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Real-Time Flocking of Multiple-Quadrotor System of Systems

Osamah Saif1 and Isabelle Fantoni1 and Arturo Zavala-Rı́o2

Abstract— The subject of this paper is a real-time flock-
ing control of multiple quadrotors in the context of system
of systems. We believe that the most challenging aspect in
multiple-quadrotor control is the interaction between quadro-
tors through sensing and preserving safe interdistances. The
final objective is a collision-free flock of multiple quadrotors
while navigating to a predefined destination. For this purpose,
we develop control laws that are based on the consensus
theory introduced by Olfati-Saber in [1]. Our control laws are
designed in order to be compatible with experimental imple-
mentation and nonlinear model of quadrotors. Simulations and
experiments using four quadrotors validate the performance of
the proposed control laws. The convergence of interdistances
between quadrotors to a desired value are maintained while
navigating to a destination point.

I. INTRODUCTION

Flocking is a collective, harmonic and collision-free mo-

tion of animals. Biologists have studied flocks of birds,

swarms of insects, herds of quadruped, and schools of fish,

in order to understand the secret of this collective motion.

Moreover, they have searched to discover motivations that

lead animals to aggregate in groups [2] [3].

The amazing phenomenon of flocking has attracted control

and robotics scientists, so they have tried to imitate it on

robots platoons. One of the most advanced fields, that devel-

oped techniques similar to flocking, is flight formation con-

trol. Three of them are cited here: Leader-follower, Virtual

structure and Behavior-based control. In the leader-follower

structure, individuals in the formation follow one agent (or

airplane) which is designated as a leader. A formation flight

mission trajectory is loaded in the leader, and the followers

track their leader. This structure is simple and widely imple-

mented in multi-agent formation [4], [5]. Experimental work

was conducted in [6] using this control structure. However,

this control structure reveals some drawbacks. One of them

is that the entire formation depends on one agent, so if there

is a problem with the leader, the whole formation will be

affected.

In the virtual structure, every agent in the formation has

its own trajectory to follow. The overall trajectories form the

desired formation. Trajectories are calculated in a central
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computer and sent to agents in the formation. Generally,

no interactions between agents are considered. Examples of

experimental works of such control strategy can be found in

[7] and [8].

The two previous structures tend to be centralized methods

of controlling multi-agent systems, which could have a weak

performance when the number of agents in a formation

increases. In fact, multi-agent systems control is considered

as a system of systems issue. Technological advances in our

ages motivate scientists to develop distributed methods that

are capable to deal with system of systems challenges, such

as operational and managerial independence, scalability, dis-

tributed coordination and synergism of control [9] [10] [11].

One of these methods is the behavior-based control, where

each agent follows some rules to achieve the formation.

The objective of the formation control is, therefore, broken

down into small rules. In fact, this structure is inspired from

the collective motion of animals. Among the first technical

work on this structure is the distributed behavioral model

by Reynolds [12]. Although Reynolds was specialized in

computer graphics, his work inspired researchers in control

theory and robotics to apply Reynolds rules in a theoretical

and experimental framework. Reynolds inspired his rules

from biologists study of animals collective motion. He con-

sidered that each individual in a flock should follow these

rules in order to perform the flocking behavior. These rules

are: 1) Collision Avoidance; 2) Velocity Matching, and 3)

Flock Centering.

These rules were cited by several works in control theory

and robotics such as [1], [13]. Authors used these rules

as a base to develop theoretical framework and control

strategies and algorithms for flocking of multi-agent dynam-

ical systems. These theoretical results were not exploited

in experimental works, to the best of our knowledge. This

encourages us to extend the work in [1] to be applicable

in real-time multiple quadrotors. In fact, we believe that

distributed coordination, scalability and self-organization of

the control laws in this work answer some challenges of

system of systems engineering.

Quadrotors are a type of UAV devices that have received

a great interest in the last decades. Maneuverability in 3-

D space and low-cost experimentation of quadrotors render

them an ideal platform for robotics research. Moreover,

applications of quadrotors vary from surveillance and 3-D

mapping of environments, to rescue and exploration.

A system of systems of multiple quadrotors could be

employed in large-zone surveillance, rescue and search mis-

sions. Recently, researchers in robotics performed several

experimental works on multiple-quadrotor control as in [7],



[8] and [14]. The works in [7] and [8] consider multiple-

quadrotor control as a problem of trajectory generation.

Each quadrotor follows a collision-free trajectory, which is

generated from a central base station. In the presence of dis-

turbances, it is not clear that a collision-free formation could

be ensured. Moreover, we believe that multiple-quadrotor

control could be more challenging if it is implemented

aboard quadrotors and if it considers interactions between

them. On the other hand, the work in [14] did not deal

with the nonlinear model of quadrotors. Instead, it uses a

high level control that deals with an ideal double-integrator

model, and the smooth output of this model is used to drive

stabilized quadrotors. In our work, we try to deal directly

with the nonlinear model of quadrotors, and then we apply

the proposed control laws in the quadrotors to stabilize and

navigate the flock.

Our interest in this work is to perform real-time flocking of

multiple quadrotors in the context of system of systems. Our

control method is based on the consensus theory introduced

by Olfati-Saber in [1]. The flocking control law in [1] was

mainly proposed for double-integrator linear system. In this

work, we propose two modified versions of this control law

aiming at being compatible with the nonlinear model of

quadrotors and experimental works. The control law is run

aboard each quadrotor in the flock. By running the control

law, each quadrotor interacts with its neighbors to ensure a

collision-free flocking.

The organization of this paper is: we address, firstly, the

topology of multiple-quadrotor flocking and the dynamics

of a quadrotor in section II. Then, the flocking algorithm

of [1] and our two control laws are introduced in section

III. Simulation and experimental results are presented in

section IV. Finally, section V concludes with comments and

proposed future works.

II. PRELIMINARIES

A. Topology of multi-quadrotor flocking

Graph theory is used to describe the topology of a multi-

quadrotor system. A multi-quadrotor system is represented

by an undirected graph G = (V ,E), where V is a set

of nodes V = {1,2, ...,M}, and E is a set of edges E ⊆
{(i, j) : i, j ∈ V , i 6= j}. Every node represents a quadrotor

and edges depict the sensing between quadrotors. An ad-

jacency matrix A is an M×M matrix with elements ai j = 1

if (i, j) ∈ E and ai, j = 0 otherwise. For more information

about graph theory, the reader can refer to [15].

Before working on the dynamics of quadrotors, we need to

represent our multi-quadrotor system in the Euclidean space.

Therefore, to every node i in the graph, a position vector

qi ∈R
f is associated, where f is the dimension of the space

(example: f = 2,3). The configuration of all nodes of the

graph is defined by the vector q = col(q1, ...,qn) ∈ R
f M .

A set of spacial neighbors of a quadrotor i is defined by:

Ni =
{

j ∈ V : ‖q j −qi‖< c
}

(1)

where ‖.‖ is the Euclidean norm, and c is the interaction

range. A position-induced graph G(q) = (V ,E(q)) is called

a proximity net and is defined by V and the set of edges

E(q) =
{

(i, j) ∈ V ×V : ‖q j −qi‖< c, j 6= i
}

.

The desired conformation of multiple quadrotors in a flock

could be written as follows:

‖q j −qi‖= d ∀ j ∈ Ni(q) (2)

where d is the desired inter-distance. A proximity net that

ensures the objective in (2) is defined as an ”α-Lattice”.

However, implicit inaccuracies give rise to an α-Lattice with

some edge-length uncertainty. This type of proximity net is

called a ”quasi-α-Lattice” [1], and it is described by the

following inequality:

−δ < ‖q j −qi‖−d < δ ∀(i, j) ∈ E(q) (3)

where δ is the edge-length uncertainty.

B. Quadrotor dynamics

In this section, we introduce nonlinear dynamics of a

quadrotor. Several studies dealt with the modeling of quadro-

tors as in [16] and [17]. We model the quadrotor as a rigid

body. Let I = (Ix, Iy, Iz) be the global inertial frame, and

let B = (Bx,By,Bz) be the body-fixed frame. The nonlinear

model of a quadrotor is given as follows:

ξ̇ = ν

m ξ̈ = G+RU

η̇ = WΩ

JΩ̇ = Ω× JΩ+ τ

(4)

where ξ = [x,y,z]T is the position of the center of mass of

the quadrotor in the I frame, ν = [νx,νy,νz] is the vector of

linear velocities in the I frame, η = [φ ,θ ,ψ]T is the vector of

Euler angles, Ω= [wBx ,wBy ,wBz ]
T is the vector of the angular

velocities in the B frame, m is the mass of the quadrotor,

G = [0,0,−g]T with g being the gravitational acceleration,

U = [0,0,F ]T is the thrust vector and τ = [τφ ,τθ ,τψ ]
T is the

torque vector.

J is the moment of inertia diagonal matrix with Jx Jy and

Jz are diagonal components. W is a transformation matrix

between the angular velocities and the derivatives of Euler

angles. R is the rotation matrix from the B frame to the I

frame. The reader can refer to [17] for detailed expressions

of W and R.

III. FLOCKING ALGORITHMS OF MULTIPLE QUADROTORS

In this paper, we separate the control problem of multi-

quadrotor in two parts. The first part is the control of internal

dynamics of each quadrotor. We mean by internal dynamics,

the altitude z and the rotational dynamics of each quadrotor.

This part will not be involved in the algorithm of flocking.

The second part is the control of the x,y translation and

flocking dynamics of multiple quadrotors.

In fact, we specify a fixed desired altitude z and heading ψ .

Moreover, outputs of x−y translation and flocking controllers

are feedforwarded to the inputs of controllers of roll and pitch

φ −θ angles. Figure 1 shows the overall control architecture.

A. Control of quadrotor internal dynamics

Before starting the description of the control strategy of a

quadrotor in a flocking perspective, we begin by linearizing

the nonlinear model (4) about the origin (ξ = 0, ξ̇ = 0,η =
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Fig. 1: Control architecture of quadrotor in a flocking perspective. Internal

dynamics are controlled separately from the x− y translation and flocking

dynamics

0, η̇ = 0). The result of linearization is given as follows:

ẋ = vx (5a)

ẏ = vy (5b)

ż = vz (5c)

v̇x = (1/m)θ (5d)

v̇y =−(1/m)φ (5e)

v̇z = F (5f)

φ̇ = wBx (6a)

θ̇ = wBy (6b)

ψ̇ = wBz (6c)

ẇBx = (1/Jx)τφ (6d)

ẇBy = (1/Jy)τθ (6e)

ẇBz = (1/Jz)τψ (6f)

Equations (5a) through (5f) represent the translational

dynamics of the quadrotor and equations (6a)-(6f) represent

the rotational dynamics.

The control of the quadrotor will be as follows. Firstly,

we use PID controllers to control the z dynamics (equations

(5c) and (5f)) and the ψ dynamics (equations (6c) and (6f)).

The control inputs of these two subsystems are given by

the general expression of a PID controller in a tracking

perspective, as follows:

F = r̈z + kpz(rz − z)+ kdz(ṙz − ż)+ kiz

∫

(rz − z)dt (7)

τψ = r̈ψ + kpψ(rψ −ψ)+ kdψ(ṙψ − ψ̇)+ kiψ

∫

(rψ −ψ)dt

(8)

where rz and rψ are the desired altitude and heading of the

quadrotor, and the constants k(.) > 0.

Secondly, the remaining equations represent the x − y

translational dynamics and the φ − θ rotational dynamics.

To control these dynamics we use an approach similar to

the backstepping technique. This approach is widely used

in the control of quadrotors [17]. First, we consider φ and

θ in equations (5d) and (5e) as virtual control inputs of

the translational dynamics. Then, we design a controller for

the rotational dynamics (equations (6a)-(6f)), which has a

double-integrator form. For this purpose, we use the nested

saturation approach [18], [19], [20] and [21]. Hence, the

control inputs that stabilize the φ − θ rotational dynamics

are given as follows:

τφ =−Satφ1

(

kφ1
φ̇ +Satφ2

(

kφ2
φ̇ + kφ1

kφ2

(

φ − rφ

)))

(9)

τθ =−Satθ1

(

kθ1
θ̇ +Satθ2

(

kθ2
θ̇ + kθ1

kθ2
(θ − rθ )

))

(10)

where Satαi
(x) = sign(x)min(|x|,αi) with (i = 1,2), αi = φi

or θi, with αi being a real positive constant. The constants

k(.) are tuning gains. rφ and rθ are desired references, which

are the outputs of the x− y position controllers.

B. Flocking and translation control of multiple quadrotors

The design of the x− y controllers will be similar to the

flocking algorithm in [1]. In equations ((5a), (5b), (5d), (5e)),

we take qi = [x y]T , pi = [νx νy]
T , and ui = [ 1

m
θ −1

m
φ ]T .

Therefore, the translational dynamics could be written as

follows: q̇i = pi

ṗi = ui
(11)

In this section, we discuss the control of such double-

integrator translation system from a flocking perspective. We

begin by introducing the basic principles of controlling a

multi-agent system. The controlling algorithm is introduced

by Olfati-Saber in [1]. A ”σ -norm” is a map R
n →R

+ of a

vector z ∈ R
n, defined as:

‖z‖σ =
1

ε

[

√

1+ ε‖z‖2 −1

]

(12)

where ε > 0 and R
+ is the set of non-negative real numbers.

The gradient of σ -norm is defined by:

σε(z), ∇z‖z‖σ =
z

√

1+ ε‖z‖2
=

z

1+ ε‖z‖σ
(13)

In fact, σ -norm is not a norm but its importance is that it is

differentiable everywhere, unlike the Euclidean norm that is

not differentiable at z = 0.

A spacial adjacency matrix is defined as A(q) = [ai j(q)]
where:

ai j(q) =

{

0 if i = j

ρh(‖q j −qi‖σ/‖c‖σ ) if j 6= i
(14)

The bump function ρh : R+ → [0,1] with h ∈ (0,1) is defined

as:

ρh(z) =







1 if z ∈ [0,h)
1
2

[

1+ cos
(

π z−h
1−h

)]

if z ∈ [h,1]
0 otherwise

(15)

A smooth collective potential function is used to design

the flocking algorithm of multiple quadrotors. This function

is given as follows:

V (q) =
1

2
∑

i
∑
j 6=i

Ψα(‖q j −qi‖σ ) (16)

where

Ψα(z) =
∫ z

dα

Φα(s)ds (17)

Φα is defined by:

Φα(z) = ρh(z/cα)Φ(z−dα)
Φ(z) = 1

2
[(a+b)σ1(z+ e)+(a−b)]

(18)

with σ1(z) = z/
√

1+ z2. The function Φ(z) is uneven and

sigmoidal, with 0 < a ≤ b and e = |a−b|/
√

4ab that ensures

Φ(0) = 0.

It follows from the above formulas that Ψα(z) is a

smooth pairwise repulsive/attractive potential function. It has



a minimum at z = dα = ‖d‖σ , and it has a finite cut-off at

cα = ‖c‖σ . The finite cut-off feature of this function is a

fundamental source of scalability of the flocking algorithm

[1]. Moreover, every local minimum of V (q) is an α-lattice.

The control law introduced in [1], which is applied on each

agent with linear dynamics, and that ensures an α-lattice

flock and navigation, is given as follows:

ui = ∑
j∈Ni

[Φα(‖q j −qi‖σ )ni j +ai j(q)(p j − pi)]

+ f
γ
i (qi, pi,qr, pr)

(19)

where f
γ
i (qi, pi,qr, pr) =−c1(qi −qr)− c2(pi − pr), c1,c2 >

0, and ni j = σε(q j −qi) as in equation (13).

This control law is composed of three terms. The first

is the gradient-based term, which ensures the interdistance

regulation between agents. The second is the velocity con-

sensus term, which is analog to a derivative controller in

a conventional PD control law. The last term f
γ
i (.) is the

navigational or the translational feedback control, with qr

and pr being the desired position and velocity to be tracked.

Moreover, the first and the second terms ensure the aggrega-

tion of every agent with its neighbors and the conservation

of a collision-free flocking. The navigational feedback leads

the whole flock to track a predefined objective trajectory

or destination point. The objective trajectory is known by

every agent in the flock, which ensures a fragmentation-free

flocking.

We have applied such controller in simulation (section IV),

and we have observed that this control law could not be

applied directly on nonlinear systems, such as quadrotors.

In fact, the simulation results of this control law on the

nonlinear dynamics of quadrotors show oscillating movement

of distances between quadrotors. This could be explained by

the fact that the control law in (19) was applied on double-

integrator linear models without considering uncertainties.

We believe that, the elegant control law in (19) could

be applied on nonlinear systems if we add some tuning

gains to its gradient-based and velocity consensus terms.

The additional gains will compensate for uncertainties of

nonlinear model. The modified control law is given in the

following equation:

ui = ∑
j∈Ni

[

KpΦα(‖q j −qi‖σ )ni j

+Kdai j(q)(p j − pi)
]

+ f
γ
i (qi, pi,qr, pr)

(20)

where Kp,Kd > 0 are tuning gains and their values depend

on the quadrotor device. Kp and Kd are user defined. They

give a relative freedom to the user to apply the control law

on different quadrotor devices.

C. Robust flocking control

In the previous section, we proposed a modified version

of Olfati-Saber flocking control law. This control law was

tested in a real-time experimental setup and showed good

results. However, real-time applications always suffer of per-

turbations, and need more robust control laws. Perturbations

are caused generally by the wind flown from the rotors of

quadrotors. In real-time experiments we noticed steady-state

errors in the distances between quadrotors. Therefore, in this

section, we present an alternative version of (20), intended

to eliminate the steady-state errors.

In control theory, one of the ways used to eliminate steady-

state errors is to add an integral action to the control law

[22]. Therefore, our complemented control law is written as

follows:

ui = ∑
j∈Ni

[

KpΦα(‖q j −qi‖σ )ni j +Kdai j(q)(p j − pi)

+Ki

∫

Φα(‖q j −qi‖σ ) ni j dt
]

+ f
γ
i (qi, pi,qr, pr)

(21)

where Ki is the integral-action gain, which is tuned by

the user. This alternative control law shows good results

in real-time experiments, which complements Olfati-Saber

approach. The steady-state errors are efficiently reduced.

IV. SIMULATION AND EXPERIMENTS

In this section, we present our simulation results and real-

time experiments of multi-quadrotors flocking. By using a

simulator of multiple quadrotors, we apply the control law

in equation (19). Real-time experiments show the results of

the application of our complemented control laws (20) and

(21). Moreover, we compare our results with another work

of the authors in [23]. Videos of the simulation and real-time

experiments are available in the supplementary materials or

at the link in [24].

A. Simulation

The simulation results show the application of Olfati-Saber

control law (19). Generally, before performing risky real-

time experiments, and especially with multi-quadrotors, we

perform numerical implementations on a simulator.

Heudiasyc laboratory has developed a PC-based simulator

of flock of multiple quadrotors. C++ codes written in the

simulator and in the embedded system of each quadrotor are

the same. For this purpose, the PC is run under Linux as in

the quadrotors. In the simulator, virtual sensors and actuators

are connected to the discrete nonlinear model of quadrotor in

(4). As a result, all quadrotors’ states are calculated at each

instant of time. Moreover, quadrotors evolve in a 3-D virtual

environment, thanks to Irrlicht engine. The program in the

simulator is connected to a base-station control program. The

base station records and draws measurements. Moreover, it is

used to start and end simulation and to set the parameters of

quadrotors and control laws. Figure 2 shows the simulation

result of applying the control law in (19) on four quadrotors.

This figure represents the distances between quadrotors over

the time, and the legend di j means the distance between

quadrotor i and j. The intended scenario is as follows:

quadrotors start in their initial positions and move toward a

predefined qr position. For the numerical application, we set

a = b = 5, the desired distance between neighbors is d = 1,

c = 1.2d, ε = 0.1 and h = 0.2. In this figure, the distance

between quadrotors 1 and 3 is not converging to the desired

value because this distance exceeds the interaction range

c = 1.2d. Moreover, We note the oscillated behavior of the

quadrotors during flight. This is caused by the absence of



gains in the gradient-based and the velocity consensus terms

in (19). Since this results are risky, we avoided experimental

works with this control law.
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Fig. 2: Interdistances between 4 quadrotors in the simulator by using Olfati-

Saber algorithm (19). Once the control law of flocking is launched in each

quadrotors, the interactions start and the distances converge with oscillation

B. Experimental platform

In our experiments, our platform is the quadrotor

ArDrone2 from Parrot [25]. Using an SDK provided by

Parrot, this platform is designed to be controlled, either from

a smartphone, a PC through WiFi, or directly by running a

program on the quadrotor via socket. The utilization of SDK

prevents us to use our control laws to stabilize the quadrotor,

since the drone has its own control laws designed by Parrot.

We solved this problem through the work of teams from

TU Delft university on ARDrone 2 and their autopilot

Paparazzi [26]. They managed to decode the communication

protocols between the main processor of the quadrotor and

its sensors and motors. With these protocols, it is possible

to directly control the quadrotor and read the raw data from

each sensor. By incorporating these protocols into our own

software framework for quadrotors, we managed to replace

the programs of manufacturer by our own control laws.

The ARDrone 2 is thus mainly used for its material part,

whose characteristics are: 1GHz 32 bit ARM Cortex A8

processor, 128 MB RAM, 128MB Flash, WiFi, 3 axis ac-

celerometer, 3 axis gyroscope, 3 axis magnetometer, Pressure

sensor, Ultrasound sensors (altitude < 6m) and 4 brushless

motors. The inertial sensors are used in a complementary

filter [27] to estimate the orientation of the quadrotor.

Experiments are performed in an indoor environment using

Optitrack motion capture system [28]. The system senses the

pose of quadrotors at 100 Hz. This information is sent to the

base-station PC and then forwarded through Wifi to one of

quadrotors. This quadrotor broadcasts the pose information

to all quadrotors. Every quadrotor, then, knows the pose of

all quadrotors in the flock and can estimate also velocities

by differentiating the poses. In all experiments, we use the

Optitrack frame of reference as our global frame I.

We emphasize here that our control laws are run aboard

on the quadrotors. Moreover, our control laws need only the

relative distances to the neighboring quadrotors. Since we

do not have sensors that measure the relative distances to

neighbors, we use the Optitrack system as an alternative.

Thus, we calculate the relative distances, aboard on, by using

received positions. Moreover, ai j(.) function in (14) is used

to limit the interaction range between quadrotors.

C. Experimental results

In this section, we present real-time experiments of

multiple-quadrotor flocking. We show the results of two ex-

periments using the control laws in (20) and (21). Moreover,

we compare these results to a previous work of the authors

in [23].

In all of the following experiments, quadrotors takeoff

from their initial positions to the same defined altitude

rz = 1m. The desired yaw angles are set to rψ = 0 for the

whole experiment duration. The formation control law is

then launched to form the desired conformation. Finally, the

quadrotors land after sufficient time.

In the first experiment, we use four quadrotors to form

a quasi-α-lattice. We apply our first improved control law

in (20). The destination point is defined as the origin of

the frame I, qr = [0 0]T . In this experiment we set Kp =
0.25,Kd = 0.3,c1 = 0.1,c2 = 0.2, ε = 0.1, h = 0.2, c = 2,

the desired distance between neighbors is d = 1.5 and the

parameters a = b = 1.

Figure 3 (left) shows the result of using the first comple-

mented control law in (20) in the first real-time experiment.

The figure exhibits the distances between quadrotors over the

time. In the experiment, the performance of this control law

is improved compared to the one in (19). We note, however,

a steady-state error in the interdistances between quadrotors,

i.e. the desired interdistances are not completely reached.

This steady-state error could be explained by the presence

of continuous perturbations in the real-time experiment. One

of the sources of these perturbations is the downwash of rotor

blades.

Figure 3 (right) shows the trajectories of quadrotors of

this experiment. Quadrotors start at their initial positions

designated as black diamonds. Then, they start moving

toward the desired destination while they avoid collision

with their neighbors. A quasi-α-lattice is finally formed. In
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Fig. 3: (Left) Interdistances between 4 quadrotors in the real-time exper-

iment by using the control law in (20). Once the control law of flocking

is launched in each quadrotors, the interactions start and the distances

converge. Finally, the quadrotors land after t = 60s. (Right) Trajectories of

4 quadrotors in the real-time experiment by using the control law in (20).

Quadrotors move from their initial positions to the destination point, gather

around the center and form a quasi-α-lattice

the second experiment, we apply our control law in (21).

The destination point is designated to be qr = [1 1]T . The

parameters of this control law is set as Kp = 0.25, Kd =



0.3, Ki = 0.09, c1 = 0.1, c2 = 0.2, ε = 0.1, h = 0.2, c = 2,

the desired distance between neighbors is d = 1.5 and the

parameters a = b = 1.

Figure 4 (left) shows the result of the second experiment

using the control law (21). The quadrotors go toward the

destination point, and the distances between neighbors con-

verge to the desired value. In this experiment, steady-state

errors are eliminated, thanks to the integral action in the

alternative control law (21). The distance between quadrotors

1 and 4 is greater than d = 1.5 because this distance exceeds

the interaction range c = 2m. Figure 4 (right) shows the

trajectories of the quadrotors navigating to the destination

point during the experiment.
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Fig. 4: (Left) Interdistances between 4 quadrotors in the real-time experi-

ment by using the control law in (21). After launching the flocking control

law, interactions start between quadrotors and distances converge. Finally,

the quadrotors land after t = 47s. (Right) Trajectories of 4 quadrotors,

navigating to the destination point. The quadrotors start at the left down

side of the figure and tend to the right top side. A quasi-α-lattice is formed

V. CONCLUSION

In this paper, we showed real-time experiments of

multiple-quadrotor flocking in the context of system of

systems. Experimental results showed better performance of

the proposed control laws compared to simulation results

from previous schemes. Moreover, our results showed an

improved performance compared to previous work of authors

in [23]. In addition, our control laws were run aboard on

quadrotors and each quadrotor interacted with its neighbors

in the flock. Our work was based on the approach of Olfati-

Saber in [1]. We proposed alternative control laws in order

to be compatible with the nonlinear model and real-time

experiments of multiple quadrotors.

Our future work will focus on the improvement of our

experimental platform for outdoor experiments. In addition,

we will work on the navigation of multiple quadrotors with

obstacle avoidance.
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