk

∥∥∥∥
L∞(Sn

h,k
)
.

Finally we will need to track carefully the particles that affect the local value of
the approximated density. For this purpose, we let

Kn(x) := {k ∈ Zd : x ∈ Snh,k}.
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3. L1 and L∞ convergence for smooth potentials

In this section we assume that the potential is smooth, as defined in the intro-
duction. This means that ∇W ∈ W1,∞(Rd). In this case, the Lipschitz norm of u
is bounded by ‖∇W‖W1,∞ : indeed letting |·| denote the Euclidean norm in Rd as
well as its associated matrix norm, we have for all x ∈ Rd, t ∈ [0, T ],

|Du(t, x)| = |(D2W ∗ ρ(t))(x)|
≤ C max

1≤i,j≤d
|(∂ijW ∗ ρ(t))(x)| ≤ C‖ρ0‖L1‖∇W‖W1,∞ .

(3.1)

and similarly for u, so that estimates (2.5)-(2.9) hold with L = C‖∇W‖W1,∞ .
However, to obtain convergence rates in Lp-spaces we need more regularity on the
solutions. In turn we assume that ρ0 ∈ W1,1

+ (Rd) in this section and we compute
the weights with the formula (2.16) involving the dual kernels. According to the
propagation of regularity of solutions to (1.1) in Proposition 9 in the Appendix,
this ensures that the unique solution to (1.1) satisfies ρ ∈ L∞(0, T ;W1,1(Rd)) for
all T > 0.

Given the solution ρ to (1.1), we will use the shortcut notation, ρn(x) := ρ(tn, x)
for x ∈ Rd. From now on, C denotes a generic constant independent of h and ∆t,
depending only on L = supt≤T |u(t)|W1,∞ , d and the exact solution.

Moreover, we assume that both h and ∆t are bounded by an absolute constant.
We denote by
(3.2) θn := ‖ρn − ρnh‖L1 , θ̃n := max

0≤m≤n
θm, and εn := ‖ρn − ρnh‖L∞

the errors in L1 and L∞ norms.

3.1. Estimates on the flows and related terms. We first control the particle
overlapping from the approximation error on the flow.

Lemma 1. There exists a constant C independent on h and ∆t such that

(3.3) κn := sup
x∈Rd

#Kn(x) ≤ C
(

1 + eF
n

h

)d
.

Proof. Given x ∈ Rd and k ∈ Kn(x), we denote z = F tn,0(x) and zk =
(
F
n

h,k

)−1(x).
From (2.25) we see that zk ∈ S0

h,k. Using the Lipschitz bound (2.6) we then write

|z − kh| ≤ |z − zk|+ |zk − kh| ≤
∣∣∣F tn,0 (Fnh,k(zk))− F 0,tn(zk)

)∣∣∣+ |zk − x0
k|

≤
∣∣F tn,0∣∣

Lip
eF

n + Ch ≤ C(eF n + h).

This gives
∣∣k − z

h

∣∣ ≤ C(1 + eF
n

h

)
, and the result follows. �

Using the formulas (2.31), (2.32) and the a priori L1 bound (2.28) on the ap-
proximated densities ρnh we easily derive uniform estimates for the approximated
Jacobian matrices and the particle supports.

Lemma 2. The approximated Jacobian determinants satisfy
e−C‖∆xW‖L∞∆t ≤ jnk ≤ eC‖∆xW‖L∞∆t

for a constant uniform in k and n ≤ N . In particular, Jnk is always invertible and

(3.4) e−C‖∆xW‖L∞T ≤ hnk
hd
≤ eC‖∆xW‖L∞T .
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As for the deformation matrices Dn
k = (Jn−1

k · · · J0
k )−1, they satisfy

(3.5) max(|Dn
k |, |(Dn

k )−1|) ≤ C

for another constant uniform in k and n ≤ N .

We next show that the support of the particle approximation is of order h.

Lemma 3. If ∇W ∈ W1,∞(Rd), then we have

(3.6) |x− xnk | ≤ Ch for x ∈ Snh,k
and

(3.7) |x− xnk | ≤ C(h+ ∆t) for x ∈ S̃nh,k
with constants C independent of ∆t and h.

Proof. From supp(ϕ) ⊂ B(0, c), we easily infer that
∣∣Dn

k (x − xnk )
∣∣ ≤ ch holds on

supp(ϕnh,k), see (2.23), thus (3.6) holds for n ≤ N , using (3.5). To complete the
proof we then observe that (2.1) gives

|xn+1
k −F tn,tn+1(xnk )| = |

ˆ tn+1

tn

(∇W ∗ρnh)(xnk )− (∇W ∗ρ(τ))(F tn,τ (xnk ))dτ | ≤ C∆t,

so that if x is such that F tn,tn+1(x) ∈ supp(ϕn+1
h,k ), we have

|x− xnk | = |F tn+1,tn(F tn,tn+1(x))− F tn+1,tn(F tn,tn+1(xnk ))|
≤ |F tn,tn+1 |Lip

(
|F tn,tn+1(x)− xn+1

k |+ |xn+1
k − F tn,tn+1(xnk )|

)
≤ C(h+ ∆t),

by using the Lipschitz estimate (2.6) and the bound (3.6) on Sn+1
h,k . �

To control the approximation errors for the velocity and the Jacobian matrices,
we next introduce the generic error

(3.8) ξ̃n(K) := sup
τ∈[tn,tn+1]

sup
k∈Zd

sup
x∈S̃n

h,k

∣∣(K ∗ ρ(τ))(F tn,τ (x))− (K ∗ ρnh) (xnk )
∣∣ ,

for some given K ∈ W1,∞(Rd) and 0 ≤ n ≤ N = T/∆t.

Proposition 4. The discrete velocity unk := −(∇W ∗ ρnh)(xnk ) satisfies

(3.9) |u(τ, F tn,τ (xnk ))− unk | ≤ C(h2‖ρ0‖W1,1 + ∆t+ eF
n)

for τ ∈ [tn, tn+1], 0 ≤ n ≤ N − 1 and with a constant C independent of ∆t and h.

Proof. Using that u(τ, y) = −(∇W ∗ ρ(τ))(y) = −(∇W ∗ (F 0,τ#ρ0))(y), we write

u(τ, F tn,τ (xnk )) = −
ˆ
Rd

∇W (F tn,τ (xnk )− y)ρ(τ, y)dy

= −
ˆ
Rd

∇W (F tn,τ (xnk )− F 0,τ (z))ρ0(z)dz

= (a) + (b) + (c)−
ˆ
Rd

∇W (xnk − y)ρnh(y)dy
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with

(a) := −
ˆ
Rd

[
∇W (F tn,τ (xnk )− F 0,τ (z))−∇W (xnk − F 0,tn(z))

]
ρ0(z)dz

(b) := −
ˆ
Rd

∇W (xnk − F 0,tn(z))
[
ρ0(z)− ρ0

h(z)
]
dz

(c) := −
∑
l∈Zd

ωl

ˆ
Sn

h,l

[
∇W (xnk − F 0,tn((Fn−1

h,l )−1(y)))−∇W (xnk − y)
]
ϕnh,l(y)dy,

so that |u(τ, F tn,τ (xnk ))− unk | ≤ |(a)|+ |(b)|+ |(c)|. For the first term we write

|(a)| ≤ ‖∇W‖W1,∞

ˆ
Rd

|A(z)|ρ0(z)dz ≤ C‖A‖L∞

with A(z) := (F tn,τ (xnk ) − F 0,τ (z)) − (xnk − F 0,tn(z)). Using the expression (2.1)
for the exact flow, estimate (3.7) and the equality ‖ρ(s)‖L1 = 1 gives then

|A(z)| ≤
ˆ τ

tn

∣∣(∇W ∗ ρ(s))(F tn,s(xnk )) + (∇W ∗ ρ(s))(F 0,s(z))
∣∣ ds ≤ 2∆t‖∇W‖L∞

so that |(a)| ≤ C∆t. For (b), using the Lipschitz regularity of the flow (2.6) and
the error bound (2.19) on the initial data we find

|(b)| ≤ eCT ‖∇W‖W1,∞‖ρ0
h − ρ0‖W−1,1 ≤ Ch2‖ρ0‖W1,1 .

Finally, we observe that for y ∈ Snh,l we have (Fnh,l)−1(y) ∈ S0
h,l from (2.25), and∣∣∣F 0,tn

(
(Fnh,l)−1(y)

)
− y
∣∣∣ ≤ ∣∣∣F 0,tn

(
(Fnh,l)−1(y)

)
− Fnh,l

(
(Fnh,l)−1(y)

)∣∣∣ ≤ eF n,
and arguing as in (2.28) this gives

|(c)| ≤ ‖∇W‖W1,∞

∑
l∈Zd

|ωl|
ˆ
Sn

h,l

∣∣∣F 0,tn
(

(Fnh,l)−1(y)
)
− y
∣∣∣ϕnh,l(y)dy

≤ CeF n
∑
l∈Zd

|ωl| ≤ CeF n.

By gathering the above estimates, we complete the proof. �

Proposition 5. If the initial density satisfies ρ0 ∈ W1,1
+ (Rd), then the estimate

ξ̃n(D2W ) ≤ C (θn + ∆t+ h)

holds with a constant C depending only on d, T , L, and ‖ρ0‖W1,1 . Moreover, at
x = xnk , we have

sup
k∈Zd

sup
τ∈[tn,tn+1]

∣∣(D2W ∗ ρ(τ))(F tn,τ (xnk ))− (D2W ∗ ρnh) (xnk )
∣∣ ≤ C (θn + ∆t) .

Proof. Given x ∈ S̃nh,k and τ ∈ [tn, tn+1], we write∣∣(D2W ∗ ρ(τ))(F tn,τ (x))− (D2W ∗ ρnh) (xnk )
∣∣

=
ˆ
Rd

D2W (y)
[
ρ(τ, F tn,τ (x)− y)− ρnh(xnk − y)

]
dy = (a) + (b),

with
(a) :=

ˆ
Rd

D2W (y)
[
ρ(τ, F tn,τ (x)− y)− ρ(tn, xnk − y)

]
dy,
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(b) :=
ˆ
Rd

D2W (y) [ρ(tn, xnk − y)− ρnh(xnk − y)] dy.

The second term is estimated by
|(b)| ≤ ‖D2W‖L∞‖ρ(tn, ·)− ρnh‖L1 ≤ Lθn.

And using ρ(τ) = F tn,τ#ρ(tn) we rewrite the first term as (a) = (c) + (d) with

(c) :=
ˆ
Rd

D2W (y)ρ(tn, F τ,tn(F tn,τ (x)− y))
[
jτ,tn(F tn,τ (x)− y)− 1

]
dy

(d) :=
ˆ
Rd

D2W (y)[ρ(tn, F τ,tn(F tn,τ (x)− y))− ρ(tn, xnk − y)] dy.

For (c) we use the one-to-one mapping Φ : y 7→ F τ,tn(F tn,τ (x)− y) with Jacobian
determinant |det Φ(y)| = jτ,tn(F tn,τ (x)− y). The change of variable formula yieldsˆ
Rd

ρ(tn, F τ,tn(F tn,τ (x)− y))dy ≤ C
ˆ
Rd

ρ(tn,Φ(y))|det Φ(y)|dy = C‖ρ(tn)‖L1 ≤ C

where we have used (2.8) in the first inequality. Using (2.9) this allows to bound

|(c)| ≤ C∆t‖D2W‖L∞
ˆ
Rd

ρ(tn, F τ,tn(F tn,τ (x)− y))dy ≤ C∆t.

Turning next to the (d) term, we introduce
Ξα : y 7→ α(F τ,tn(F tn,τ (x)− y)) + (1− α)(xnk − y) for α ∈ [0, 1],

so that

|(d)| ≤ ‖D2W‖L∞
ˆ
Rd

|ρ(tn,Ξ1(y))− ρ(tn,Ξ0(y))|dy

≤ C
ˆ
Rd

ˆ 1

0
|∇ρ(Ξα(y))||F τ,tn(F tn,τ (x)− y)− (xnk − y)| dαdy

≤ C(h+ ∆t)
ˆ
Rd

ˆ 1

0
|∇ρ(Ξα(y))| dαdy

where in the last inequality we have used (see (2.1) and Lemma 3)
|F τ,tn(F tn,τ (x)− y)− (xnk − y)|

=
∣∣∣∣F tn,τ (x)− xnk −

ˆ tn

τ

(∇W ∗ ρ(s))(F τ,s(F tn,τ (x)− y))ds
∣∣∣∣

≤ (|x− xnk |+ 2∆t‖∇W‖L∞) ≤ C(h+ ∆t).
To end the proof we will show that up to a sign and a translation, Ξα is uniformly
close to the identity mapping. Let G(y) := (F τ,tn − I)(F tn,τ (x) − y) so that
Ξα(y) = −y + αG(y) + (1− α)xnk + αF tn,τ (x). From (2.7) we infer

|DG(y)| = |Id − Jτ,tn(F tn,τ (x)− y)| ≤ C∆t
hence there exists a constant γ independent of h, ∆t and n, such that

|G(y)−G(y′)| ≤ γ∆t|y − y′|.
This shows that Ξα is injective for ∆t small enough, indeed if Ξα(y) = Ξα(y′)
for y 6= y′ then y − y′ = α(G(y) − G(y′)) leads to a contradiction for γ∆t < 1.
Moreover, using DΞα(y) = −Id +αDG(y) and the Jacobi formula for ∂α det(DΞα)
we find

|det(DΞα)(y) + 1| ≤ C∆t ,
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which shows that for ∆t small enough, |det(DΞα)| is bounded from below by a
positive constant γ̃. Using again the change of variable theorem this gives

γ̃

ˆ
Rd

|∇ρ(Ξα(y))|dy ≤
ˆ
Rd

|∇ρ(Ξα(y))||det(DΞα)(y)|dy ≤
ˆ
Rd

|∇ρ(z)|dz ≤ ‖ρ‖W1,1 .

The desired bound |d| ≤ C(h+ ∆t) follows by gathering the above steps. �

We can now compute an estimate for the error of the Jacobian determinants.

Corollary 1. Assume that ρ0 ∈ W1,1
+ (Rd), then the following estimate holds

(3.10) enj ≤ C∆t (θn + ∆t+ h) for all 0 ≤ n ≤ N,

where C is a positive constant depending only on T , L, and ‖ρ‖L∞(0,T :W1,1).

Proof. According to (2.4) and (2.32), we have
1
jnk
− 1
jtn,tn+1(x) = exp(βnk )− exp(βn(x))

= (βnk − βn(x))
ˆ 1

0
exp

(
rβnk + (1− r)βn(x)

)
dr

with βnk := ∆t(∆xW ∗ρnh)(xnk ) and βn(x) :=
´ tn+1
tn

(∆xW ∗ρ(τ))(F tn,τ (x))dτ . Since
enj involves the above difference for x ∈ Snh,k ⊂ S̃nh,k, see (2.35), we infer from (3.8)
that |βnk − βn(x)| ≤ C∆t ξ̃n(D2W ). Using the L1 bound (2.28) on ρnh this yields

enj ≤ C∆t ξ̃n(D2W ) exp (C∆t‖∆xW‖L∞) ,

so that Proposition 5 gives the desired result. �

From Proposition 5 we also derive an estimate for the error between Jacobian
matrices.

Corollary 2. If ρ0 ∈ W1,1
+ (Rd), then for 0 ≤ n ≤ N the following estimate holds

|Jnk − J tn,tn+1(x)| ≤ C∆t (θn + h+ ∆t) for x ∈ Snh,k,

with a constant C independent of ∆t and h. At x = xnk , we have

(3.11) |Jnk − J tn,tn+1(xnk )| ≤ C∆t (θn + ∆t) .

Proof. Using the matrix J̃ tn,tn+1(x) defined by (2.29), Proposition 3 gives

|Jnk − J tn,tn+1(x)| ≤ |Jnk − J̃ tn,tn+1(x)|+ C(∆t)2

and to bound the remaining error we proceed as in the proof of Corollary 1: denoting
Bnk := −∆t (D2W ∗ ρnh)(xnk ) and Bn(x) := −

´ tn+1
tn

(D2W ∗ ρ(τ))(F tn,τ (x))dτ , we
use the exponential matrix expressions (2.31) and (2.29) to compute

Jnk − J tn,tn+1(x) = exp(Bnk )− exp(Bn(x))

= (Bnk −Bn(x))
ˆ 1

0
exp

(
rBnk + (1− r)Bn(x)

)
dr.

For x ∈ Snh,k we have |Bnk −Bn(x)| ≤ C∆t ξn(D2W ) and using (2.28) this yields

|Jnk − J tn,tn+1(x)| ≤ C∆t ξn(D2W ) exp
(
C∆t‖D2W‖L∞

)
so that the desired result follows again from Proposition 5. �
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Remark 2. If ρ0 is only assumed to be an L1(Rd) function (or a Radon measure),
then ξn(D2W ) can be bounded by a constant using the L1 bound on ρnh, see (2.28),
and the W1,∞(Rd) smoothness of ∇W . Arguing as in the proof above we then find
an error estimate for the Jacobian matrices on the order of ∆t.

We next turn to the approximation errors involving the forward characteristic
flows and we establish a series of estimates.

Lemma 4. For 0 ≤ n ≤ N − 1, the following estimate holds

(3.12) eF
n+1 ≤ eC∆teF

n + ẽnF

with a constant C independent of ∆t and h.

Proof. Given x ∈ S0
k,h we write y = F 0,tn(x) and ỹk = F

n

h,k(x) ∈ Snh,k. We have∣∣∣Fn+1
h,k (x)− F 0,tn+1(x)

∣∣∣ =
∣∣Fnh,k(ỹk)− F tn,tn+1(y)

∣∣
≤
∣∣F tn,tn+1(ỹk)− F tn,tn+1(y)

∣∣+
∣∣F tn,tn+1(ỹk)− Fnh,k(ỹk)

∣∣
≤
∣∣F tn,tn+1

∣∣
Lip
|ỹk − y|+ ‖F tn,tn+1 − Fnh,k‖L∞(Sn

h,k
)

≤ eC∆teF
n + ẽnF

by using Snh,k ⊂ S̃nh,k and the Lipschitz bound (2.6) on the exact flow. �

Proposition 6. If ρ0 ∈ W1,1
+ (Rd), then the following estimate holds

(3.13) ẽnF ≤ C∆t(∆t+ h2 + (h+ ∆t)θn + eF
n) for 0 ≤ n ≤ N,

with a constant C independent of ∆t and h.

Proof. Given x ∈ S̃nh,k, we rewrite the linearized flow (2.22) as follows,

Fnh,k(x) = Fnh,k(xnk ) + Jnk (x− xnk ) = (a) + (b) + (c) + F tn,tn+1(x)

with
(a) := Fnh,k(xnk )− F tn,tn+1(xnk )
(b) :=

(
Jnk − J tn,tn+1(xnk )

)
(x− xnk )

(c) := F tn,tn+1(xnk ) + J tn,tn+1(xnk )(x− xnk )− F tn,tn+1(x).
Using (2.31) and the expression (2.1) for the exact flow, we then compute

|(a)| =
ˆ tn+1

tn

∣∣(∇W ∗ ρnh)(xnk ) + u(τ, F tn,τ (xnk ))
∣∣ dτ ≤ C∆t

(
h2 + ∆t+ eF

n
)

where the inequality follows from (3.9) (note that here C depends on ‖ρ0‖W1,1).
For (b), we easily get using estimate (3.11) in Corollary 2 and Lemma 3 that

|(b)| ≤ |Jnk − J tn,tn+1(xnk )||x− xnk | ≤ C∆t(θn + ∆t)(h+ ∆t).

Turning to (c) we next differentiate (2.3) and obtain for 1 ≤ i, j,m ≤ d,

∂m
(
J tn,tn+1

)
ij

= −
d∑
l=1

ˆ tn+1

tn

(∂ilW ∗ ∇ρ(τ))(F tn,τ (x))∂mF tn,τ (x)
(
J tn,τ (x)

)
lj
dτ

−
d∑
l=1

ˆ tn+1

tn

(∂ilW ∗ ρ(τ))(F tn,τ (x))∂m
(
J tn,τ (x)

)
lj
dτ.
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This yields

|∂mJ tn,tn+1(x)| ≤ C∆t+ C

ˆ tn+1

tn

|∂mJ tn,τ (x)|dτ,

where we used that ρ ∈ L∞(0, T ;W1,1(Rd)), ∇W ∈ W1,∞(Rd) and |∂mF tn,τ | ≤ C
for some C, see (2.5). Invoking the Gronwall Lemma, we then obtain

|∂mJ tn,tn+1(x)| ≤ C∆teC∆t, m = 1, · · · , d,
where C only depends on d, T , L and ‖ρ0‖W1,1 . With a Taylor expansion this gives

|(c)| ≤ 1
2
∣∣D2F tn,tn+1(ηnk )

∣∣ |x− xnk |2 ≤ C∆t(h+ ∆t)2

for some ηnk between x and xnk and a constant C that only depends on d, T , L and
‖ρ0‖W1,1 . Combining the above estimates yields the desired result. �

We finally provide estimates for eF n and ẽnF .

Corollary 3. If ρ0 ∈ W1,1
+ (Rd), then the following estimates hold for 0 ≤ n ≤ N ,

eF
n ≤ C(h2 + ∆t+ hθ̃n−1) and ẽnF ≤ C∆t(h2 + ∆t+ hθ̃n−1),

with θ̃n := maxm≤n θm, see (3.2), and a constant C independent of ∆t and h.

Proof. Using (3.12), (3.13) and the fact that eC∆t + C∆t ≤ e2C∆t, we find
eF

n+1 ≤ e2C∆teF
n + C∆t(h2 + ∆t+ hθ̃n),

hence
eF

n+1 ≤ e2CN∆t(eF 0 +N∆t(h2 + ∆t+ hθ̃n)) ≤ C(h2 + ∆t+ hθ̃n), n ≤ N − 1,
follows by a summation using eF 0 = 0. The bound on ẽnF is obtained with (3.13).

�

3.2. Proof of L1 and L∞ convergence results.

Theorem 1. Assume ∆t ≤ Ch. If ρ0 ∈ W1,1
+ (Rd) and ∇W ∈ W1,∞(Rd), then

max
0≤n≤N

‖ρ(tn)− ρnh‖L1 ≤ C
(
‖ρ0 − ρ0

h‖L1 + ∆t
h

+ h

)
holds with a constant C depending only on d, T , L, and ‖ρ0‖W1,1 .

Proof. Let y ∈ Rd. Using the relation ρ(tn) = F tn,tn−1#ρ(tn−1) and the form
(2.27) of the approximate solution together with the fact that hnk = hn−1

k jn−1
k , we

decompose the error ρ(tn, y)− ρnh(y) into three parts as
(3.14)
ρ(tn, y)− ρnh(y) =

[
ρ
(
tn−1, F

tn,tn−1(y)
)
− ρn−1

h

(
F tn,tn−1(y)

)]
jtn,tn−1(y)︸ ︷︷ ︸

An(y)

+
∑
k∈Zd

ωk

hn−1
k

ϕ

(
Dn−1
k

h

(
F tn,tn−1(y)− xn−1

k

))[
jtn,tn−1(y)− 1

jn−1
k

]
︸ ︷︷ ︸

Bn(y)

+
∑
k∈Zd

ωk
hnk

[
ϕ

(
Dn−1
k

h
(F tn,tn−1(y)− xn−1

k )
)
− ϕ

(
Dn
k

h
(y − xnk )

)]
︸ ︷︷ ︸

Cn(y)

.
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� Estimate of ‖An‖L1 : Using the one-to-one change of variable x = F tn,tn−1(y), we
easily find thatˆ

Rd

|An(y)|dy =
ˆ
Rd

|ρ(tn−1, x)− ρn−1
h (x)|dx = θn−1.

� Estimate of ‖Bn‖L1 : By means of the same change of variable and the relation
jtn,tn−1(y) = (jtn−1,tn(x))−1, we obtainˆ

Rd

|Bn(y)|dy ≤
ˆ
Rd

∑
k∈Zd

|ωk|ϕn−1
h,k (x)

∣∣∣∣ 1
jtn−1,tn(x) −

1
jn−1
k

∣∣∣∣ jtn−1,tn(x)dx

≤ en−1
j ‖jtn−1,tn‖L∞

ˆ
Rd

∑
k∈Zd

|ωk|ϕn−1
h,k (x)dx ≤ Cen−1

j ,

due to (2.5), (2.28) and (2.35), indeed x can be taken in Sn−1
h,k in the k-th term.

� Estimate of ‖Cn‖L1 : Writing again x = F tn,tn−1(y), we observe that in the k-
th term, we must consider the cases where y ∈ Snh,k and those where x ∈ Sn−1

h,k .
Thus, x must be taken in the extended particle support S̃n−1

h,k , see (2.34). Using
the incremental relation (2.24) we then estimate

|Dn−1
k (x−xn−1

k )−Dn
k (y−xnk )| = |Dn

k (xnk+Jn−1
k (x−xn−1

k )−F tn−1,tn(x))| ≤ |Dn
k |ẽn−1

F

see (2.22), (2.33). To obtain a global bound we next observe that the measure
of S̃n−1

h,k is of order (h + ∆t)d ≤ Chd according to Lemma 3 and the assumption
∆t ≤ Ch, as well as that of F tn−1,tn(S̃n−1

h,k ) according to (2.8). Using the above
observations and the fact that the reference shape ϕ is assumed to be Lipschitz, we
find

(3.15)
ˆ
Rd

|Cn(y)|dy ≤ Chd
∑
k∈Zd

|ωk|
hnk

|Dn
k |
h

ẽn−1
F ≤ C

ẽn−1
F

h
,

where the last inequality follows from the uniform bounds on the matrices Dn
k and

their determinants (Lemma 2), and from the estimates inside (2.28).
� Conclusion: We now combine all the estimates above and (3.10) in Corollary 1
to obtain

θn ≤ θn−1 + Cen−1
j + C

ẽn−1
F

h
≤ (1 + C∆t)θn−1 + C∆t(∆t+ h) + C

ẽn−1
F

h
.

Using Corollary 3 to estimate the flow error yields

θ̃n ≤ (1 + C∆t)θ̃n−1 + C∆t
(

∆t+ h+ ∆t
h

)
.

Since h ≤ 1, we conclude that

θ̃n ≤ eCN∆tθ0 + eCN∆t
(
h+ ∆t

h

)
≤ C

(
h+ θ0 + ∆t

h

)
.

�

We next derive L∞-estimates. Here the required regularity propagates in time.
As proved in the Appendix, Proposition 9, the unique solution to (1.1) belongs to
ρ ∈ L∞(0, T ; (W1,1

+ ∩ L∞)(Rd)) provided that ρ0 ∈ (W1,1
+ ∩ L∞)(Rd).
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Theorem 2. If ∆t ≤ Ch, ρ0 ∈ W1,1
+ (Rd) ∩ L∞(Rd) and ∇W ∈ W1,∞(Rd), then

max
0≤n≤N

‖ρ(tn)− ρnh‖L∞ ≤ C
(
h+ ‖ρ0 − ρ0

h‖L∞ + ‖ρ0 − ρ0
h‖L1 + ∆t

h

)
holds with a constant independent of h and ∆t.

Proof. Given y ∈ Rd, we decompose ρ(tn, y)− ρnh(y) into three terms as in (3.14).

� Estimate of ‖An‖L∞ : Using the bound (2.8) on the exact Jacobian determinant,
we find

‖An‖L∞ ≤ eC∆tεn−1.

� Estimate of ‖Bn‖L∞ : Writing again x = F tn,tn−1(y), we observe that the k-th
term vanishes if x 6∈ Sn−1

h,k . In particular, the sum can be restricted to the indices
k in the set Kn−1(x). Gathering the bounds (3.4) on hnk , (2.20) on ωk and (3.3) on
κn := supx∈Rd #(Kn−1(x)), we compute

|Bn(y)| ≤ C#(Kn−1(x))‖ρ0‖L∞‖ϕ‖L∞en−1
j ≤ C

(
1 + eF

n

h

)d
en−1
j .

� Estimate of ‖Cn‖L∞ : Similarly as in the proof of Theorem 1, we observe that the
k-th summand in Cn(y) must be considered when y ∈ Snh,k or when x ∈ Sn−1

h,k (or
both). Clearly the cardinality of the corresponding index set satisfies

#({k ∈ Zd : y ∈ Snh,k or x ∈ Sn−1
h,k }) ≤ #(Kn(y)) + #(Kn−1(x)) ≤ κn + κn−1.

Using the Lipschitz smoothness of the reference shape function ϕ as in (3.15), and
again the bounds (3.4) on hnk , (2.20) on ωk and (3.3) on κn, we write

|Cn(y)| ≤ C(κn + κn−1) ẽ
n−1
F

h
≤ C

((
1 + eF

n

h

)d
+
(

1 + eF
n−1

h

)d)
ẽn−1
F

h
.

� Conclusion: Combining the estimates above, we have

(3.16) εn ≤ eC∆tεn−1 + C

(
1 + eF

n−1

h

)d
en−1
j + C

(
1 + eF

n + eF
n−1

h

)d
ẽn−1
F

h
.

Now, with the assumptions made here Theorem 1 applies, hence Corollaries 1 and
3 provide error estimates for the Jacobian and flow errors. Specifically, we have

en−1
j ≤ C∆t(∆t+ h), eF

n ≤ C(h2 + ∆t+ hθ0), ẽn−1
F ≤ C∆t(h2 + ∆t+ hθ0) .

Plugging these estimates into (3.16) yields then

εn ≤ eC∆tεn−1 + C∆t
(
h+ θ0 + ∆t

h

)
,

due to ∆t . h . 1 and θ0 ≤ 2. We again conclude with the discrete Gronwall
Lemma. �

Remark 3. Under the condition ∆t ≤ Ch in the convergence theorems, we have
obtained the convergence estimates in L1 and L∞ with the terms of the form ∆t/h.
We obviously need the assumption ∆t = o(h) to get the convergence results.
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4. Convergence for measure solutions with smooth potentials

In this part, we consider measure valued solutions to the system (1.1) using the
bounded Lipschitz distance. More precisely, let ρ1, ρ2 ∈ M(Rd) be two Radon
measures. Then the bounded Lipschitz distance dBL(ρ1, ρ2) between ρ1 and ρ2 is
given by

dBL(ρ1, ρ2) := sup
{∣∣∣∣ˆ

Rd

ψdρ1 −
ˆ
Rd

ψdρ2

∣∣∣∣ : ψ ∈ W1,∞(Rd) and ‖ψ‖W1,∞ ≤ 1
}
.

Since the interaction potential W satisfies ∇W ∈ W1,∞(Rd), a well-posedness
theory for measure valued solutions to (1.1) can be developed by using the classical
results of Dobrushin [32], see [37, 18] for related results.

To estimate the error between the exact flow and its local linearizations we now
revisit some results from the previous section, namely Proposition 6, given the low
regularity of the solutions. As in the previous section, we denote ρn = ρ(tn).

Proposition 7. Let ρ0 be an initial Radon measure on Rd, and ρnh be the approxi-
mation constructed in (2.27). If W satisfies ∇W ∈ W1,∞(Rd), then the flow error
defined on the particles support (2.33)

enF ≤ C∆t (dBL(ρn, ρnh) + h+ ∆t)

holds for 0 ≤ n ≤ N with a constant C independent of h and ∆t.

Proof. Let x ∈ Snh,k. We decompose the linearized flow as in Proposition 6,

Fnh,k(x) = Fnh,k(xnk ) + Jnk (x− xnk ) = (a) + (b) + (c) + F tn,tn+1(x)

with
(a) := Fnh,k(xnk )− F tn,tn+1(xnk )
(b) :=

(
Jnk − J tn,tn+1(xnk )

)
(x− xnk )

(c) := F tn,tn+1(xnk ) + J tn,tn+1(xnk )(x− xnk )− F tn,tn+1(x).

We next rewrite (a) =
´ tn+1
tn

((∇W ∗ ρnh)(xnk )− (∇W ∗ ρ(τ))(F tn,τ (xnk ))) dτ using
(2.31) and (2.1), and estimate the integrand by

(∇W ∗ ρnh)(xnk )− (∇W ∗ ρ(τ))(F tn,τ (xnk ))

=
ˆ
Rd

∇W (xnk − y)ρnh(y)−∇W (F tn,τ (xnk )− y)ρ(τ, y) dy

=
ˆ
Rd

∇W (xnk − y) (ρnh(y)− ρn(y)) dy

+
ˆ
Rd

∇W (xnk − y)ρn(y)−∇W (F tn,τ (xnk )− y)ρ(τ, y) dy

=: (d) + (e).

From ∇W ∈ W1,∞(Rd), we infer |(d)| ≤ CdBL(ρn, ρnh). Using next a change of
variable and the relation ρ(τ) = F tn,τ#ρn we get

(e) =
ˆ
Rd

(
∇W (xnk − y)−∇W (F tn,τ (xnk )− F tn,τ (y))ρn(y)

)
dy

≤
ˆ
Rd

‖D2W‖L∞
∣∣xnk − y − (F tn,τ (xnk )− F tn,τ (y))

∣∣ ρn(y) dy ≤ C∆t.
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Combining the estimates above, we obtain

|(a)| ≤ C∆t (dBL(ρn, ρnh) + ∆t) .

For the estimate of (b), we easily get from Remark 2 that |(b)| ≤ Ch∆t. Finally,
we observe that (c) cannot be estimated as in the proof of Proposition 6, due to
the lesser regularity of the densities. We then proceed as follows,

|(c)| =
∣∣∣∣(xnk − x)

(
Id − J tn,tn+1(xnk )

)
+
ˆ tn+1

tn

[
u(τ, F tn,τ (xnk ))− u(τ, F tn,τ (x))

]
dτ

∣∣∣∣
≤ |xnk − x|‖Id − J tn,tn+1(·)‖L∞ + ‖D2W‖L∞

ˆ tn+1

tn

∣∣F tn,τ (xnk )− F tn,τ (x)
∣∣ dτ

≤ Ch∆t+ C

ˆ tn+1

tn

∣∣F tn,τ ∣∣
Lip
|xnk − x|dτ ≤ Ch∆t,

where we used estimate (3.6) for x ∈ Snh,k, and the estimates (2.6) and (2.7). �

Theorem 3. Let ρ0 be an initial probability measure on Rd, and ρnh be the approx-
imation constructed in (2.27). Assume that the interaction potential W satisfies
∇W ∈ W1,∞(Rd), then the estimate

max
0≤n≤ T

∆t

dBL(ρn, ρnh) ≤ C(dBL(ρ0, ρ0
h) + h+ ∆t)

holds, where C depends only on d and L.

Remark 4. Observe that a convergence condition on the approximation of the
initial data in Theorem 3 such as dBL(ρ0, ρ0

h) . h is easily achieved by using a
uniform quadrangular mesh of size hd and approximating the initial data ρ0 by a
sum of Dirac deltas via transporting the mass of ρ0 inside each d-dimensional cube
to its center. A cut-off procedure to leave small mass outside a large ball allows
us to reduce to a finite number of Dirac deltas in this approximation. Finally, the
error produced between smoothed particles and Dirac deltas is obviously of order h
in the dBL distance.

Proof of Theorem 3. Since ρn = F tn−1,tn#ρn−1 and ϕnh,k = Fn−1
h,k #ϕn−1

h,k , we obtainˆ
Rd

ψ(x)dρn(x) =
ˆ
Rd

ψ(F tn−1,tn(x))dρn−1(x),

andˆ
Rd

ψ(x)dρnh(x) =
∑
k∈Zd

ωk

ˆ
Rd

ψ(x)ϕnh,k(x) dx =
∑
k∈Zd

ωk

ˆ
Rd

ψ(Fn−1
h,k (x))ϕn−1

h,k (x) dx,

for ψ ∈ W1,∞(Rd) with ‖ψ‖W1,∞ ≤ 1. Thus, we deduceˆ
Rd

ψ(x) (dρn(x)− dρnh(x))

=
ˆ
Rd

ψ(F tn−1,tn(x))
(
dρn−1(x)− dρn−1

h (x)
)

+
∑
k∈Zd

ωk

ˆ
Rd

(
ψ(F tn−1,tn(x))− ψ(Fn−1

h,k (x))
)
ϕn−1
h,k (x) dx

=: (a) + (b).
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Using ‖∇(ψ ◦ F tn−1,tn)‖L∞ ≤ ‖(J tn−1,tn)T‖L∞‖∇ψ‖L∞ , it next follows from (2.5)
that |(a)| ≤ dBL(ρn−1, ρn−1

h )eL∆t and we estimate (b) with

|(b)| ≤
∑
k∈Zd

|ωk|
ˆ
Sn−1

h,k

∣∣∣ψ(F tn−1,tn(x))− ψ(Fn−1
h,k (x))

∣∣∣ϕn−1
h,k (x) dx

≤ en−1
F

∑
k∈Zd

|ωk|
ˆ
Sn−1

h,k

ϕn−1
h,k (x) dx ≤ Cen−1

F

where the last inequality uses the estimates inside (2.28). This leads to
dBL(ρn, ρnh) ≤ dBL(ρn−1, ρn−1

h )eL∆t + Cen−1
F

and using Lemma 7 we obtain
dBL(ρn, ρnh) ≤ dBL(ρn−1, ρn−1

h )eC∆t + C∆t(h+ ∆t)
with constants independent of ∆t and h. The proof is then completed using Gron-
wall’s inequality as in Theorem 1.

�

5. L1 and Lp convergence for singular potentials

In this part, we are interested in Lp-convergence between the solution and its
approximation allowing for more singular potentials. With this aim, we consider
the solutions of the equation (1.1) in L∞(0, T ;L∞(Rd)∩W1,1(Rd)∩W1,p(Rd)) with
1 ≤ p ≤ ∞ to be determined depending on the singularity of the potential. Since
we are dealing with both attractive and repulsive potentials, we can only expect
local in time existence and uniqueness of solutions as in [10, 18]. In those references,
a local in time well-posedness theory in L∞(0, T ;L1(Rd) ∩ Lp(Rd)) was developed
under suitable assumptions on the potentials. The solutions are constructed by
characteristics since the velocity fields are still Lipschitz continuous in x. However,
to prove convergence rates we need more regularity on the solutions. For the exis-
tence of solutions to (1.1) in L∞(0, T ;L∞(Rd)∩W1,1(Rd)∩W1,p(Rd)), we provide
a priori estimates in Appendix A, Proposition 10. These estimates combined with
the existing literature [18, 10] show the well-posedness of solutions in the desired
class. In our presentation we will follow the setting of local existence introduced in
[18].

Let us remind the set of hypotheses on the interaction potential called singular
potentials in the introduction. We assume that there exists L̃ > 0 such that

(5.1) |∇W (x)| ≤ L̃

|x|α
and |D2W (x)| ≤ L̃

|x|1+α with 0 ≤ α < d− 1,

and for −1 ≤ α < 0

(5.2) |∇W (x)| ≤ L̃min
{

1
|x|α

, 1
}

and |D2W (x)| ≤ L̃

|x|1+α .

In particular, singular potentials satisfy ∇W ∈ W1,q
loc (Rd) for all 1 ≤ q < d

α+1 . Note
that (5.1) implies (see [18, 39])

(5.3) |∇W (x)−∇W (y)| ≤ C|x− y|
min(|x|, |y|)α+1 .

We remind the reader that these assumptions are enough to guarantee that the
velocity fields are bounded and Lipschitz continuous with respect to x locally in
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time for densities in (L1 ∩ Lp)(Rd) where p is the conjugate exponent of q. Note
that q = p′ < d

α+1 is equivalent to α < −1 + d
p′ , giving us the condition on the

initial data for the well-posedness theory. Indeed, it follows from (5.1) that

‖Du(t, ·)‖L∞ ≤
ˆ
Rd

|D2W (x− y)|ρ(y) dy ≤
ˆ
Rd

L̃ρ(y)
|x− y|α+1 dy

≤

(ˆ
|x−y|≥1

+
ˆ
|x−y|≤1

)
L̃ρ(y)
|x− y|α+1 dy ≤ C(‖ρ(t, ·)‖L1 + ‖ρ(t, ·)‖Lp),(5.4)

for some constant C depending on L̃, q and d, and a similar estimate holds for u
using (5.2) and the fact that ∇W is bounded away from the origin.

Let T ∗ be the maximal time of existence of weak solutions ρ ∈ L∞(0, T ; (L1 ∩
Lp)(Rd)) with T < T ∗ constructed in [18]. Additional regularity will be needed on
these solutions ensured by Proposition 10 of Appendix A under suitable initial data
assumptions. In this section we consider T < T ∗, and we denote again tn = n∆t
with 0 ≤ n ≤ N and ∆t = T/N for some given positive integer N . We introduce
the following notations:

‖ · ‖ := ‖ · ‖L1 + ‖ · ‖Lp , Γnh := ‖ρn − ρnh‖, and Γ̃nh := sup
0≤m≤n

Γmh .

As for the convergence analysis, we point out that the proof of Section 3 cannot
be directly applied. Indeed, it is not obvious to obtain an a piori bound on

sup
0≤n≤N

‖ρnh‖Lp

uniformly in h and ∆t, which we need to estimate (∇W ∗ ρnh) and (D2W ∗ ρnh). In
order to do that, we will prove by induction that there is some h∗ > 0 for which

sup
0<h≤h∗

Γ̃Nh = sup
0<h≤h∗

sup
0≤n≤N

Γnh ≤ 1.

We remind the reader that our error analysis between exact and approximated
solutions for singular potentials requires non-negative weights for the particles,
and this imposes us to give higher regularity on the initial data ρ0 ∈ W2,p(Rd),
see Proposition 1. Using the results in [18] and Appendix A, we can obtain the
existence and uniqueness of a solution ρ ∈ L∞(0, T ; (L1 ∩W 2,p)(Rd)). However, in
the next results we need less regularity in the solutions than on the initial data.
Therefore, we prefer to keep both the assumptions stating the needed properties on
the solution ρ and the initial data ρ0 to emphasize this fact.

Under the (induction) assumption that Γ̃nh is bounded uniformly in h and ∆t,
we can derive the following estimates.

Lemma 5. If M > 0 and n ≤ N are such that Γ̃nh ≤ M , and if the solution to
(1.1) satisfies ρ ∈ L∞(0, T ; (L1 ∩ Lp)(Rd)), then we have

sup
0≤m≤n

‖ρmh ‖ ≤ CM and sup
0≤m≤n

 sup
x∈S̃m

h,k

|x− xmk |

 ≤ CM (h+ ∆t),

with a constant CM depending on M but not on h and ∆t.

Proof. A straightforward computation yields

sup
0≤m≤n

‖ρmh ‖ ≤ Γ̃nh + sup
0≤t≤T

‖ρ(t)‖ ≤ CM .
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In a similar way to (5.4), we also bound products like ‖D(i)W ∗ρmh ‖L∞ by CW ‖ρmh ‖
with CW = max(‖D(i)W‖Lq(B(0,1)), ‖D(i)W‖L∞(Rd\B(0,1))), i ∈ {1, 2}, from which
we derive estimates similar to those of Lemma 2. In particular, following the proof
of Lemma 3 we find that for x ∈ Smh,k,

(5.5) |x− xmk | ≤ L̃h|(Dm
k )−1| ≤ L̃h exp

(
∆t

m−1∑
l=0

∣∣(D2W ∗ ρlh)(xlk)
∣∣) ≤ CMh,

and for x ∈ S̃mh,k we find |x − xmk | ≤ CM (h + ∆t). Note that this latter estimate
involves bounding (5.5) on Sm+1

h,k which only requires the norm ‖ρlh‖ for l ≤ m, so
that the resulting estimate indeed involves a constant depending on M . �

We next give the estimates of u(τ, F tm,τ )−umk for τ ∈ [tm, tm+1] and ξ̃m(D2W )
for 0 ≤ m ≤ n − 1. The proof can be obtained by using similar arguments as
in Proposition 5 with the help of Lemma 5 and a second-order estimate provided
either by Proposition 2 or by a standard Lp error estimate as described in Propo-
sition 1. We omit its proof, but point out that the crucial point is the smoothness
assumptions (5.3) on the singular potential and the Lipschitz bound (5.4) on the
velocity field.

Lemma 6. If M > 0 and n ≤ N are such that Γ̃nh ≤ M , and if the solution
ρ ∈ L∞(0, T ;W1,1(Rd) ∩W1,p(Rd)) to (1.1) with initial data ρ0 ∈ W2,p(Rd), then
we have

sup
τ∈[tm,tm+1]

|u(τ, F tm,τ (xmk ))− umk | ≤ CM
(
h2 + ∆t+ ēnF

)
and

ξ̃m(D2W ) ≤ CM (h+ ∆t+ Γmh )
for 0 ≤ m ≤ n, with constants CM depending on M but not on h and ∆t.

We can also adapt the proof of Corollary 1, Lemma 6, and Proposition 6 to
obtain the following result.

Lemma 7. If M > 0 and n ≤ N are such that Γ̃nh ≤ M , and if the solution
ρ ∈ L∞(0, T ;W1,1(Rd) ∩W1,p(Rd)) to (1.1) with initial data ρ0 ∈ W2,p(Rd), then
we have

emj ≤ CM∆t(h+ ∆t+ Γmh )
and
(5.6) ẽmF ≤ CM∆t

(
h2 + ∆t+ eF

m + (h+ ∆t)Γmh
)

for 0 ≤ m ≤ n, with constants CM depending on M but not on h and ∆t.

We finally connect the errors to the L1 ∩ Lp bounds on the densities.

Lemma 8. If M > 0 and n ≤ N are such that Γ̃nh ≤ M , and if the solution
ρ ∈ L∞(0, T ;W1,1(Rd) ∩W1,p(Rd)) to (1.1) with initial data ρ0 ∈ W2,p(Rd), then
we have

eF
m+1 ≤ CM (h2 + ∆t+ hΓ̃mh ),

and
ẽmF ≤ CM∆t

(
h2 + ∆t+ (h+ ∆t)Γ̃mh

)
for all 0 ≤ m ≤ n, with constants CM depending on M but not on h and ∆t.
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Proof. Since Lemma 4 only relies on the Lipschitz smoothness of the exact flow, we
have

eF
m+1 ≤ eC∆teF

m + ẽmF

for all m. Then from (5.6) we derive

eF
m+1 ≤ e(C+CM )∆teF

m + CM∆t
(
h2 + ∆t+ hΓmh

)
for m ≤ n, so that Gronwall’s inequality (together with Γ̃mh = maxm′≤m Γm′h ) yields

eF
m+1 ≤ CM (h2 + ∆t+ hΓ̃mh )

due to eF 0 = 0. Using this together with (5.6) completes the proof. �

We are now in a position to show the uniform L1 ∩ Lp bounds on the density.

Proposition 8. Assume that the interaction potential W is singular in the sense
of (5.1)-(5.2), and let ρ be a solution to the equation (1.1) up to time T > 0,
such that ρ ∈ L∞(0, T ; (W1,1 ∩W1,p ∩ L∞)(Rd)) with initial data ρ0 ∈ W2,p(Rd),
−1 ≤ α < −1 + d/p′, and 1 < p ≤ ∞. Assume in addition that ∆t . h2 ≤ 1. Then
for all M > 0, there exists h∗(M) > 0 such that

sup
0<h≤h∗(M)

sup
0≤n≤N

Γnh ≤M.

Proof. We use an induction argument on n. Since Γ̃0
h = Γ0

h . h2, clearly there
exists h0(M) such that Γ0

h ≤ M for all h < h0(M). We then assume that n < N
and hn(M) > 0 are such that

sup
0<h≤hn(M)

Γ̃nh ≤M.

For the remaining of the proof we then consider m ≤ n and h ≤ hn(M). In
particular, we observe that the Lemmas above can be used with this value of M .
Decomposing the error as in Theorem 1, we write

ρm+1(y)− ρm+1
h (y)

=
[
ρ
(
tm, F

tm+1,tm(y)
)
− ρmh

(
F tm+1,tm(y)

)]
jtm+1,tm(y)︸ ︷︷ ︸

Am+1(y)

+
∑
k∈Zd

ωk
hmk

ϕ

(
Dm
k

h

(
F tm+1,tm(y)− xmk

))[
jtm+1,tm(y)− 1

jmk

]
︸ ︷︷ ︸

Bm+1(y)

+
∑
k∈Zd

ωk

hm+1
k

[
ϕ

(
Dm
k

h
(F tm+1,tm(y)− xmk )

)
− ϕ

(
Dm+1
k

h
(y − xm+1

k )
)]

︸ ︷︷ ︸
Cm+1(y)

.

Using arguments similar than in Theorem 1 we find

‖Am+1‖Lp ≤ eC∆t‖ρmh − ρm‖Lp and ‖Bm+1‖Lp ≤ Cemj ‖ρmh ‖Lp ≤ CMemj .
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For the estimate of Cm+1(y), we use the interpolation inequality and the estimates
in Theorems 1 and 2 to get

‖Cm+1‖Lp ≤ ‖Cm+1‖1/pL1 ‖Cm+1‖1/qL∞

≤ CM
(ẽmF )1/p

h1/p

(
1 + eF

m + eF
m+1

h

)d/q (ẽmF )1/q

h1/q

= CM

(
1 + eF

m + eF
m+1

h

)d/q
ẽmF
h
.

Using Lemma 8 and the fact that Γ̃mh ≤M and ∆t . h we find that both eFm and
eF

m+1 are bounded by CMh, thus

‖Cm+1‖Lp ≤ CM
ẽmF
h
,

and the above estimates yield

‖ρm+1 − ρm+1
h ‖Lp ≤ eC∆t‖ρm − ρmh ‖Lp + CM

(
emj + ẽmF

h

)
.

We also observe that in the proof of Theorem 1, all the steps leading to the estimate

θm+1 ≤ θm + CM

(
emj + ẽmF

h

)
(where we remind that θm = ‖ρm − ρmh ‖L1) are valid in the case of singular poten-
tials. This yields

Γm+1
h ≤ eC∆tΓmh + CM

(
emj + ẽmF

h

)
.

On the other hand, it follows from Lemmas 7 and 8 that

emj ≤ CM∆t(h+ ∆t+ Γmh ) ≤ CM∆t (h+ Γmh ) ,

and
ẽmF
h
≤ CM∆t

(
h+ ∆t

h
+
(

1 + ∆t
h

)
Γ̃mh
)
≤ CM∆t(h+ Γ̃mh ),

where we used the assumption ∆t . h2. Thus we find

Γ̃m+1
h ≤ e(C+CM )∆tΓ̃mh + CMh∆t.

Since this is valid for allm ≤ n, it follows from Gronwall’s lemma that Γ̃n+1
h ≤ CMh

holds for some constant CM > 0. We remind the reader that CM is the generic
constant depending on M but independent of h and ∆t. In particular, setting
hn+1(M) := min(hn(M),M/CM ) allows to write

sup
0<h≤hn+1(M)

Γ̃n+1
h ≤M.

This ends the induction argument and the proof, by taking h∗(M) = hN (M). �

Putting together all the results in this section, we obtain the main convergence
result in (L1 ∩ Lp)(Rd).
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Theorem 4. Assume that the interaction potential W is singular in the sense
of (5.1)-(5.2), and let ρ be a solution to the equation (1.1) up to time T > 0,
such that ρ ∈ L∞(0, T ; (W1,1 ∩W1,p ∩ L∞)(Rd)) with initial data ρ0 ∈ W2,p(Rd),
−1 ≤ α < −1 + d/p′, and 1 < p ≤ ∞. Assume in addition that ∆t . h2 ≤ 1. Then

sup
0<h≤h∗

sup
0≤n≤N

‖ρnh − ρn‖ ≤ Ch

holds with h∗ = h∗(1) given by Proposition 8 and a constant C independent of h
and ∆t.

6. Numerical Results

We will present in this Section some numerical examples in one dimension, with
different interaction potentials and initial densities to showcase some of the features
already observed in numerical and theoretical analysis of the aggregation equation
(1.1) in [35, 36, 6, 40, 9, 3]. In this way, we first validate our numerical imple-
mentation in order to explore some less-known properties about the behavior of its
solutions in one dimension. A further more complete numerical study in 2D of this
method will be reported elsewhere. These examples already show the wide range
of different behaviors of solutions to the aggregation equation.

6.1. Numerical method: validation and implementation. We have imple-
mented the numerical method described in Section 2.2 using Python. We use dif-
ferent initial conditions depending on the behaviors we would like to show. Specif-
ically, we consider as initial densities

(6.1) ρ0
1(x) = (e−30(x−0.5)2

+ 2e−50(x+0.3)2
)1[−1,1](x),

(6.2) ρ0
2(x) = 1[−1,1](x),

(6.3) ρ0
3(x) = e(x2−1)−1

1[−1,1](x),
in order to have asymmetric, discontinuous symmetric and compactly supported
smooth initial data respectively. These initial densities have been normalized to
have unit mass. Shape functions for the particle method are here B3-splines given by
(2.13). We first examine the validation of our code by comparison of the numerical
solution and the exact solution of (1.1) with W (x) = x2. Due to the conservation
of the center of mass,

∀t ≥ 0,
ˆ
R
xρ(t, x)dx =

ˆ
R
xρ0(x)dx := λ ,

the solution is explicitly given by
(6.4) ρ(t, x) = ρ0 ((x− λ)e2t + λ

)
e2t ,

using the method of characteristics. Figure 2 (left) shows the exact solution of (1.1)
with initial data (6.1) and the numerical solution computed with the LTP method,
together with the L1 and L∞ errors with respect to h.

Let us now compare the results with classical particle methods. One of the
drawbacks of classical particle methods in which the density is reconstructed with
shape function of same size

ρnε (x) =
∑
k∈Z

ωk
1
ε
ϕ

(
x− xnk
ε

)
,
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Figure 2. Comparisons for W (x) = x2, at t = 0.5 with ini-
tial data (6.1) and ∆t = 10−4. Left Figure: Comparison between
the exact solution ρ(t, x) given by (6.4) and ρnh computed by LTP
method for various h. Right Figure: Approximated values ρnh ob-
tained with a classical Smooth Particle (SP) method for h = 0.01
and different fixed particle sizes ε.

is the need to choose adequate values of ε. Indeed, if ε is too small compared to
the distance between two particles, the reconstructed density will vanish between
particles and is thus irrelevant; and if ε is too large the reconstructed density will
be too spread out and the results lack accuracy, as it is demonstrated in Figure 2
(right).

10-3 10-2 10-1 100

ε

10-3

10-2

10-1

100

101

L1  error
L∞  error 
L1  with LTP
L∞  error with LTP

Figure 3. Left Figure: Log-Log Plot of the L1 and L∞ errors of
the SP method using various values for the particle radius ε, versus
those of the LTP method (both using h = 0.01 and ∆t = 0.01).
Right Figure: Log-Log Plot of the L1 and L∞ errors for the SP
and LTP methods with ∆t = 0.0001 and different values of h = ε.
In both cases, W (x) = x2 and ρ0 is given by (6.1) with errors
computed at t = 0.5.

Figure 3 presents the L1 and L∞ errors between a standard Smooth Particle
(SP) method (with different values of ε) and our LTP method for the potential
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W (x) = x2 for which solutions are explicit by the method of characteristics, see
(6.4). On the left picture, we observe that the optimal ε, at this instant t, for a
classical particle method is well captured with the LTP method.

One could object that the gain is not significantly better with the LTP method.
However, since particles aggregate, the average distance between two particles de-
creases exponentially in time, and consequently the optimal size ε for reconstruction
in classical particle method is not the same during the whole simulation. Therefore,
an evolution in time of ε is much better adapted. Notice that the case of potential
W (x) = x2 is not particularly the best example to show the higher accuracy of
the LTP method with respect to the classical particle method since all particles
have the same size at time t because j0,t

ex (x) = e−2t, see (6.4). Moreover, the gain
of accuracy with the LTP method is even clearer while using B1-spline as shape
functions instead of B3-spline, as it is demonstrated on Figure 4.

1.0 0.5 0.0 0.5 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 Shape function : B1-spline

LTP
SP
Exact solution

1.0 0.5 0.0 0.5 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 Shape function : B3-spline

LTP
SP
Exact solution

Figure 4. Comparisons between exact solution (at t = 0.5) and
approximated solutions ρnh with LTP method and SP method, with
W (x) = x2/2, ρ0 given by (6.1), h = 1/25 and ∆t = 10−3. On the
left Figure, the shape function ϕ is a hat function, whereas on the
right Figure, ϕ is a B3-spline.

6.2. Numerical Simulations. We now take advantage of the method to explore
the behavior for other attractive potentials of typeW (x) = |x|a

a , a > 1. Notice that
for a ≥ 2 the potential is smooth while for 1 < a < 2 is singular onceW is cut-off at
infinity or if the initial data is compactly supported since the effective values of the
potential lie on a bounded set and W can be cut-off at infinity without changing
the solution. Figure 5 presents the numerical results obtained by the LTP method
in the case of a = 1.5 and a = 2.5. We represent the approximation of the density
ρnh, and also the reconstructed velocity unh and the reconstructed size of particles
hn by piecewise linear interpolation such that

unh(xnk ) = −∇W ∗ ρnh(xnk ), and hn(xnk ) = h

n−1∏
m=0

jmk .

Potentials and their derivatives are also represented. In both cases, we observe
that the density converges to a Dirac mass. Figure 5 also shows that for a = 2.5,
W ′′ ∈ L∞loc, no finite-time blow-up in L∞ appears, opposite to the case a = 1.5
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Figure 5. Approximated density and reconstructed velocity and
size of particles computed by the LTP method with h = 0.01 for
W (x) = |x|a

a , with a = 1.5 or a = 2.5 and ρ0 given by (6.2) with
the number of time-steps N = 200.

in agreement with the results proved in [7]. Notice also the different qualitative
behavior in their trend to blow-up as studied in [40].

Now, we further analyse the blow-up behavior by looking at the case of attractive-
repulsive potentials W (x) = |x|a

a −
|x|b
b , 1 < b < a. Notice again that for b ≥ 2

the potential is smooth while for 1 < b < 2 is singular once W is cut-off at infinity
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Figure 6. Approximated density and reconstructed velocity and
size of particles computed by the LTP method with h = 0.01 for
W (x) = |x|a

a −
|x|b
b , with a = 3 and b = 1.5 or b = 2.5 and ρ0 given

by (6.2) with the number of time-steps N = 200.

or if the initial data is compactly supported as discussed above. Figure 6 presents
the approximated density ρnh, reconstructed velocity unh and size of particles hn
obtained by the LTP method in the case of the attractive-repulsive potentials with
(a, b) = (3, 1.5) and (a, b) = (3, 2.5). In this case ρ0 is given by (6.2).

We observe that the long time asymptotics for b = 2.5 are characterized by the
concentration of mass equally onto Dirac deltas at two points in infinite time, while
for b = 1.5 we obtain a convergence in time towards a steady L1 density profile
seemingly diverging at the boundary of the support. This last behavior has been
reported in several simulations and related problems [6]. However, it has not been
rigorously proven yet. Let us point out that the set of stationary states when the
interaction potential is analytic in 1D consists of a finite number of Dirac deltas as
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proven in [35, 36]. This result also holds for W (x) = |x|a
a −

|x|b
b , 2 < b < a, as it

will be reported in [23].
Figure 7 also represents the time evolution of the approximated density for

(a, b) = (3, 2.5), with ρ0 given by (6.3). Solutions in the range 2 < b < a for initial
data in L1∩L∞ exist globally in time, see [37]. The numerical evidence shows that
all solutions converge towards stationary states consisting of finite number of Dirac
Deltas as t→∞ in this range.

Figure 7. Time evolution of the density for W (x) = |x|a
a −

|x|b
b ,

with a = 3, b = 2.5 and ρ0 given by (6.3) with N = 100.

Finally, we show in Figure 8 the results of the stationary state of the SP method
versus the LTP method for the potential (a, b) = (4, 2.5) with N = 100. We observe
how the good local adaption of the size of the particles makes our approximation
much better with no oscillations with respect to the SP method showing the good
performance of the LTP method in this case and its good properties at work.
As mentioned in the introduction, vortex-blob type methods have been shown to
converge for the aggregation equation (1.1). They obtained convergence estimates
in suitable Lp norms for the velocity fields and the associated characteristics fields
while the error for the densities was controlled in suitable W−1,p-norms in [8, Th.
3.8]. The error estimates for vortex-blob and SP methods depend as usual on the
regularization of particles and the fixed particle size related in a suitable way to
get convergence. We have proven that the LTP method has in contrast direct error
estimates for the densities in Lp depending on the initial mesh size showing that
the local adaptation of the shape has this benefit on the error estimates too.

Appendix A. A priori estimates on the regularity of solutions

In this part, we deduce a priori estimates on the regularity of equation (1.1)
that combined with the global/local in time well posedness theory obtained in
[32, 37, 10, 18], leads to the existence of solutions with the desired properties to
apply the convergence results of previous sections.

As we remind the reader in the introduction and in several places along the
text, there are two different well-posedness settings: for smooth and for singular
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Figure 8. Densities at steady state for W (x) = |x|a
a −

|x|b
b , with

a = 4, b = 2.5 and ρ0 given by (6.2). Left Top: SP method
(solid line), right top: LTP method (dotted line), bottom: size of
particles (SP versus LTP) with N = 100.

potentials. In both cases under the assumptions on the initial data the velocity
fields are continuous in time and Lipschitiz continuous in space. In the smooth
potential case, this property holds globally in time leading to unique global in time
measure solutions [32, 37]. In the singular potential case, this property holds locally
in time only since there exist blowing-up of solutions for fully atractive potentials,
see [7, 10, 18]. In both cases, the flow map associated to the velocity field is well-
defined and solutions are obtained by pushing forward the initial data through the
flow map.

In this Appendix, we present first a global-in-time propagation of regularity
result in the smooth potential case adapted to our hypotheses on the convergence
results. On the other hand, we show a local-in-time propagation of regularity result
in the singular potential case.

Proposition 9. Assume that the interaction potentialW satisfies ∇W ∈ W1,∞(Rd).
Let T > 0 be given and ρ be the unique weak solution to the system (1.1) with initial
data ρ0 ∈ W1,1

+ (Rd) obtained in [32, 37], then

sup
0≤t≤T

‖ρ(t, ·)‖W1,1
+
≤ C,
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where C is a positive constant depending only on T , L, and ‖ρ0‖W1,1
+

. Furthermore,
if we assume that the initial data ρ0 ∈ (L∞ ∩W1,1

+ )(Rd), then
sup

0≤t≤T
‖ρ(t, ·)‖L∞∩W1,1

+
≤ C,

where C is a positive constant depending only on T , L, and ‖ρ0‖L∞∩W1,1
+

.

Proof. It follows from the conservation of mass and our assumption on the initial
data ρ0 that ˆ

Rd

ρ(t, x) dx =
ˆ
Rd

ρ0(x) dx = 1.

For the estimate of ‖ρ‖L∞(0,T ;Ẇ1,1), we take ∇ to (1.1) to get

∂t∇ρ(t, x) +D2ρ(t, x)u(t, x) +∇u(t, x)∇ρ(t, x)
+∇(∇ · u(t, x))ρ(t, x) +∇ · u(t, x)∇ρ(t, x) = 0.

(A.1)

We next multiply (A.1) by ∇ρ(t, x)/|∇ρ(t, x)| to obtain
∂t|∇ρ|+ u · ∇|∇ρ(t, x)|+∇ · u|∇ρ(t, x)| =

−∇u∇ρ · ∇ρ
|∇ρ|

− ∇(∇ · u)ρ · ∇ρ
|∇ρ|

,
(A.2)

due to the symmetry of D2ρ. By integrating (A.2) over Rd and using integration
by parts, we deduce

d

dt

ˆ
Rd

|∇ρ| dx =−
ˆ
Rd

∇u∇ρ · ∇ρ
|∇ρ|

dx

−
ˆ
Rd

∇(∇ · u)ρ · ∇ρ
|∇ρ|

dx ≤ 2L|∇ρ| dx,
(A.3)

where we used ‖∇u(t, x)‖L∞ ≤ ‖∇W‖W1,∞ = L and

‖∇(∇ · u)‖L∞ ≤ L
ˆ
Rd

|∇ρ| dx.

Thus we have
sup

0≤t≤T
‖∇ρ(t, ·)‖L1 ≤ ‖∇ρ0‖L1 exp (2LT ) .

Finally, we estimate ‖ρ‖L∞ . For this, we recall that the flow map F 0,t(x) satisfies
dF 0,t(x)

dt
= u(t, F 0,t(x)) with F 0,0(x) = x.

Using that ρ(t) = F 0,t#ρ0, we can write
∂

∂t
ρ(t, F 0,t(x)) = −∇ · u(t, F 0,t(x))ρ(t, F 0,t(x)),

and this yields

ρ(t, F 0,t(x)) = ρ0(x) exp
(
−
ˆ t

0
∇ · u(s, F 0,s(x)) ds

)
.

Since u ∈ W1,∞(Rd), we obtain
(A.4) sup

0≤t≤T
‖ρ(t, ·)‖L∞ ≤ ‖ρ0‖L∞ exp (LT ) .

This completes the proof. �
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Remark 5. If we further assume that ρ0 ∈ W1,∞
+ (Rd), we have

sup
0≤t≤T

‖ρ(t, ·)‖W1,∞ ≤ C,

where C is a positive constant depending only on T , L, and ‖ρ0‖W1,∞
+

. Indeed, we
can similarly find from (A.1) that for i = 1, · · · , d
∂

∂t
∂iρ(t, F 0,t(x)) = −∂iu(t, F 0,t(x))∇ρ(t, F 0,t(x))−∇ · u(t, F 0,t(x))∂iρ(t, F 0,t(x))

− ρ(t, F 0,t(x))∇ · ∂iu(t, F 0,t(x)).

This implies

‖∇ρ(t, ·)‖L∞ ≤ ‖∇ρ0‖L∞ exp
(
C

ˆ t

0
‖∇u(s, ·)‖L∞ ds

)
+ exp

(
C

ˆ t

0
‖∇u(s, ·)‖L∞ ds

)ˆ t

0
‖ρ(s, ·)‖L∞‖D2u(s, ·)‖L∞ ds,

≤ C‖∇ρ0‖L∞ + C

ˆ t

0
‖D2u(s, ·)‖L∞ ds

where we used u ∈ W1,∞(Rd) and the estimate (A.4). On the other hand, ‖D2u(s, ·)‖L∞
can be estimated by

‖D2u(s, ·)‖L∞ ≤ ‖∇W‖W1,∞‖∇ρ(s, ·)‖L∞ .

Hence, we have

‖∇ρ(t, ·)‖L∞ ≤ C‖∇ρ0‖L∞ + C

ˆ t

0
‖∇ρ(s, ·)‖L∞ ds,

and by applying Gronwall’s inequality to conclude the desired result. Similar argu-
ments were used in [2] to construct classical solutions.

We next provide the a priori estimate of solutions to the system (1.1) inW1,1
+ (Rd)∩

W1,p(Rd). For notational simplicity, we set

W̃k,p
+ (Rd) :=Wk,1

+ (Rd) ∩Wk,p(Rd) for k ≥ 0.

Proposition 10. Assume that the interaction potential W satisfies (5.1) for some
1 ≤ q ≤ d

α+1 . Let ρ be the unique local-in-time solution to (1.1) constructed in
[18] with initial data ρ0 satisfying ρ0 ∈ (L∞ ∩ W̃1,p

+ )(Rd) where p is the Sobolev
conjugate of q. Then there exists a T ∗ > 0 such that

sup
0≤t≤T∗

‖ρ(t, ·)‖W̃1,p
+
≤ C,

where C is a positive constant depending only on T ∗, α, p, and ‖ρ0‖W̃1,p
+

.

Proof. The local-in-time well-posedness theory in [18] that

(A.5) d

dt
‖ρ‖W̃0,p

+
≤ C‖ρ‖2

W̃0,p
+
.

It also follows from (A.1)-(A.3) that
d

dt
‖∇ρ‖L1 . ‖ρ‖W̃0,p

+
‖∇ρ‖L1 + ‖∇ρ‖W̃0,p

+
≤ ‖ρ‖2

W̃1,p
+
,
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where we used ‖Dku(t, x)‖L∞ ≤ C‖Dk−1ρ‖W̃0,p
+

for k ≥ 1 and ‖ρ‖W̃0,p
+
≥ 1. For

the estimate of ‖∇ρ‖Lp , we obtain
d

dt

ˆ
Rd

|∇ρ|pdx = −p
ˆ
Rd

|∇ρ|p−2∇ρ ·
(
D2ρu+∇u∇ρ+∇(∇ · u)ρ+∇ · u∇ρ

)
dx

= (a) + (b) + (c) + (d),

where (a), (b), (c), and (d) are estimated as follows.

(a) = −
ˆ
Rd

u · ∇|∇ρ|pdx =
ˆ
R
∇ · u|∇ρ|pdx . ‖ρ‖W̃0,p

+
‖∇ρ‖pLp ,

(b) ≤ p
ˆ
Rd

|∇u||∇ρ|pdx . ‖ρ‖W̃0,p
+
‖∇ρ‖pLp ,

(c) ≤ p‖∇2u‖L∞‖ρ‖Lp‖∇ρ‖p−1
Lp . ‖∇ρ‖W̃0,p

+
‖ρ‖Lp‖∇ρ‖p−1

Lp ,

(d) ≤ p
ˆ
Rd

|∇ · u||∇ρ|pdx . ‖ρ‖W̃0,p
+
‖∇ρ‖pLp .

Thus, we get

(A.6) d

dt
‖∇ρ‖Lp ≤ C‖ρ‖2

W̃1,p
+
.

Now, we combine (A.5) and (A.6) to deduce
d

dt
‖ρ‖W̃1,p

+
≤ C‖ρ‖2

W̃1,p
+
,

and this concludes that there exists a T ∗ > 0 such that
sup

0≤t≤T
‖ρ(t, ·)‖W̃1,p

+
≤ C,

where C is a positive constant depending only on T ∗, α, p, and ‖ρ0‖W̃1,p
+

.
�
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