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. Our control laws are designed in order to be compatible with experimental implementation and nonlinear model of quadrotors. Simulations and experiments using four quadrotors validate the performance of the proposed control laws. The convergence of interdistances between quadrotors to a desired value are maintained while navigating to a destination point.

I. INTRODUCTION

Flocking is a collective, harmonic and collision-free motion of animals. Biologists have studied flocks of birds, swarms of insects, herds of quadruped, and schools of fish, in order to understand the secret of this collective motion. Moreover, they have searched to discover motivations that lead animals to aggregate in groups [START_REF] Partridge | The structure and function of fish schools[END_REF] [START_REF] Couzin | Collective cognition in animal groups[END_REF].

The amazing phenomenon of flocking has attracted control and robotics scientists, so they have tried to imitate it on robots platoons. One of the most advanced fields, that developed techniques similar to flocking, is flight formation control. Three of them are cited here: Leader-follower, Virtual structure and Behavior-based control. In the leader-follower structure, individuals in the formation follow one agent (or airplane) which is designated as a leader. A formation flight mission trajectory is loaded in the leader, and the followers track their leader. This structure is simple and widely implemented in multi-agent formation [START_REF] Guerrero | UAV flight formation control[END_REF], [START_REF] Chiaramonti | Formation control laws for autonomous flight vehicles[END_REF]. Experimental work was conducted in [START_REF] Vasarhelyi | Outdoor flocking and formation flight with autonomous aerial robots[END_REF] using this control structure. However, this control structure reveals some drawbacks. One of them is that the entire formation depends on one agent, so if there is a problem with the leader, the whole formation will be affected.

In the virtual structure, every agent in the formation has its own trajectory to follow. The overall trajectories form the desired formation. Trajectories are calculated in a central computer and sent to agents in the formation. Generally, no interactions between agents are considered. Examples of experimental works of such control strategy can be found in [START_REF] Kushleyev | Towards a swarm of agile micro quadrotors[END_REF] and [START_REF] Schollig | Synchronizing the motion of a quadrocopter to music[END_REF].

The two previous structures tend to be centralized methods of controlling multi-agent systems, which could have a weak performance when the number of agents in a formation increases. In fact, multi-agent systems control is considered as a system of systems issue. Technological advances in our ages motivate scientists to develop distributed methods that are capable to deal with system of systems challenges, such as operational and managerial independence, scalability, distributed coordination and synergism of control [START_REF] Jamshidi | Systems of Systems Engineering: Principles and Applications[END_REF] [10] [START_REF] Gazi | A mechatronic system design case study: Control of a robotic swarm using networked control algorithms[END_REF]. One of these methods is the behavior-based control, where each agent follows some rules to achieve the formation. The objective of the formation control is, therefore, broken down into small rules. In fact, this structure is inspired from the collective motion of animals. Among the first technical work on this structure is the distributed behavioral model by Reynolds [START_REF] Reynolds | Flocks, herds, and schools: A distributed behavioral model[END_REF]. Although Reynolds was specialized in computer graphics, his work inspired researchers in control theory and robotics to apply Reynolds rules in a theoretical and experimental framework. Reynolds inspired his rules from biologists study of animals collective motion. He considered that each individual in a flock should follow these rules in order to perform the flocking behavior. These rules are: 1) Collision Avoidance; 2) Velocity Matching, and 3) Flock Centering.

These rules were cited by several works in control theory and robotics such as [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF], [START_REF] Tanner | Flocking in fixed and switching networks[END_REF]. Authors used these rules as a base to develop theoretical framework and control strategies and algorithms for flocking of multi-agent dynamical systems. These theoretical results were not exploited in experimental works, to the best of our knowledge. This encourages us to extend the work in [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF] to be applicable in real-time multiple quadrotors. In fact, we believe that distributed coordination, scalability and self-organization of the control laws in this work answer some challenges of system of systems engineering.

Quadrotors are a type of UAV devices that have received a great interest in the last decades. Maneuverability in 3-D space and low-cost experimentation of quadrotors render them an ideal platform for robotics research. Moreover, applications of quadrotors vary from surveillance and 3-D mapping of environments, to rescue and exploration.

A system of systems of multiple quadrotors could be employed in large-zone surveillance, rescue and search missions. Recently, researchers in robotics performed several experimental works on multiple-quadrotor control as in [START_REF] Kushleyev | Towards a swarm of agile micro quadrotors[END_REF], [START_REF] Schollig | Synchronizing the motion of a quadrocopter to music[END_REF] and [START_REF] Franchi | Shared control : Balancing autonomy and human assistance with a group of quadrotor uavs[END_REF]. The works in [START_REF] Kushleyev | Towards a swarm of agile micro quadrotors[END_REF] and [START_REF] Schollig | Synchronizing the motion of a quadrocopter to music[END_REF] consider multiplequadrotor control as a problem of trajectory generation. Each quadrotor follows a collision-free trajectory, which is generated from a central base station. In the presence of disturbances, it is not clear that a collision-free formation could be ensured. Moreover, we believe that multiple-quadrotor control could be more challenging if it is implemented aboard quadrotors and if it considers interactions between them. On the other hand, the work in [START_REF] Franchi | Shared control : Balancing autonomy and human assistance with a group of quadrotor uavs[END_REF] did not deal with the nonlinear model of quadrotors. Instead, it uses a high level control that deals with an ideal double-integrator model, and the smooth output of this model is used to drive stabilized quadrotors. In our work, we try to deal directly with the nonlinear model of quadrotors, and then we apply the proposed control laws in the quadrotors to stabilize and navigate the flock.

Our interest in this work is to perform real-time flocking of multiple quadrotors in the context of system of systems. Our control method is based on the consensus theory introduced by Olfati-Saber in [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF]. The flocking control law in [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF] was mainly proposed for double-integrator linear system. In this work, we propose two modified versions of this control law aiming at being compatible with the nonlinear model of quadrotors and experimental works. The control law is run aboard each quadrotor in the flock. By running the control law, each quadrotor interacts with its neighbors to ensure a collision-free flocking.

The organization of this paper is: we address, firstly, the topology of multiple-quadrotor flocking and the dynamics of a quadrotor in section II. Then, the flocking algorithm of [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF] and our two control laws are introduced in section III. Simulation and experimental results are presented in section IV. Finally, section V concludes with comments and proposed future works.

II. PRELIMINARIES

A. Topology of multi-quadrotor flocking

Graph theory is used to describe the topology of a multiquadrotor system. A multi-quadrotor system is represented by an undirected graph G = (V , E), where V is a set of nodes V = {1, 2, ..., M}, and E is a set of edges E ⊆ {(i, j) : i, j ∈ V , i = j}. Every node represents a quadrotor and edges depict the sensing between quadrotors. An adjacency matrix A is an M × M matrix with elements a i j = 1 if (i, j) ∈ E and a i, j = 0 otherwise. For more information about graph theory, the reader can refer to [START_REF] Diestel | Graph Theory[END_REF].

Before working on the dynamics of quadrotors, we need to represent our multi-quadrotor system in the Euclidean space. Therefore, to every node i in the graph, a position vector q i ∈ R f is associated, where f is the dimension of the space (example: f = 2, 3). The configuration of all nodes of the graph is defined by the vector q = col(q 1 , ..., q n ) ∈ R f M .

A set of spacial neighbors of a quadrotor i is defined by:

N i = j ∈ V : q j -q i < c ( 1 
)
where . is the Euclidean norm, and c is the interaction range. A position-induced graph G(q) = (V , E(q)) is called a proximity net and is defined by V and the set of edges

E(q) = (i, j) ∈ V × V : q j -q i < c, j = i .
The desired conformation of multiple quadrotors in a flock could be written as follows:

q j -q i = d ∀ j ∈ N i (q)
(2) where d is the desired inter-distance. A proximity net that ensures the objective in (2) is defined as an "α-Lattice". However, implicit inaccuracies give rise to an α-Lattice with some edge-length uncertainty. This type of proximity net is called a "quasi-α-Lattice" [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF], and it is described by the following inequality:

-δ < q jq id < δ ∀(i, j) ∈ E(q)

(3) where δ is the edge-length uncertainty.

B. Quadrotor dynamics

In this section, we introduce nonlinear dynamics of a quadrotor. Several studies dealt with the modeling of quadrotors as in [START_REF] Lozano | Unmanned Aerial Vehicles Embedded Control[END_REF] and [START_REF] Bouabdallah | Full control of a quadrotor[END_REF]. We model the quadrotor as a rigid body. Let I = (I x , I y , I z ) be the global inertial frame, and let B = (B x , B y , B z ) be the body-fixed frame. The nonlinear model of a quadrotor is given as follows:

ξ = ν m ξ = G + RU η = W Ω J Ω = Ω × JΩ + τ (4)
where ξ = [x, y, z] T is the position of the center of mass of the quadrotor in the

I frame, ν = [ν x , ν y , ν z ] is the vector of linear velocities in the I frame, η = [φ , θ , ψ] T is the vector of Euler angles, Ω = [w B x , w B y , w B z ]
T is the vector of the angular velocities in the B frame, m is the mass of the quadrotor, G = [0, 0, -g] T with g being the gravitational acceleration, U = [0, 0, F] T is the thrust vector and τ = [τ φ , τ θ , τ ψ ] T is the torque vector.

J is the moment of inertia diagonal matrix with J x J y and J z are diagonal components. W is a transformation matrix between the angular velocities and the derivatives of Euler angles. R is the rotation matrix from the B frame to the I frame. The reader can refer to [START_REF] Bouabdallah | Full control of a quadrotor[END_REF] for detailed expressions of W and R.

III. FLOCKING ALGORITHMS OF MULTIPLE QUADROTORS

In this paper, we separate the control problem of multiquadrotor in two parts. The first part is the control of internal dynamics of each quadrotor. We mean by internal dynamics, the altitude z and the rotational dynamics of each quadrotor. This part will not be involved in the algorithm of flocking. The second part is the control of the x, y translation and flocking dynamics of multiple quadrotors.

In fact, we specify a fixed desired altitude z and heading ψ. Moreover, outputs of x-y translation and flocking controllers are feedforwarded to the inputs of controllers of roll and pitch φθ angles. Figure 1 shows the overall control architecture.

A. Control of quadrotor internal dynamics

Before starting the description of the control strategy of a quadrotor in a flocking perspective, we begin by linearizing the nonlinear model (4) about the origin
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Fig. 1: Control architecture of quadrotor in a flocking perspective. Internal dynamics are controlled separately from the xy translation and flocking dynamics 0, η = 0). The result of linearization is given as follows:

ẋ = v x (5a) ẏ = v y (5b) ż = v z (5c) vx = ( 1 /m)θ (5d) vy = -( 1 /m)φ (5e) vz = F (5f) φ = w B x (6a) θ = w B y (6b) ψ = w B z (6c) ẇB x = ( 1 /J x )τ φ (6d) ẇB y = ( 1 /J y )τ θ (6e) ẇB z = ( 1 /J z )τ ψ (6f) 
Equations (5a) through (5f) represent the translational dynamics of the quadrotor and equations (6a)-(6f) represent the rotational dynamics.

The control of the quadrotor will be as follows. Firstly, we use PID controllers to control the z dynamics (equations (5c) and (5f)) and the ψ dynamics (equations (6c) and (6f)). The control inputs of these two subsystems are given by the general expression of a PID controller in a tracking perspective, as follows:

F = rz + k pz (r z -z) + k dz (ṙ z -ż) + k iz (r z -z) dt (7) 
τ ψ = rψ + k pψ (r ψ -ψ) + k dψ (ṙ ψ -ψ) + k iψ (r ψ -ψ) dt (8 
) where r z and r ψ are the desired altitude and heading of the quadrotor, and the constants k (.) > 0.

Secondly, the remaining equations represent the xy translational dynamics and the φθ rotational dynamics.

To control these dynamics we use an approach similar to the backstepping technique. This approach is widely used in the control of quadrotors [START_REF] Bouabdallah | Full control of a quadrotor[END_REF]. First, we consider φ and θ in equations (5d) and (5e) as virtual control inputs of the translational dynamics. Then, we design a controller for the rotational dynamics (equations (6a)-(6f)), which has a double-integrator form. For this purpose, we use the nested saturation approach [START_REF] Teel | Global stabilization and restricted tracking for multiple integrator with bounded control[END_REF], [START_REF] Johnson | Nested saturation with guaranteed real poles[END_REF], [START_REF] Sanahuja | Commande et localisation embarquée d'un drone aérien en utilisant la vision[END_REF] and [START_REF] Kendoul | Real-time nonlinear embedded control for an autonomous quadrotor helicopter[END_REF]. Hence, the control inputs that stabilize the φθ rotational dynamics are given as follows:

τ φ = -Sat φ 1 k φ 1 φ + Sat φ 2 k φ 2 φ + k φ 1 k φ 2 φ -r φ (9) 
τ θ = -Sat θ 1 k θ 1 θ + Sat θ 2 k θ 2 θ + k θ 1 k θ 2 (θ -r θ ) (10) 
where Sat α i (x) = sign(x)min(|x|, α i ) with (i = 1, 2), α i = φ i or θ i , with α i being a real positive constant. The constants k (.) are tuning gains. r φ and r θ are desired references, which are the outputs of the xy position controllers.

B. Flocking and translation control of multiple quadrotors

The design of the xy controllers will be similar to the flocking algorithm in [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF]. In equations ((5a), (5b), (5d), (5e)), we take q i = [x y] T , p i = [ν x ν y ] T , and

u i = [ 1 m θ -1
m φ ] T . Therefore, the translational dynamics could be written as follows: qi = p i ṗi = u i [START_REF] Gazi | A mechatronic system design case study: Control of a robotic swarm using networked control algorithms[END_REF] In this section, we discuss the control of such doubleintegrator translation system from a flocking perspective. We begin by introducing the basic principles of controlling a multi-agent system. The controlling algorithm is introduced by Olfati-Saber in [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF]. A "σ -norm" is a map R n → R + of a vector z ∈ R n , defined as:

z σ = 1 ε 1 + ε z 2 -1 (12) 
where ε > 0 and R + is the set of non-negative real numbers.

The gradient of σ -norm is defined by:

σ ε (z) ∇ z z σ = z 1 + ε z 2 = z 1 + ε z σ (13) 
In fact, σ -norm is not a norm but its importance is that it is differentiable everywhere, unlike the Euclidean norm that is not differentiable at z = 0. A spacial adjacency matrix is defined as A(q) = [a i j (q)] where:

a i j (q) = 0 if i = j ρ h ( q j -q i σ / c σ ) if j = i ( 14 
)
The bump function ρ h : R + → [0, 1] with h ∈ (0, 1) is defined as:

ρ h (z) =    1 if z ∈ [0, h) 1 2 1 + cos π z-h 1-h if z ∈ [h, 1] 0 otherwise (15) 
A smooth collective potential function is used to design the flocking algorithm of multiple quadrotors. This function is given as follows:

V (q) = 1 2 ∑ i ∑ j =i Ψ α ( q j -q i σ ) (16) 
where

Ψ α (z) = z d α Φ α (s)ds (17) 
Φ α is defined by:

Φ α (z) = ρ h (z/c α )Φ(z -d α ) Φ(z) = 1 2 [(a + b)σ 1 (z + e) + (a -b)] (18) 
with σ 1 (z) = z/ √ 1 + z 2 . The function Φ(z) is uneven and sigmoidal, with 0 < a ≤ b and e = |a -b|/ √ 4ab that ensures Φ(0) = 0.

It follows from the above formulas that Ψ α (z) is a smooth pairwise repulsive/attractive potential function. It has a minimum at z = d α = d σ , and it has a finite cut-off at c α = c σ . The finite cut-off feature of this function is a fundamental source of scalability of the flocking algorithm [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF]. Moreover, every local minimum of V (q) is an α-lattice.

The control law introduced in [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF], which is applied on each agent with linear dynamics, and that ensures an α-lattice flock and navigation, is given as follows:

u i = ∑ j∈N i [Φ α ( q j -q i σ )n i j + a i j (q)(p j -p i )] + f γ i (q i , p i , q r , p r ) (19) 
where f γ i (q i , p i , q r , p r ) = -c 1 (q iq r )c 2 (p ip r ), c 1 , c 2 > 0, and n i j = σ ε (q jq i ) as in equation [START_REF] Tanner | Flocking in fixed and switching networks[END_REF].

This control law is composed of three terms. The first is the gradient-based term, which ensures the interdistance regulation between agents. The second is the velocity consensus term, which is analog to a derivative controller in a conventional PD control law. The last term f γ i (.) is the navigational or the translational feedback control, with q r and p r being the desired position and velocity to be tracked. Moreover, the first and the second terms ensure the aggregation of every agent with its neighbors and the conservation of a collision-free flocking. The navigational feedback leads the whole flock to track a predefined objective trajectory or destination point. The objective trajectory is known by every agent in the flock, which ensures a fragmentation-free flocking.

We have applied such controller in simulation (section IV), and we have observed that this control law could not be applied directly on nonlinear systems, such as quadrotors. In fact, the simulation results of this control law on the nonlinear dynamics of quadrotors show oscillating movement of distances between quadrotors. This could be explained by the fact that the control law in [START_REF] Johnson | Nested saturation with guaranteed real poles[END_REF] was applied on doubleintegrator linear models without considering uncertainties. We believe that, the elegant control law in [START_REF] Johnson | Nested saturation with guaranteed real poles[END_REF] could be applied on nonlinear systems if we add some tuning gains to its gradient-based and velocity consensus terms. The additional gains will compensate for uncertainties of nonlinear model. The modified control law is given in the following equation:

u i = ∑ j∈N i K p Φ α ( q j -q i σ )n i j +K d a i j (q)(p j -p i ) + f γ i (q i , p i , q r , p r ) (20)
where K p , K d > 0 are tuning gains and their values depend on the quadrotor device. K p and K d are user defined. They give a relative freedom to the user to apply the control law on different quadrotor devices.

C. Robust flocking control

In the previous section, we proposed a modified version of Olfati-Saber flocking control law. This control law was tested in a real-time experimental setup and showed good results. However, real-time applications always suffer of perturbations, and need more robust control laws. Perturbations are caused generally by the wind flown from the rotors of quadrotors. In real-time experiments we noticed steady-state errors in the distances between quadrotors. Therefore, in this section, we present an alternative version of [START_REF] Sanahuja | Commande et localisation embarquée d'un drone aérien en utilisant la vision[END_REF], intended to eliminate the steady-state errors.

In control theory, one of the ways used to eliminate steadystate errors is to add an integral action to the control law [START_REF] Khalil | Nonlinear Systems[END_REF]. Therefore, our complemented control law is written as follows:

u i = ∑ j∈N i K p Φ α ( q j -q i σ )n i j + K d a i j (q)(p j -p i ) +K i Φ α ( q j -q i σ ) n i j dt + f γ i (q i , p i , q r , p r ) (21)
where K i is the integral-action gain, which is tuned by the user. This alternative control law shows good results in real-time experiments, which complements Olfati-Saber approach. The steady-state errors are efficiently reduced.

IV. SIMULATION AND EXPERIMENTS

In this section, we present our simulation results and realtime experiments of multi-quadrotors flocking. By using a simulator of multiple quadrotors, we apply the control law in equation [START_REF] Johnson | Nested saturation with guaranteed real poles[END_REF]. Real-time experiments show the results of the application of our complemented control laws ( 20) and [START_REF] Kendoul | Real-time nonlinear embedded control for an autonomous quadrotor helicopter[END_REF]. Moreover, we compare our results with another work of the authors in [START_REF] Saif | Flocking of multiple unmanned aerial vehicles by lqr control[END_REF]. Videos of the simulation and real-time experiments are available in the supplementary materials or at the link in [24].

A. Simulation

The simulation results show the application of Olfati-Saber control law [START_REF] Johnson | Nested saturation with guaranteed real poles[END_REF]. Generally, before performing risky realtime experiments, and especially with multi-quadrotors, we perform numerical implementations on a simulator.

Heudiasyc laboratory has developed a PC-based simulator of flock of multiple quadrotors. C++ codes written in the simulator and in the embedded system of each quadrotor are the same. For this purpose, the PC is run under Linux as in the quadrotors. In the simulator, virtual sensors and actuators are connected to the discrete nonlinear model of quadrotor in (4). As a result, all quadrotors' states are calculated at each instant of time. Moreover, quadrotors evolve in a 3-D virtual environment, thanks to Irrlicht engine. The program in the simulator is connected to a base-station control program. The base station records and draws measurements. Moreover, it is used to start and end simulation and to set the parameters of quadrotors and control laws. Figure 2 shows the simulation result of applying the control law in [START_REF] Johnson | Nested saturation with guaranteed real poles[END_REF] on four quadrotors. This figure represents the distances between quadrotors over the time, and the legend d i j means the distance between quadrotor i and j. The intended scenario is as follows: quadrotors start in their initial positions and move toward a predefined q r position. For the numerical application, we set a = b = 5, the desired distance between neighbors is d = 1, c = 1.2d, ε = 0.1 and h = 0.2. In this figure, the distance between quadrotors 1 and 3 is not converging to the desired value because this distance exceeds the interaction range c = 1.2d. Moreover, We note the oscillated behavior of the quadrotors during flight. This is caused by the absence of gains in the gradient-based and the velocity consensus terms in [START_REF] Johnson | Nested saturation with guaranteed real poles[END_REF]. Since this results are risky, we avoided experimental works with this control law. Fig. 2: Interdistances between 4 quadrotors in the simulator by using Olfati-Saber algorithm [START_REF] Johnson | Nested saturation with guaranteed real poles[END_REF]. Once the control law of flocking is launched in each quadrotors, the interactions start and the distances converge with oscillation

B. Experimental platform

In our experiments, our platform is the quadrotor ArDrone2 from Parrot [25]. Using an SDK provided by Parrot, this platform is designed to be controlled, either from a smartphone, a PC through WiFi, or directly by running a program on the quadrotor via socket. The utilization of SDK prevents us to use our control laws to stabilize the quadrotor, since the drone has its own control laws designed by Parrot.

We solved this problem through the work of teams from TU Delft university on ARDrone 2 and their autopilot Paparazzi [26]. They managed to decode the communication protocols between the main processor of the quadrotor and its sensors and motors. With these protocols, it is possible to directly control the quadrotor and read the raw data from each sensor. By incorporating these protocols into our own software framework for quadrotors, we managed to replace the programs of manufacturer by our own control laws.

The ARDrone 2 is thus mainly used for its material part, whose characteristics are: 1GHz 32 bit ARM Cortex A8 processor, 128 MB RAM, 128MB Flash, WiFi, 3 axis accelerometer, 3 axis gyroscope, 3 axis magnetometer, Pressure sensor, Ultrasound sensors (altitude < 6m) and 4 brushless motors. The inertial sensors are used in a complementary filter [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF] to estimate the orientation of the quadrotor.

Experiments are performed in an indoor environment using Optitrack motion capture system [START_REF]Optitrack motion capture systems[END_REF]. The system senses the pose of quadrotors at 100 Hz. This information is sent to the base-station PC and then forwarded through Wifi to one of quadrotors. This quadrotor broadcasts the pose information to all quadrotors. Every quadrotor, then, knows the pose of all quadrotors in the flock and can estimate also velocities by differentiating the poses. In all experiments, we use the Optitrack frame of reference as our global frame I.

We emphasize here that our control laws are run aboard on the quadrotors. Moreover, our control laws need only the relative distances to the neighboring quadrotors. Since we do not have sensors that measure the relative distances to neighbors, we use the Optitrack system as an alternative. Thus, we calculate the relative distances, aboard on, by using received positions. Moreover, a i j (.) function in ( 14) is used to limit the interaction range between quadrotors.

C. Experimental results

In this section, we present real-time experiments of multiple-quadrotor flocking. We show the results of two experiments using the control laws in [START_REF] Sanahuja | Commande et localisation embarquée d'un drone aérien en utilisant la vision[END_REF] and [START_REF] Kendoul | Real-time nonlinear embedded control for an autonomous quadrotor helicopter[END_REF]. Moreover, we compare these results to a previous work of the authors in [START_REF] Saif | Flocking of multiple unmanned aerial vehicles by lqr control[END_REF].

In all of the following experiments, quadrotors takeoff from their initial positions to the same defined altitude r z = 1m. The desired yaw angles are set to r ψ = 0 for the whole experiment duration. The formation control law is then launched to form the desired conformation. Finally, the quadrotors land after sufficient time.

In the first experiment, we use four quadrotors to form a quasi-α-lattice. We apply our first improved control law in [START_REF] Sanahuja | Commande et localisation embarquée d'un drone aérien en utilisant la vision[END_REF]. The destination point is defined as the origin of the frame I, q r = [0 0] T . In this experiment we set K p = 0.25,

K d = 0.3, c 1 = 0.1, c 2 = 0.2, ε = 0.1, h = 0.2, c = 2,
the desired distance between neighbors is d = 1.5 and the parameters a = b = 1.

Figure 3 (left) shows the result of using the first complemented control law in [START_REF] Sanahuja | Commande et localisation embarquée d'un drone aérien en utilisant la vision[END_REF] in the first real-time experiment. The figure exhibits the distances between quadrotors over the time. In the experiment, the performance of this control law is improved compared to the one in [START_REF] Johnson | Nested saturation with guaranteed real poles[END_REF]. We note, however, a steady-state error in the interdistances between quadrotors, i.e. the desired interdistances are not completely reached. This steady-state error could be explained by the presence of continuous perturbations in the real-time experiment. One of the sources of these perturbations is the downwash of rotor blades.

Figure 3 (right) shows the trajectories of quadrotors of this experiment. Quadrotors start at their initial positions designated as black diamonds. Then, they start moving toward the desired destination while they avoid collision with their neighbors. A quasi-α-lattice is finally formed. In Fig. 3: (Left) Interdistances between 4 quadrotors in the real-time experiment by using the control law in [START_REF] Sanahuja | Commande et localisation embarquée d'un drone aérien en utilisant la vision[END_REF]. Once the control law of flocking is launched in each quadrotors, the interactions start and the distances converge. Finally, the quadrotors land after t = 60s. (Right) Trajectories of 4 quadrotors in the real-time experiment by using the control law in [START_REF] Sanahuja | Commande et localisation embarquée d'un drone aérien en utilisant la vision[END_REF]. Quadrotors move from their initial positions to the destination point, gather around the center and form a quasi-α-lattice the second experiment, we apply our control law in [START_REF] Kendoul | Real-time nonlinear embedded control for an autonomous quadrotor helicopter[END_REF]. The destination point is designated to be q r = [1 1] T . The parameters of this control law is set as K p = 0.25, K d = 0.3, K i = 0.09, c 1 = 0.1, c 2 = 0.2, ε = 0.1, h = 0.2, c = 2, the desired distance between neighbors is d = 1.5 and the parameters a = b = 1.

Figure 4 (left) shows the result of the second experiment using the control law [START_REF] Kendoul | Real-time nonlinear embedded control for an autonomous quadrotor helicopter[END_REF]. The quadrotors go toward the destination point, and the distances between neighbors converge to the desired value. In this experiment, steady-state errors are eliminated, thanks to the integral action in the alternative control law [START_REF] Kendoul | Real-time nonlinear embedded control for an autonomous quadrotor helicopter[END_REF]. The distance between quadrotors 1 and 4 is greater than d = 1.5 because this distance exceeds the interaction range c = 2m. Figure 4 (right) shows the trajectories of the quadrotors navigating to the destination point during the experiment. 

V. CONCLUSION

In this paper, we showed real-time experiments of multiple-quadrotor flocking in the context of system of systems. Experimental results showed better performance of the proposed control laws compared to simulation results from previous schemes. Moreover, our results showed an improved performance compared to previous work of authors in [START_REF] Saif | Flocking of multiple unmanned aerial vehicles by lqr control[END_REF]. In addition, our control laws were run aboard on quadrotors and each quadrotor interacted with its neighbors in the flock. Our work was based on the approach of Olfati-Saber in [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: algorithms and theory[END_REF]. We proposed alternative control laws in order to be compatible with the nonlinear model and real-time experiments of multiple quadrotors.

Our future work will focus on the improvement of our experimental platform for outdoor experiments. In addition, we will work on the navigation of multiple quadrotors with obstacle avoidance.
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