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Conformal invariance of loop ensembles under Kardar-Parisi-Zhang dynamics

Xiangyu Cao, Alberto Rosso, and Raoul Santachiara
Laboratoire de Physique Théorique et Modèles Statistiques(UMR 8626), Université Paris Sud 11, CNRS, France

(Dated: 29 janvier 2021)

We study scaling properties of the honeycomb fully packed loop ensemble associated with a
lozenge tiling model of rough surface, when the latter is driven out of equilibrium by Kardar-Parisi-
Zhang (KPZ) type dynamics. We show numerically that conformal invariance and signatures of
critical percolation appear in the stationary KPZ state. In terms of the two-component Coulomb gas
description of the Edwards-Wilkinson stationary state, our finding is understood as the invariance of
one component under the effect of the non-linear KPZ term. On the other hand, we show a breaking
of conformal invariance when the level lines of the other component are considered.

I. INTRODUCTION

Non-equilibrium stationary states in driven systems of-
ten display scale invariance, and an important question
is whether it can be extended to conformal invariance.
In particular, on the 2-d plane, the existence of confor-
mal invariance, which is infinite-dimensional, would have
powerful implications on our theoretical understanding
of non-equilibrium states of (2 + 1)-d systems. Traces of
conformal invariance are rare to find, and the answer to
this question is unclear from a theoretical viewpoint.
One remarkable positive result was obtained by Ber-

nard et al [1] in the context of 2-d incompressible Navier-
Stokes turbulence. Strong numerical evidence suggested
that zero-vorticity lines behave as cluster frontiers of cri-
tical percolation. The unexpected appearance of perco-
lation in this context has raised great interest, yet still
awaits a thorough understanding. In particular, does the
presence of percolation teach us something on the turbu-
lent state ? Is there a link between it and other contexts
where critical percolation signatures occur, e.g., nodal
domains of wave functions in quantum chaos [2, 3] or
kinetic Ising ferromagnet [4] ?
Recently, Saberi et. al. [5] applied the idea (put forward

initially by Kondev and Henley [6]) of studying loop en-
sembles to the (2+1)-d Kardar-Parisi-Zhang(KPZ) equa-
tion [7],

∂th = ~∇2h+
λ

2
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∣
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∣

2

+ η. (1)

This is a fundamental model of irreversible surface
growth, and it also describes the turbulence without pres-
sure [7, 8], among other phenomena (for a recent review,
see [9]). Saberi et. al. observed numerically that level lines
of stationary KPZ surface behave like self-avoiding walks,
and so enjoy conformal invariance. This claim remains
controversial [10] and worrisome caveats [11] have not
been resolved.
Nevertheless, in this Letter we will show that, on KPZ

rough surface models one can define a different loop en-
semble which is conformal invariant and displays proper-
ties of critical percolation. In particular, it passes strin-
gent tests involving 3-point correlations, whereas KPZ
level lines fail them. Moreover, we can understand our
finding in terms of field theory.
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Figure 1: Left : A local snapshot of the unit cube/lozenge
rough surface model, with the surface height h value on each
vertex and level lines. Right : The fully-packed loops construc-
ted on top of the configuration.

II. MODEL AND NUMERICAL

IMPLEMENTATION

We will focus on the model whose configurations are
tiling of unit cubes of the cubic lattice (or, in a 2d view-
point, lozenge tiling of the plane). As shown in Fig. 1
left, a height function h is naturally defined on it. By lin-

king middle points of each lozenge in this way (and
similarly for the other two lozenge kinds, as in Fig. 1
right), one establishes a bijection between lozenge tiling
configurations and honeycomb-lattice fully packed loop
configurations. Olejarz et. al. [12] proposed the following
stochastic unit cube deposition process : for each time
interval dt, an eligible move as shown below is chosen

randomly : → . This dynamics is known to be in
the KPZ universality class [13] : The coarse-grained li-
mit of h satisfies Eq. 1 in the continuum. Symmetrising
the above dynamics, we obtain a growth model descri-
bed by the Edwards-Wilkinson(EW) equation,i.e., KPZ

equation (1) with λ = 0 : ⇋ .

It is interesting to represent lozenge tiling configura-
tions in terms of Ising spin configurations on the trian-
gular lattice. In fact, see Fig. 2 middle and right, gi-
ven such a spin configuration which is maximally anti-
ferromagnetic (i.e., for each elemental triangle, the spins
on its 3 vertices are not the same), a lozenge tiling can be
constructed by removing (from the triangular lattice) all
the lattice edges connecting equal spins. The fully packed
loops are then identical to the spin interfaces separating
clusters of same spins. Therefore, standard methods for

http://arxiv.org/abs/1506.03291v1
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constructing spin clusters and boundaries can be applied
to both lozenge tiling models and triangular-lattice site
percolation. (In terms of the height h, the Ising spin is
obtained by σ := exp(iπh), i.e., ±1 according to parity
of h.)
With this representation, the dynamics EW and KPZ

are single-flip dynamics of Ising spins. In each trial, a site
is picked at random and its spin σ is compared to that
of its 6 nearest neighbours, σ0, . . . , σ5 (in circular order,
with σ0 pointing up). For EW, the central spin is flip-
ped if σ = σ0 = σ2 = σ4 or if σ = σ1 = σ3 = σ5 (this
corresponds to a Metropolis Monte Carlo dynamics) ; for
KPZ, the central spin is flipped only if σ = σ1 = σ3 = σ5

(this is a non-equilibrium dynamics). It is not hard to
see that in terms of lozenge tiling, the dynamics just des-
cribed is equivalent to the respective ones defined above.
The number of lozenges of each type are preserved by
the dynamics, and we choose to stay in the sector with
equal number of lozenges of each type. This is assured by
starting from the flat initial condition depicted in Fig. 3
middle. We let the system attain the stationary regime
before constructing loop ensembles ; snapshots of typical
long loops are shown in Fig. 3 left(EW) and right(KPZ).
Some care is needed to ensure the compatibility with

the toroidal periodic boundary condition (p.b.c). Indeed,
see Fig. 2 left, let e1 and e2 be basis vectors of the trian-
gular lattice edges forming 120 degrees(in terms of Eu-
clidean inner products (e1, e1) = (e2, e2) = 1, (e1, e2) =
−1/2), then the triangular lattice is partitioned into three
sub-lattices generated by E1 = e1+2e2 and E2 = e1−e2,
and the flat configuration is the one with up spin on one
sub-lattice and down on the other two (see Fig. 3 middle).
We fix our p.b.c for a system of size L by identifying
LE1 ≡ LE2 ≡ 0, preserving the tri-partition and thus
being compatible with the flat configuration.
Data presented below are obtained on systems of size

up to L = 2048. For each measure, 1e3 ∼ 1e4 samples
are generated, extending over a time scale corresponding
to 1e4 ∼ 1e5 elemental moves per lattice site.

A. Fully packed loops and level lines

The stationary state of EW dynamics has the same
weight for all tiling configurations and coincides there-
fore with the well-known fully-packed loop model (which
we shall call the EW FPL henceforth). Many results
were obtained by Bethe Ansatz, [14] and Coulomb gas
approaches [15]. The EW FPL loop ensemble is confor-
mal invariant and strictly related to critical percolation.
In particular, the loops have the same fractal dimension
Df = 7/4 (we define this notion below) as percolation
frontiers. On the other hand, at the KPZ stationary state,
the tiling configurations have different weights and no
exact result is known. We will refer to the corresponding
loop ensemble as KPZ FPL. We address the question
whether the KPZ non-linear term affect the universality
of EW FPL. For instance will the KPZ loop fractal di-

mension be different from the EW one ?
Let us recall that this is the case for level lines of h,

which are obtained by connecting lozenge middle points

in the other way , see Fig. 1 left. In the EW case,
these lines are described in the continuous limit by the
level lines of Gaussian free field and have therefore fractal
dimension Dlev.

f = 3/2 [16]. In the KPZ case, the fractal
dimension of the same lines was estimated numerically to
be Dlev.

f ≈ 1.33 [5]. Here we show that the critical perco-
lation nature of the fully packed loop ensemble persists
under the KPZ dynamics.

III. SCALING EXPONENTS

The loop fractal dimension is related to a scaling rela-
tion between r, the distance between two extremities of
a loop segment and l its length :

〈r2〉 ∼ l2/Df . (2)

This scaling behaviour holds when a ≪ l ≪ L, where
a is the lattice spacing and L is the loop total length.
In practice, we average over loop segments of length l <
0.1L for L > 5e3. The result, shown in Fig. 4 main,
suggests convincingly that fully-packed loops have Df =
7/4 for both EW and KPZ stationary state.
With the same loop segments at disposal, we also mea-

sure winding angle variance. For a length-parametrised
curve segment rs(s ∈ [0, l]) of length l, let θs be a conti-
nuous function satisfying dr/ds = (cos θs, sin θs), i.e., its
tangent direction angle, then its (end-to-end) winding
angle is defined as w := θl − θ0. It is predicted that([17])

〈

(θl − θ0)
2
〉

=
4Df

(Df − 1)
log(l/l0) (3)

(where l0 is a lattice-dependent constant), holds for
conformal invariant curves of fractal dimension Df. As
shown in Fig. 4 inset, the above formula, with Df = 7/4,
agrees perfectly with KPZ and EW FPL. This strongly
supports conformal invariance in the KPZ FPL ensemble.

We consider next the loop length distribution, expec-
ted to have a power law behaviour

〈n(L)〉 ∼ L−τ+1. (4)

The above scaling should be valid in an interval a ≪ L ≪
Lmax, Lmax being the system size cut-off. The definition
of the exponent τ is the same as in [6]. For critical perco-
lation frontiers, it is known exactly that τ = 15/7. In Fig.
5 main we superpose 〈n(L)〉 of KPZ and EW surface. The
two distributions are indistinguishable in the scaling re-
gime, where the power law is again in agreement with the
percolation prediction. Using general scaling arguments,
Kondev and Henley [6] derived a relation between the
roughness exponent of a scaling invariant surface, and
the exponents Df and τ associated to its level lines

Df(τ − 1) = 2− α. (5)
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Figure 2: Left : Generators of the trigular lattice e1, e2 and that of a sublattice E1, E2. Middle/right : A maximally anti-
ferromagnetic spin configuration and its corresponding lozenge tiling.

Figure 3: Left : Snapshot of some full packed loops in the stationary regime of EW. Middle : The flat configuration. Right :
Snapshot of some full packed loops in the stationary regime of KPZ. The snapshots are taken in system of size L = 64 ; distinct
loops are drawn with different colors.
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Figure 4: Main : The mean square distance between extremi-
ties 〈r2〉(y-axis) as function of loop segment length l (x-axis).
Inset : Semi-log plot of the winding angle variance 〈w2〉 as
function of l. Black lines are theoretical predictions (2), (3)
with Df = 7/4.

Setting Df = 7/4, τ = 15/7 one gets α = 0, which is
true for any equilibrium critical loop model. But the fact
that the same happens to KPZ is a priori unexpected.
Note that this is not in contradiction with the non-zero
roughness of the KPZ surface, as we recall that surface
level lines form a different ensemble from FPL. One can

Llog5 10 15

  
  
  
 n

(L
)

-310

-110

10

310

510

-8/7L

L          log2 3

  
  

  
  

  
  

n
(L

)

0

200

400

3
10×

r1 10 210 310

1

1.5

2 >2)h ∆<(
EW

KPZ

Figure 5: Main : The distribution of loop length : n(L), the
number of loops with length ∈ [L,L(1 + ǫ))(y-axis,ǫ = 0.06)
as a function of logL(x-axis). Black Line is the theoretical
prediction 4 with τ = 15/7. Up inset : Roughness of the hid-
den surface h2 : The mean squared difference of the hidden
surface ∆h2 := h2(r) − h2(0) in function of spatial separa-
tion r = |r|. Down inset : Zoom-in of the microscopic regime
where EW and KPZ FPLs are different.

give a meaning to the exponent α in Eq. (5) by construc-
ting a surface whose level lines are the FPLs. In practice,
we assign a height increment crossing each loop by choo-
sing randomly one of the values ±1. The obtained height
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Pl(x1, x2, x3) = 1 Pc(x1, x2, x3) = 1 Pc(x1, x2, x3) = 0
x1

x2

x3

x1

x2
x3

x1

x2

x3

Table I: From left to right : a configuration contributing to
Pl(x1, x2, x3), a configuration contributing to Pc(x1, x2, x3),
and a configuration not contributing to Pc(x1, x2, x3)

function [28]we denote h2. This field is the second com-
ponent of the vector-valued height function (h1, h2) in
the Coulomb gas [15] approach to the FPL model. The
other component h1 is the lozenge height function h (see
Fig. 1 left) introduced from the beginning.

From a CFT viewpoint, Dotsenko et al [18] remarked
that EW FPL can be described by the following effective
action :

S[h1, h2] = S1[h1] + S2[h2], (6)

where the h1 and h2 degrees of freedom are decoupled
(the decoupling was first found numerically by [19]). The
action S2[h2] describes the critical percolation (dense
O(n = 1) loop model, [20]), while S1[h1] is a free-boson
CFT with central charge c = 1. The KPZ stationary
state eludes any field-theoretical description, being far
from equilibrium. Nevertheless, we put forward the hy-
pothesis that correlation functions in the h2 sector of the

EW FPL are not affected by the KPZ dynamics, while

those involving the field h1 are. The results shown above
supports this scenario. In particular, the field h2 has lo-
garithmic roughness for KPZ as well as for EW. This
is also confirmed by explicit numerical measure of mean
squared height difference in function of spatial separa-
tion Fig. 5 up inset. In the following, we provide further
evidence of the above hypothesis by looking at 3-point
correlation functions.

IV. 3-POINT STRUCTURE CONSTANTS AND

CONFORMAL INVARIANCE

Until now, our hypothesis is corroborated by obser-
vables that can be related to 2-point functions. Yet truly
profound predictions of CFT begin with 3-point func-
tions. As illustrated in Table I, for k > 1, we consi-
der the probability Pl(x1, x2, . . . , xk) (loop k-point func-
tion) that x1, x2, . . . , and xk lie on the same loop, and
Pc(x1, x2, . . . , xk) (cluster k-point function) the probabi-
lity that, for any couple of points xi, xj , there exists a
curve connecting them and not crossing any loop.

When k = 2, the CFT predicts Po(0, x) ∼ |x|
−2xo , o =

c, l, with xl = 1/4 and xc = 5/48 [20]. For k = 3, We
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Figure 6: Main frames : 3-point ratios where the points x, y
and z form a equilateral triangle of side r. Up : Loop 3-point
ratio estimate Cl = 0.952(3). Measures using different mi-
croscopic definitions of point are superposed. Down : Cluster
3-point ratios compared to prediction Cc ≈ 0.722 . . . . Insets :
the corresponding 2-point function in function of distance r.

consider the 3-point ratio

Co =
Po(x, y, z)

√

Po(x, y)Po(x, y)Po(x, y)
, o = c, l. (7)

Global conformal invariance implies that Co is a constant,
universal, which defines the CFT.
For critical percolation, the exact value of Cc has been

predicted by Delfino and Viti [21] to be given by the Liou-
ville CFT [22]. This conjecture was numerically confir-
med [21, 23]. The exact value of Cl is not known (see,
however, [24]), and to our knowledge numerical values
are not published. [29]
We determine the ratios Cc and Cl for EW and KPZ

FPLs. The 3-point ratios are calculated for x, y and z
forming equilateral triangles of varying radius ; different
geometries have been checked for the independence of Co.
The results are shown in the main plots of Fig. 6, and
compared to those obtained from critical site percolation
frontiers on the triangular lattice. The numerics support
strongly the following :
• 2-point functions P(l,c) of EW and KPZ FPLs agree
with the percolation exponents xl = 1/4, xc = 5/48.

• It exists a scaling regime where the 3-point ratios are
constant for EW and KPZ FPLs.
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• The value of Cc, which is the same for EW and KPZ
FPLs, and the numerical result is in excellent agree-
ment with Delfino-Viti’s prediction for the critical
percolation :

Cc = 0.722 . . . (8)

• The loop structure constant Cl is the same for critical
percolation, EW and KPZ FPLs, its numerical value
is estimated to

Cl = 0.952(3). (9)

We further collapsed this estimate against an inde-
pendent measure on critical bond percolation on the
square lattice.

The above results are in agreement with our hypothe-
sis that the conformal invariance in the h2 sector is not
broken by KPZ dynamics. Nonetheless, we remark that
the EW-KPZ coincidence of the observables considered
occurs not only in universal exponents, but often also in
non-universal amplitudes. This appears far from trivial
and begs an elementary explanation.

V. h1 SECTOR OBSERVABLES

Contrary to what can be suggested by the results of the
previous section, we emphasize that the EW and KPZ
FPLs are not identical. It indeed suffices to encode some
information on h1 in the FPLs to see distinct behaviours
for EW and KPZ. Here we show how to construct such
observables of individual loops. For this, consider a loop
segment of length l. It can be described by a sequence of
left/right turns of 60 degrees, dθs := θs−θs−1 = ±π

3 , s =
1, . . . , l. (The fully packed loops live in fact on the hexa-
gonal lattice dual to the triangular lattice.) Recall that

the winding angle, defined as
∑l

s=1 dθs associated to the
loop segments cannot distinguish KPZ from EW for l

large. However, the observable δh(l) := 3
π

∑l
s=1(−1)sθs

does so, see Fig. 7 left. The variance 〈(δh)2〉 has loga-
rithmic growth for EW and power-law for KPZ. Indeed,
it can be shown that |δh(l)| = |h1(r0) − h1(rl)| where
r0 and rl are the extremity positions of the loop seg-
ment. Thus, δh(l) encodes the roughness of h1 (logarith-
mic for EW, positive power law for KPZ) into fully pa-
cked loops, explaining the observed distinct scaling be-
haviour. Note that the definition of δh differs from the
winding angle w just by an alternative sign. To produce a
second example, we consider the extremity displacement

r(l) :=
∑l

s=1 drs, where drs = (cos θs, sin θs), which can-
not distinguish KPZ and EW at long distance. On the

contrary, the quantity δd(l) :=
∑l

s=1(−1)sdrs grows with
distinct power laws for KPZ and EW fully packed loops

(Fig. 7 right). Again, one can realise that this measure
encodes information from h1, whose roughness is also
reflected in correlation of lozenge orientation. Denoting
n0, n1 and n2 the number of lozenges of each orientation
passed by the loop segment, it is not hard to see that

(δd)2 =
∣

∣n0 + n1e
i2/3π + n2e

−i2/3π
∣

∣

2
and measures the

deviation of ni’s from the expected average l/3.

We finally consider the 3-point ratio for the level lines

(of height h1), which is of more physical interest, see Fig.
1 left. Saberi et. al. conjectured that the KPZ level lines
are in the universality class of self-avoiding walks. Here
we compare loop 3-point ratio of KPZ level lines with
that of external perimeters of critical site percolation
clusters, since they are believed to be identical to self-
avoiding walks [25, 26]. As we show in Fig. 8, percolation
external perimeters display a well-defined loop structure
constant, whereas KPZ level lines do not. Finally, we ob-
serve that the loop 3-point ratio for EW level lines attains
also a constant. This result, taken together with another
incompatibility (noticed in [11]) with hyper-scaling re-
lations in [6] and estimates of KPZ roughness exponents
[27], casts doubt on the conformal invariance of KPZ level
lines and their conjectured identification to self-avoiding
walks.

VI. CONCLUSION

In this work, we have studied KPZ stationary state
compared to the EW one on a natural discrete model.
We have shown that, in terms of the two-component sur-
face description, whereas h1 undergoes dramatic change
under the KPZ dynamics, the “hidden” component h2 re-
mains invariant. The fully packed loop ensemble associa-
ted with h2 enjoys conformal invariance, and has critical
properties indistinguishable from that of critical perco-
lation. On the other hand, conformal invariance appears
broken for level lines of h1. The decoupling of h2 from h1

in KPZ occurs exactly in the scaling regime, even if at the
microscopic level, there is no a priori reason. We are left
to wonder what implications, if any, our observations can
have on field-theory of non-equilibrium stationary states
in general, and on the genuine KPZ phenomenology in
particular.
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