
HAL Id: hal-01180594
https://hal.science/hal-01180594

Submitted on 27 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of Discrete Event Systems Unobservable
Behaviour by Petri nets using Language Projections

Jeremie Saives, Gregory Faraut, Jean-Jacques Lesage

To cite this version:
Jeremie Saives, Gregory Faraut, Jean-Jacques Lesage. Identification of Discrete Event Systems Un-
observable Behaviour by Petri nets using Language Projections. IEEE European Control Conference
2015, ECC’15, Johannes Kepler University, Jul 2015, Linz, Austria. �hal-01180594�

https://hal.science/hal-01180594
https://hal.archives-ouvertes.fr

Identification of Discrete Event Systems Unobservable Behaviour by
Petri nets using Language Projections

Jeremie Saives1, Gregory Faraut1 and Jean-Jacques Lesage1

Abstract— The aim of behavioural identification of Discrete
Event Systems is to build, from a sequence of observed
inputs/outputs events, a model that exhibits both the direct
relations between inputs and outputs events (i.e. the reactive
or observable behaviour of the system) and the internal state
evolutions (i.e. the unobservable behaviour). Once the observ-
able behaviour has been modelled by an Interpreted Petri
net, the method proposed in this paper aims at discovering
the unobservable part from a firing sequence of previously
discovered observable transitions. The principle is to project
the firing sequence on subalphabets to discover specific patterns
that are characteristic of dependancy relationships between the
transitions. These relationships can be translated into Petri
net structure fragments that will be assembled to form the
final model. A parametric algorithm is proposed to conduct
the discovery, the choice of the minimal degree of places as a
parameter being motivated by the reduction of the search space
and the fitness of the final model.

I. INTRODUCTION

Mathematical models of systems are required for mul-
tiple applications, namely simulation, control, performance
evaluation, fault diagnosis or reverse engineering. Whereas
these models are often built off expert knowledge, system
identification consists in building a model of the behaviour
of the system from finite observations of the system, more
precisely of the inputs/outputs evolution. For a reactive Dis-
crete Event System, for instance a process and a controller
in a closed-loop, the behaviour to be reproduced can be split
as following:
• Observable behaviour, i.e. direct output changes de-

pending on input changes
• Unobservable behaviour, i.e. evolutions of the internal

state (and variables) of the system without changes of
observable data (inputs and outputs)

Therefore, an identification algorithm should provide a model
expressing both input/output causal relationships and inter-
nal state evolutions due to input changes. Petri nets (PN)
provide the semantics to express sequentiality, choices and
parallelism common to DES, and the subclass of Interpreted
Petri nets (IPN) adds input/output interpretation to transitions
and places, thus being a natural choice of model for the
identification problem.

This work is located in the continuation of [6]. The
authors of [6] provide a statistical approach to discover the
observable behaviour as IPN fragments from an input/output
observed sequence. This sequence is also converted into
a firing sequence on the alphabet of observable transition.

1LURPA, ENS Cachan, Univ Paris-Sud, F-94235 Cachan, France
firstname.lastname@lurpa.ens-cachan.fr

Therefore, the problem addressed by this paper is to discover
the unobservable behaviour from such a firing sequence, and
complete the IPN fragments by adding connecting places.

Very few contributions consider the distinction between
observable and unobservable behaviour. A different under-
standing of the distinction is however presented in [5]
or [3]: the observable behaviour is a PN model that is
assumed to be well-known, and the unobservable behaviour
consists in silent (ε-labelled) transitions, that are interpreted
as unobservable faults. Identification as presented in these
work consists in adding these unobservable fault transitions
to a model, but no clue is given as to how this model was
designed or identified, and no links with inputs or outputs
are presented.

Furthermore, it is assumed in the identification problem
that the whole behaviour of the system can not be observed
in a finite time. The identified model can contain additional
behaviour that was not observed. The identification problem
has therefore to be distinguished from the synthesis problem,
which aims at reproducing exactly the observed behaviour.
This synthesis problem has been dealt with extensively.
Given a finite observed language and considering any non-
observed word as a counter-example, the authors of [8] or
[4] propose to solve an Integer Linear Problem to discover
a generalized, possibly unbounded PN reproducing exactly
every word of the language up to a length k. Works such
as [1] based on the region theory propose to compute a PN
whose reachability graph isomorphic to a given transition
system. An extensive literature review of identification and
synthesis methods can be found in [2].

A method to discover the unobservable behaviour from
a firing sequence is proposed in [7], based on the study of
consecutive pairs of events in the sequence, leading to the
impossibility of finding long-term dependencies, i.e. memory
effects of the system. In [10], a method to solve this issue
is proposed, based on the discovery of the T-invariants of
the net, but an adjustment of the discovered net is required
to account for long-term dependencies. These methods are
inspired from the field of workflow or process mining. Such
process models are to be discovered from a log of sequences
named cases, each case being one possible execution of a
business process. [12] proposed the α-algorithm, a discovery
algorithm based on binary relationships between consecutive
events, and returning Workflow nets (WF-Nets), a specific
subclass of Petri nets with only one input and one output
place. It therefore does not account for cyclic behaviours and
the question of the initial marking is irrelevant. Extensions
to this work are multiple, namely the α++-algorithm [14]

discovers indirect dependencies, but is based on a ruleset
accounting for an exhaustive list of cases and lacks gener-
icity. Multiple algorithms used for workflow mining are
summarized in [13].

Even though the aim of these work is not to solve a
synthesis problem, a good fitness of the obtained model
remains an objective. The model should not underfit the
behaviour of the sequence (i.e. allow too much excessive
behaviour), or overfit it(i.e. new observations might not fit
in the model), as presented in [11]. For DES, this criterion
of fitness can be expressed by the size of the exceeding
language, i.e. the language that can be generated by the
identified model but is not found in the observed behaviour.

In this paper, a new method to discover the unobservable
behaviour of a DES as a Petri net from a single sequence,
hence without building a language, is presented. It aims
at finding all dependencies between transitions, based on
relationships between transitions that can be discovered using
projections of the sequence on subalphabets. Reducing the
exceeding language of the net to improve the fitness is
also an objective. The initial marking of the discovered PN
is also computed on the fly. Section 2 recalls the notions
of Petri nets. Section 3 states the problem based on the
previous results of [6], and gives an overview of the method.
Section 4 establishes the relationship between transitions
to be discovered using projections of the sequence, and
how they can lead to the discovery of unobservable places.
Section 5 presents and justifies the searching strategy and
algorithm, which is then applied to one example, and finally
Section 6 concludes.

II. BACKGROUND ON PETRI NETS

This section presents the basic concepts and notations of
ordinary and interpreted Petri nets used in this work.

Definition 1. An ordinary Petri net structure G is a bipartite
digraph represented by the 4-tuple G = (P, T, I, O) where:
P = {p1, p2, . . . , p|P |} and T = {t1, t2, . . . , t|T |} are finite
sets of vertices named places and transitions respectively;
I(O) : P × T → N is a function representing the edges
going from places to transitions (from transitions to places).

For a place pi, the set of pre(post)-transitions {tj ∈
T, I(O)(pi, tj) = 1} will be written •pi(p•i).

A marking function M : P → Z+ represents the number
of tokens residing inside each place; it is usually expressed
as a |P |-entry vector. Z+ is the set of nonnegative integers. If
Z+ is replaced by {0, 1}, there is at most one token residing
in any place, and the net is 1-bounded (or safe).

Definition 2. A Petri net system or Petri net (PN) is the
pair N = (G,M0), where G is a PN structure and M0 is
an initial marking.

In a PN system, a transition tj is enabled at marking Mk

if ∀pi ∈ P,Mk(pi) ≥ I(pi, tj), written Mk
tj−→; an enabled

transition tj can be fired reaching a new marking Mk+1,
written Mk

tj−→ Mk+1. It can be computed as Mk+1 =

Mk +Cuk where uk(j) = 1;uk(i) = 0, i 6= j. This equation
is called the PN state equation. The reachability set of a PN
is the set of all possible reachable markings from M0 firing
only enabled transitions; this set is denoted by R(G,M0).

If M0
t1−→ M1

t2−→ M2
t3−→ . . .

tk−→ Mk, then w =
t1t2t3 . . . tk is a firing sequence leading to marking Mk, and
written M0

w−→ Mk. Firing sequences enabled by the net
are words over T .

Definition 3. Let G = {P, T, I, O} be a PN structure and
M0 an initial marking. The language L(G,M0) generated
by (G,M0) is defined by

L(G,M0) = {w ∈ T ∗|∃M ∈ R(G,M0), M0
w−→M}

To distinguish the observable part from the non-
observable, and add inputs/outputs information to observable
transitions and places, the definition of the extension of PNs
to Interpreted Petri nets is given here:

Definition 4. An Interpreted Petri net system (IPN) Q =
(G,M0,U,Σ, λ,Y, ϕ) is based on an ordinary PN system
(G,M0) to which are added:
• U the known input alphabet
• Σ = {↑ ui, ↓ ui | ui ∈ U} the set of events.
• λ : T → {0, 1} the labelling function of transitions.
∀ti ∈ T, λ(ti) = Fi(U) •Gi(Σ) where:

– Fi : U → {0, 1} is a boolean function depicting
the sufficient conditions on the levels of the inputs
to fire ti

– Gi : Σ → {0, 1} is a boolean function depicting
the sufficient conditions on the input events to fire
ti

λ(ti) = 1 iff Fi(U) = 1 ∧Gi(Σ) = 1
• Y the known output alphabet
• ϕ : R(G,M0) → {0, 1}|Y| the output function that

returns the value of the outputs given a marking of the
net.

In this work, some additional properties of places will be
considered:

Definition 5. A place p is called selfloop-free iff •p∩p• = ∅

Definition 6. Let p be a place. |•p| is called the in-degree of
p, while |p•| is called the out-degree of p. In the remainder
of this work, the minimal degree (resp maximal degree) of p
is defined as the integer:
Dmin(Dmax)(p) = min(max)(|•p|, |p•|).
The place p will be said to belong to the class

D(Dmin,Dmax).

III. PROBLEM FORMULATION AND PRINCIPLE OF THE
PROPOSED APPROACH

The principle of behavioural identification of a system,
illustrated by Figure 1, is explained below:

The system to be identified consists of a process and a
controller in a closed-loop (Fig 1-[a]). The sensors of the
process are the inputs of the controller whereas actuators

𝑤 =

0
0
⋮
0
0
⋮
0

0
0
⋮
1
1
⋮
0

1
0
⋮
1
1
⋮
1

…

0
1
⋮
0
0
⋮
0

Observed I/O
vectors sequence w

Inputs

Outputs

Observable part :
IPN expressing I/O causality

t7t3

t1 t5

t2 t6

t4

B

A+

A- C

𝜆(𝑡𝑖) = 𝐹𝑖(𝕌) • 𝐺𝑖(Σ)

t7t3

t1 t5

t2 t6

t4

Unobservable part :
PN ensuring the firing of S

t7t3

t1 t5

t2 t6

t4

B

A+

A- C

Final identified model

𝜆(𝑡𝑖) = 𝐹𝑖(𝕌) • 𝐺𝑖(Σ)

Reactive system

Process

Controller
Inputs Outputs
𝕌 𝕐

𝑆 = 𝑡1𝑡2𝑡3𝑡4𝑡1𝑡2𝑡4𝑡3𝑡5…

Firing sequence S

Observation

First step [6]:
Discover

observable
reactive behaviour

Second step:
Discover

unobservable
internal evolutions

Assembling
parts

a

b

c

d

e

f

Fig. 1. Principle of behavioural identification of Discrete Event Systems in two steps

are its outputs; both inputs and outputs are assumed to be
binary. At the end of every cycle of the controller, multiple
inputs and outputs might have changed. The result of the
observation is therefore a sequence of I/O vectors w (Fig 1-
[b]). The goal of identification is to produce an IPN Q =
((P, T, I,O),M0,U,Σ, λ,Y, ϕ) modelling the behaviour of
the system from w only. U,Σ,Y are already known (inputs,
input events and outputs). The behaviour of the system can
be split into two parts:
• The reactive behaviour. Outputs can react directly to

changes in the inputs; identifying this behaviour consists
in discovering causal relationships between inputs and
outputs. This behaviour is called observable, because
output changes are observed.

• The internal behaviour. Input changes can provoke a
change of internal variables of the controller without
any output evolution, as is the case when delays or
memory effects are implied. This behaviour is called
unobservable.

Behavioural identification of a DES consists in discovering
first the reactive behaviour as IPN fragments, then complete
with fragments modelling the internal behaviour.

A. First step: Observable behaviour

This step is presented in [6]; it is based on a statistical
approach, and produces two results:
• Observable PN structure fragments are constructed

(Fig 1-[c]). They are composed of places PObs (one
for each output, hence constructing ϕ), observable tran-
sitions TObs labelled with conditions on the inputs (λ),
and edges (IObs, OObs) . For an observable place p
mapped to an output y, •p (resp p•) is the set of
transitions expressing the conditions for y to be set to

1 (resp 0). Notably, all transitions are built in this step,
T = TObs.

• The I/O sequence w is projected on the freshly built set
of transitions TObs, resulting in a finite firing sequence
S ∈ T ∗Obs (Fig 1-[d]).

To complete the net, connexions between the fragments are
to be added, and the initial marking remains to be identified
as well. These missing elements can be discovered from the
firing sequence S.

B. Second step: Unobservable behaviour
The unobservable behaviour consists mostly in internal

states evolutions; multiple evolutions can take place between
two output evolutions, i.e. between the firings of two observ-
able transitions. Namely, counters can be increased, timers
that delay output or input updates can be started, information
to be used later is memorized, . . . These internal behaviours
are hard to compute from the sequence, but their explicit
expression is not the goal; they can instead be agregated
in unobservable places, without adding any silent transition.
Exhaustivity in the description of non-causal relationships is
of little interest for retro-modelling purposes.

Finding the unobservable behaviour consists therefore in
discovering unobservable places with their edges, without
adding any transition (Fig 1-[e]). It is defined as following:

Given TObs = {t1, . . . , tn} the set of observable transi-
tions and S ∈ T ∗Obs a finite firing sequence, compute a Petri
net structure G = {PUnobs, TObs, IUnobs, OUnobs} and an
initial marking M0 such that:
• S is firable (S ∈ L(G,M0))
• G is 1-bounded

where |PUnobs| is unknown a priori.
Note that in this approach, observable places mirror the

status of a binary output (0 or 1), and should therefore be

1-bounded. Hence the condition of 1-boundedness is set on
the unobservable part as well.

After the computation of PUnobs, IUnobs, OUnobs and M0

the final net Q is assembled with P = PObs ∪ PUnobs, I =
IObs ∪ IUnobs and O = OObs ∪OUnobs (Fig 1-[f]).

The method proposed in the remainder of this work aims at
finding all possible unobservable places and edges satisfying
the problem.

C. Principle of our method

The main idea is to make patterns between the transitions
appear in the sequence S, that will later be translated into
fragments of PN structure and assemble these to obtain
the final model. Consider as an introductive example the
following sequence on T = {t1, t2, t3, t4}, that could be
the second result of the first phase:

Example 1. S = t1t3t4t1t4t2t1t2t4t1t4t3t1t3t4t1t2t4. Two
kinds of patterns are given below:

1) S = t1 . . . t4t1t4 . . . t1 . . . t4t1t4 . . . t1 . . . t4t1 . . . t4
2) S = t1t3 . . . t1 . . . t2t1t2 . . . t1 . . . t3t1t3 . . . t1t2 . . .

In the first case, t1 always occur between two occurences of
t4, and reciprocally. A PN strucure like the one in Figure 2(a)
can represent this behaviour. The second case is almost like
the first one, except this time one and only one of the
two transitions t2, t3 occurs between two occurences of t1,
leading to a structure like the one in Figure 2(b).

t1 t4 t1

t2

t3

(a) (b)

Fig. 2. (a) Structure for t1 . . . t4t1t4 . . . t1 . . . t4; (b) Structure for
t1t3 . . . t1 . . . t2t1t2 . . . t1

More generally, if Σi and Σj are two disjoint non-empty
subalphabets of TObs, and S = . . . ti . . . tj . . . ti . . . tj . . . ,
with ti ∈ Σi and tj ∈ Σj , then a generic PN structure
fragment presented in Figure 3 can be added to the net.

ti 1
tj 1

tj n
ti m

Pij Pji

Fig. 3. A PN structure composed of two places pij and pji for Σi =
{t1i , . . . , tmi }, Σj = {t1j , . . . , tnj }. t1i is the first transition that is fired

To discover such patterns, the firing sequence can be
projected on Σi ∪ Σj . However, the relevant couples of
subalphabets are apriori unknown. A full exploration would
consist in checking all couples of disjoint partitions of
TObs. If |TObs| = n, there are 2n − 2 partitions of TObs

concerned (excluding ∅ and TObs), and the number of couples
to be studied is 3n−2 +

∑n−3
k=0 3k(2n−k−1 − 1), hence an

exponential complexity.
To limit the exploration, the size of the projecting al-

phabets is introduced as a parameter. As will be presented
in Section 5, looking for relationships between smaller
alphabets reduces the space of search and limits the excessive
language of the net.

IV. FINDING RELATIONSHIPS BETWEEN TRANSITIONS
USING PROJECTIONS

The aim of this section is to define the relationships
between transitions that can emerge from the projections of
the firing sequence, and how these relationships can lead to
the addition of places to the net. The definition of a projector
is being recalled below from [9]:

Definition 7. Let Σ and Σp be two alphabets such that Σp ⊆
Σ; and S ∈ Σ∗ a firing sequence. The projector ΠΣp

is
defined by:

ΠΣp
(S) =

ε, if S = ε

ΠΣp(a)t, if S = at, t ∈ Σp

ΠΣp(a), if S = at, t 6∈ Σp

ΠΣp
(S) is called the projection of S on Σp

This section presents two results: first, the possible out-
comes of a random projection are studied, and the re-
lationships between transitions are defined accordingly to
the patterns discovered. Then, if a specific relationship is
discovered, places that satisfy the problem stated in Section
3 can be added to the net.

A. Results of projections

Let Σi and Σj be two disjoint partial alphabets of T .
In this section, ti (tj) will stand as a generic transition of
Σi(Σj). For instance, σ = tititi is a sequence of any three
transitions of Σi. Let Π be the projector on Σi ∪ Σj . Then
Π(S) can only belong to one of the three following cases:

Case 1. Π(S) = titjtitjtitjtitjtitjti . . . In this case, two
transitions observed consecutively never belong to the same
alphabet, i.e.

6 ∃k ∈ N∗,Π(S)k ∈ Σi ∧Π(S)k+1 ∈ Σi

6 ∃k ∈ N∗,Π(S)k ∈ Σj ∧Π(S)k+1 ∈ Σj

Definition 8. Let (Σi,Σj) ∈ (2T)2 be two alphabets
satisfying Case 1. Σi and Σj are called mutually dependant,
written Σi � Σj .

For instance, in Example 1, two mutual dependencies are
discovered: {t1}� {t4} and {t1}� {t2, t3} .

Case 2. Π(S) = titititjtjtititjtitjti . . . In this case, at least
once, two transitions from each alphabet have been observed
consecutively, i.e.

∃k ∈ N∗,Π(S)k ∈ Σi ∧Π(S)k+1 ∈ Σi

∃k′ ∈ N∗,Π(S)k′ ∈ Σj ∧Π(S)k′+1 ∈ Σj

No conclusion is possible. Both alphabets might be in-
complete to discover a mutual dependency as in Case 1, or
there is no dependency to be found between these transitions.
Alphabets {t3} and{t4} from Example 1 fall in this case.

Case 3. Π(S) = titititjtitjtitjtititj . . . In this case, at least
once, two transitions observed consecutively belong to the
same alphabet (here Σi), and if two consecutive transitions
belong to the same alphabet, it is always the same one, i.e.

∃k ∈ N∗,Π(S)k ∈ Σi ∧Π(S)k+1 ∈ Σi

6 ∃k′ ∈ N∗,Π(S)k′ ∈ Σj ∧Π(S)k′+1 ∈ Σj

Definition 9. Let (Σi,Σj) ∈ (2T)2 be two alphabets satis-
fying Case 3. Σi is said to dominate Σj , written Σi → Σj .
The set of alphabets dominated by Σi is Dom(Σi) = {Σj ∈
2T ,Σi → Σj}

To allow a transition of Σi to be fired again, the firing of
a transition of Σj might be a prerequisite, but is not the only
possibility. A possible situation of conflict is discovered, but
the discovery is yet incomplete. In order to find a possible
complet conflict, alphabets from Dom(Σi) can be merged,
and a new projection on Σi∪((Σj ,Σk) ∈ Dom(Σi)

2) can be
studied. This new projection can give a result satisfying any
of the three cases. For instance, in Example 1,{t1} → {t2}
and {t1} → {t3}; the extended projection on {t1}∪ ({t2}∪
{t3}) leads to the discovery of a mutual dependency.

B. From relationships discovered between transitions to
places discovery

The mutual dependency is a strong relationship that can be
discovered between two sets of transitions. In each case of
two alphabets being mutually dependant, two selfloop-free
places can be added to the net following Theorem 1: the
first alphabet becomes the pre-transitions of one place and
the post-transitions of the other, and reciprocally with the
second alphabet. Exactly one of the two places receives an
initial token, depending on the first transition that must be
fired according to the firing sequence.

Theorem 1. Let S ∈ T ∗ be a firing sequence, and (G,M0)
a 1-bounded Petri net such that S ∈ L(G,M0). Let Σi and
Σj be two alphabets in 2T ensuring Σi∩Σj = ∅, and Π the
projector on Σi ∪ Σj . If Σi � Σj , i.e.

If ∀k ∈ J1, bCard(Π(S))/2cK,{
Π(S)2k−1 ∈ Σj

Π(S)2k ∈ Σi

or {
Π(S)2k−1 ∈ Σi

Π(S)2k ∈ Σj

Then the net G′ defined by the addition of the following
places pij and pji to G is 1-bounded and S ∈ L(G′,M0)

•pij = Σi; p
•
ij = Σj ;

{
M0(pij) = 0 if Π(S)1 ∈ Σi

M0(pij) = 1 if Π(S)1 ∈ Σj

•pji = Σj ; p
•
ji = Σi;

{
M0(pji) = 0 if Π(S)1 ∈ Σj

M0(pji) = 1 if Π(S)1 ∈ Σi

Proof. Suppose that Π(S)1 ∈ Σj (i.e. the first case, the
reasoning being the same in the other case).

1-boundedness:
G is 1-bounded. It remains to prove that the places
pij and pji are 1-bounded. They verify •pji = p•ij ,
•pij = p•ji, and M0(pij) +M0(pji) = 1. It ensures
that ∀M ∈ R(G′,M0),M(pij) + M(pji) = 1,
therefore G′ is 1-bounded.

S ∈ L(G′,M0):
Suppose that S /∈ L(G′,M0), and let t be the first
transition that can not be fired. Since the transitions
in T−(Σi∪Σj) have the same pre- and post-places
in G′ and in G, and t is firable in G, t must belong
to Σi ∪ Σj . Suppose that t ∈ Σj (same reasoning
for t ∈ Σi). Then pij is the only new place in •t
that can prevent t from firing, thus must be empty
when t should be fired. Let k be an integer such that
Π(S)2k−1 = t. Then, when Π(S)2k−2 ∈ Σi was
fired, pij was filled with a token. Since no other
transition in Σj was fired between Π(S)2k−2 and
Π(S)2k−1, pij still contains a token when t should
be fired, leading to a contradiction. Therefore, S ∈
L(G′,M0).

With Theorem 1, it is possible to use projections of S
to discover and add all relevant selfloop-free places to G.
For instance, applying it to the mutual dependencies of
Example 1, {t1} � {t4} and {t1} � {t2, t3}, leads to the
net structure of Figure 4.

t4 t1

t2

t3

Fig. 4. A PN structure obtained for Example 1 that reproduces
S = t1t3t4t1t4t2t1t2t4t1t4t3t1t3t4t1t2t4

Note that the case of places with selfloops (which means
projecting on non-disjoint alphabets) is out of the scope of
this work. This section has shown that to discover places,
projections on subalphabets can be studied. It remains to
choose which subalphabets will be checked while looking
for mutual dependencies, which is the purpose of the next
section.

V. A STRATEGY FOR THE DISCOVERY OF UNOBSERVABLE
PLACES BASED ON THEIR MINIMAL DEGREE

Whenever two alphabets are found in a mutual depen-
dency, places whose in- and out-degrees match the sizes of
the alphabets are added to the net. Before introducing the
search algorithm, a reflexion is conducted on the relevant
degrees to be studied, and leads to the choice of the minimal
degree of places as a parameter of the algorithm. The reflex-
ion is based on the exceeding language to be minimized, and
on the information contained in the domination relationship.

A. Minimizing the exceeding language

In general, the language that can be generated by a net
is infinite, due to the presence of loops. In order to make a
comparison between the observed language, i.e. the language
derived from the firing sequence, and the identified language,
i.e. the language generated by the net, a length parameter n
is introduced. On one hand, the observed language of length
n, Ln

Obs(S) is composed of all subsequences of S of length
n:

Definition 10. Let S = s1s2 . . . s|S| ∈ T ∗ be a finite
sequence. The observed language of length n, i.e. the set
of words of length n generated by S is:

Ln
Obs(S) =

⋃
1≤t≤|S|−n+1

st.st+1 . . . st+n−1

On the other hand, the identified language of length n,
Ln
Id(N) is composed of all words of length n that can be

generated from any reachable marking of the net (and not
only M0):

Definition 11. Let N be a PN. The identified language of
length n, i.e. the set of words of length n generated by N
is:

Ln
Id(N) =

⋃
M∈R(N)

Ln
M (N)

where Ln
M (N) = {w ∈ T ∗ : |w| = n ∧M w→}

The exceeding language can then be caracterized by the
value of a similitude criterion:

Definition 12. The language similitude criterion of length n
between a sequence and a net that reproduces it is defined
by

Cn(N,S) =
|Ln

Id(N)|
|Ln

Obs(S)|

It can be noted that Cn(N,S) ≥ 1 because the net N is
assumed to reproduce the sequence S. The goal is to make
it as close as possible to 1.

B. Interest of the domination relationship

If a mutual dependency is to be found between two
alphabets Σi and Σj , such that |Σi| = m and |Σj | = M ,
m < M , then a domination will be discovered if a projection
is made on Σi and any subalphabet of Σj , namely if the size
of the subalphabet is also m:

Proposition 1. Let Σi and Σj be two alphabets such that
Σi � Σj , and Σ′ a non-empty subalphabet of Σj . Then, Σi

dominates Σ′, i.e. Σi → Σ′.

Proof. When projecting the sequence on Σi ∪ Σ′, all ti
remain in the projection, but at least one tj ∈ Σj − Σ′ will
be missing. Therefore, at least two consecutives occurences
of ti will be observed, and Σi → Σ′.

According to Proposition 1, any place in D(m,M) will be
hinted at when looking for places in D(m,m). Therefore,
when studying projections on two alphabets of size m,
mutual dependencies will discover places in D(m,m), while
domination will hint at places in D(m,M),∀M > m.
The full exploration of D(m,M),M > m is therefore not
required, and the main interesting parameter is the minimal
degree m of the places to be discovered.

Places verifying Dmin(p) = 1 allow for the construction
of loops, that will have parallel evolutions. Higher minimal
degree places are synchronisation places, that restrict the
free behaviour of the loops previously discovered. This
phenomenon is illustrated in the next example:

Example 2. Let S = t2t1t2t1t4t3t4t3t2t1t4t3 be a sequence
on T = {t1, t2, t3, t4}. Mutual dependecies {t1} � {t2}
and {t3} � {t4} are discovered when looking for minimal
degree 1 places, and two parallel loops are discovered
(Figure 5(a)). However, in this case, C2(N,S) = 12/6 = 2;
for instance the behaviour t1t3 is never observed in the
sequence, although permitted by the net. When looking for
minimal degree 2 places, the mutual dependency {t1, t3}�
{t2, t4} is discovered, resulting in Figure 5(b), where a
synchronisation is added. In this second case, C2(N,S) =
6/6 = 1.

t1

t3 t4

t2 t1

t3 t4

t2

P1

P5

P4

(a) (b)

Fig. 5. (a) Degree 1 discovered net ; (b) Degree 2 discovered net

The strategy is therefore the following :
• Discover places belonging to D(1,M),∀M ≥ 1, by

studying D(1, 1)
• If required (for example, if C2(N,S) is largely greater

than one), discover places belonging to D(m,M),
∀M ≥ m,m > 1, by studying D(m,m)

The choice of the maximum value of m to be studied
remains an open question and will be treated in further work

(it can be noticed that m ≤ b|T |/2c). Nevertheless, we noted
in practice that m = 2 is enough to find a fitting model.

C. An algorithm for places discovery

The strategy previously defined suggests to discover places
in the order given by their minimal degree. Algorithm 1 allow
for the discovery of all places satisfying a given minimal
degree:

Algorithm 1 Finding minimal degree m places
Require: S a sequence, T a set of transitions, m a degree
Ensure: Mutual dependencies and m-th degree places.

1: for (Σi,Σj) ∈ (2T)2,Σi ∩Σj = ∅, |Σi| = |Σj | = n do
2: Study ΠΣi∪Σj

(S)
3: if Case 1 Σi � Σj then
4: Add places according to Theorem 1
5: else if Case 3 Σi → Σj then
6: Dom(Σi)← Dom(Σi) ∪ {Σj}
7: else if Case 3 Σj → Σi then
8: Dom(Σj)← Dom(Σj) ∪ {Σi}
9: end if

10: end for
11:
12: for Σi ∈ 2T , |Σi| = n do
13: while Dom(Σi) 6= ∅ do
14: NewDom(Σi) = {}
15: for (Σj ,Σk) ∈ Dom(Σi)

2,Σj 6= Σk do
16: Study ΠΣi∪Σj∪Σk

(S)
17: if Case 1 Σi � Σj ∪ Σk then
18: Add places according to Theorem 1
19: else if Case 3 Σi → Σj ∪ Σk then
20: NewDom(Σi)← NewDom(Σi)∪{Σj∪Σk}
21: end if
22: end for
23: Dom(Σi)← NewDom(Σi)
24: end while
25: end for

Proposition 2. Given an integer m, Algorithm 1 discovers
all possible places Pi verifying MinDeg(Pi) = m, and such
that S is firable.

Proof. Places are only added when two alphabets satisfy the
conditions of Theorem 1, therefore S is firable. If a mutual
dependency is found, it is always Σi � Σj , with |Σj | =
|Σj | = m for a dependency discovered at line 3, and |Σj | ∈
Jm, |T |−mK for a mutual dependency discovered at line 16.
The minimal degree of all places added is hence m.

Proposition 3. The complexity of Algorithm 1 is at worst
exponential with the size of the alphabet.

Proof. A full dependency including all transitions might
exist. Suppose that there is a mutual dependency Σi �
(T − Σi) to be discovered. For simplification, suppose that
|Σi| = m < |T | − m. To discover this dependency, all
subalphabets from size m to size |T | − m will be tested,
because they will all be dominated by Σi and be added

to NewDom(Σi), until finally the only candidate of size
|T | − m is proposed. In the worst case, when m=1, all
subalphabets from size 1 to |T | − 1 will be studied, hence
2T − 2 subalphabets.

It is worth noting that the case of such places is mostly
theoretical and would not be representative of an actual
industrial system or business process. To illustrate the al-
gorithm, an example is proposed:

Example 3. Let T = {t0, t1, t2, t3, t4, t5, t6, t7} be the
alphabet, and S = t6t1t7t4t6t1t7t4t6t1t2t4t6t0t7t3t6t0t2t3
t6t0t2t3t6t0t7t3t6t0t7t5t4t6t0t7t3t6t0t5t2t4t6t0t5t7t4t6t1t7
be the sequence. The algorithm is run for m = 1. The
following mutual dependencies are discovered:
{t6} � {t2, t7}, {t6} � {t1, t3, t5}, {t6} � {t0, t1},
{t6}� {t3, t4}, {t1}� {t4, t5}, {t0}� {t3, t5}.

12 places are added to build the PN. After the suppres-
sion of implicit places1, the resulting net can be seen in
Figure 6(a). It reproduces S, two places are initially marked
to allow for the firing of t6 = s1 , and one can notice that
two loops are discovered and are parallel once t6 has been
fired. Notice also that a place links t0 to t3, although these
two transitions are never observed consecutively. The long-
term dependency here has been correctly captured. However,
C2(N,S) = 32/17, meaning that the identified language of
length 2 is twice as big as the observed languaged. One can
assume that the sequence was incomplete and this parallel
behaviour is allowed, or that a higher degree dependency
must be found to restrict parallel behaviour.

t1

t0 t3

t4

t5

t7

t2

t6

Fig. 6. Net discovered with only 1st degree places

The algorithm is rerun for m = 2, new mutual dependen-
cies are discovered: {t2, t7}� {t0, t1}, {t2, t7}� {t3, t4},
{t0, t4} � {t5, t6}, {t3, t4} � {t0, t1}, leading to the
addition of 8 new places. After the suppression of implicit
places, the net can be seen in Figure 7. Notice that the

1An implicit place is a place whose removal does not alter the behaviour
of the net system, i.e. leaves the reachability graph unmodified

behaviour of t2 and t7 has been restricted compared to
Figure 6. Some 1st degree places (linking t6, t2 and t7)
became implicit with the addition of 2nd degree places, and
have been removed. For this second net, C2(N,S) = 18/17,
the only non-observed behaviour generated by the net being
t2t5. It is due to the short length of the sequence. The
computing of this example took less than 50ms on a standard
laptop.

t1

t0 t3

t4

t5

t7

t2

t6

Fig. 7. Net discovered with 1st and 2nd degree places

VI. CONCLUSION

An efficient method has been proposed to discover Petri
net models from a single firing sequence of transitions.
This approach is generic, based on projections of the firing
sequence, and can discover any 1-bounded Petri net system.
Multiple models able to fire the sequence can be discovered,
depending on the minimal degree of the places chosen.
All dependencies, including long-term ones, can be easily
discovered.

Future work will focus on determining if the value of
the parameter of the algorithm can be fixed a priori, or if
a stop criterion can be determined. In the latter case, the
extension of this work to the case of places with selfloops
seems promising. Indeed, if a selfloop is added to a place,
it restricts the firing of the concerned transition, hinting at a
possible missing dependency including this transition.

REFERENCES

[1] E. Badouel, L. Bernardinello, and P. Darondeau. Poly-
nomial algorithms for the synthesis of bounded nets. In
Lecture Notes in Computer Science, 915, pp 647–679,
1995.

[2] M.P. Cabasino, P. Darondeau, M.P. Fanti, and C. Seatzu.
Model identification and synthesis of discrete-event
systems. In Contemporary Issues in System Science
and Engineering. IEEE-Wiley, pp 1–22, 2014.

[3] M.P. Cabasino, A. Giua, C.N. Hadjicostis, and
C. Seatzu. Fault model identification and synthesis in

petri nets. In Discrete Event Dynamic Systems, pp 1–22,
2014.

[4] M.P. Cabasino, A. Giua, and C. Seatzu. Identification of
petri nets from knowledge of their language. In Discrete
Event Dynamic Systems, 17(4), pp 447–474, 2007.

[5] M. Dotoli, M.P. Fanti, A.M. Mangini, and W.Ukovitch.
Identification of the unobservable behaviour of indus-
trial automation systems by petri nets. In Control
Engineering Practice, 9(9), pp 958–966, 2010.

[6] A.-P. Estrada-Vargas, J.-J. Lesage, and E. Lopez-
Mellado. Identification of industrial automation sys-
tems: Building compact and expressive petri net models
from observable behavior. In 2012 Amercian Control
Conference, Montreal, QC, pp 6095–6101, 2012.

[7] A.-P. Estrada-Vargas, J.-J. Lesage, and E. Lopez-
Mellado. Identification of partially observable discrete
event manufacturing systems. In 2013 IEEE 18th
Conference on Emerging Technologies and Factory
Automation (ETFA), Cagliari, pp 1–7, 2013.

[8] A. Giua and C. Seatzu. Identification of free-labeled
petri nets via integer programming. In Proc of the
44th IEEE Conference on Decision and Control, and
the European Control Conference, Seville, pp 7639–
7644, 2005.

[9] Antoni Mazurkiewicz. Introduction to trace theory.
In The Book of Traces, World Scientific Publishing
Company, pp 3–41, 1995.

[10] T. Tapia-Flores, E. Lopez-Mellado, A.-P. Estrada-
Vargas, and J.-J. Lesage. Petri net discovery of discrete
event processes by computing t-invariants. In 2014
IEEE 19th Conference on Emerging Technologies and
Factory Automation (ETFA), Barcelona, pp 1–8, 2014.

[11] W.-M.-P Van der Aalst. Do petri nets provide the right
representational bias for process mining? In Proc. of
the Workshop Applications of Region Theory 2011, pp
85–94, 2011.

[12] W.-M.-P Van der Aalst, A.-J.-M.-M. Weijters, and
L. Maruster. Workflow mining: Discovering process
models from event logs. In IEEE Transactions on
Knowledge and Data Engineering 16(9) pp. 1128–
1142, 2004.

[13] B.F. Van Dongen, A.K. Alves de Medeiros, and L. Wen.
Process mining: Overview and outlook of petri net
discovery algorithms. In Transactions on Petri Nets
and Other Models of Concurrency - ToPNoC II, LNCS
5460, pp. 225–242, 2009.

[14] L. Wen, W.-M.-P. Van der Aalst, J. Wang, and J. Sun.
Mining process models with non-free-choice constructs.
In Data Mining and Knowledge Discovery 15(2), pp.
145–180, 2007.

