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Scales in Turbulent Motions

This paper reviews some of the classical dimensional principles used in fluid 
mechanics to predict the characteristic scales of turbulent flows. The reasoning 

makes largely reference to the celebrated Kolmogorov theory we first briefly recall. 
Data obtained in two wind tunnel experiments are then used to exemplify the concepts 
and to provide typical values of the different length and time scales involved in wind 
tunnel experiments.  Measurement techniques and their role in the scientific research 
in fluid mechanics are then succinctly commented. 

Navier-Stokes equations and the Reynolds number

Navier-Stokes equations correspond to the fundamental law of dy-
namics applied to a fluid particle (in mechanics, ‘particle’ means a 
macroscopic set of molecules of undefined shape and size). For a 
flow of an incompressible fluid with no volume force, the most stan-
dard form of the Navier-Stokes equation is:

,
1.+ ∇ = − + ν ∆
ρtu u u grad p u  (1)

In this equation ( ),u x t  denotes the velocity vector of the fluid parti-
cle, ,tu  its temporal variation, ∇u  its gradient, ρ  the fluid density, p, 
its pressure and ν its kinematic viscosity. The left hand side of 
equation (1) is the acceleration of the particle. This acceleration com-
prises two terms: a variation with time and a variation in space. The 
flow is steady (or permanent) if the first term is zero; however, this 
does not prevent the velocity from varying locally in space through the 
second term, called convective acceleration. The right hand side of 
equation (1) characterizes the only two mechanisms that can influ-
ence the motion of the particle in the absence of volume forces, i.e. 
the non-homogeneity of the pressure and the viscous diffusion of the 
momentum. Pressure is a scalar and is involved in equation (1) 
through a gradient (the particle is accelerated towards the low pres-
sure regions of the flow). As for the second term, it logically takes the 
form of a Laplacian affected by a diffusion coefficient, which is here 
the kinematic viscosity of the fluid.

The main difficulty in fluid mechanics relies in the non-linear nature of 
the acceleration term .∇u u  of equation (1). We can only avoid this 
difficulty when this term is negligible with respect to the viscous diffu-
sion (the last term of (1); the pressure term adapts to the velocity and 
is therefore not a scaling term). If we introduce the characteristic 
scales ∝u U  and 1∇ ∝ l , the ratio between these two terms is 
evaluated as:

2

2

.
Re

∇
= ∝ =

ν∆ νν

u u U l U l
u U l

 (2)

This dimensionless parameter defines the Reynolds number. When 
Re 1<< , the flow is dominated by viscosity and the equations
become linear. Observations and theory show that the corresponding 
flows are generally stable to unsteady perturbations. Starting from this 
situation, when we increase the Reynolds number, flows progres-
sively destabilize and then turbulence appears. Typically, flows 
are fully turbulent when Re 1>> (there are exceptions however, the 
vortex being an example).

Turbulence 

The dissipative and irreversible nature of a fluid motion is due to vis-
cosity. This may be understood if we consider the power per unit 
mass developed by the viscous friction in equation (1). This power, 
expressed as ( ).= ν ∆P u u . Simple vector manipulations allow to 
separate it into two terms:   

( ) ( ) 221
2.= ν ∆ = ν ∆ − ν ∇P u u u u  (3)

 
We see that viscosity has two effects: it diffuses the kinetic energy in 
space through the first term, while reducing it with the second term:  

2ε = ν ∇u  (4)

This term, defined as positive, is involved in the rate of dissipation of 
kinetic energy per unit mass. It expresses the irreversible nature of the 
movement (we find it with an opposite sign in the internal energy and 
entropy equations). Importantly, (4) shows that dissipation of energy 
requires high velocity gradients ∇u , and is thus ascribed to small 
scale activity. Turbulence is a phenomenon that indeed allows for the 
development of small scales and intense gradients, which are needed 
to dissipate energy. The concept of turbulence then leads to a paradox 
which we can summarize now, instructively. 

This paradox appears, for example, when we evaluate the energy 
dissipated by the movement of an object in a fluid, a sphere in the 
example of Figure 1. This energy corresponds to the work of the drag 
force that opposes the motion of the object through the fluid.
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Supposing a sphere of diameter D  fixed in a flow of speed                       
0U of a fluid of density ρ  and kinematic viscosity ν , if we express 

the three physical dimensions involved in this problem (mass, length 
and time) using ρ , 0U  and D , the drag force can be written in the 
form:

( ) 2 2
0 0Re= ρx xF C U D

  
 (5)

The dimensionless coefficient xC is the drag coefficient. It only de-
pends on the Reynolds number 0 0Re = νU D . The power developed 
by this force, 0xF U , is equal to the rate of energy dissipated within 
the flow. If we consider an average in a volume of fluid  3~V D  and 
build the rate of dissipation per unit mass, we obtain: 

( )
3

0 0Rex
x

F U UC
V D

< ε > = =
ρ

 (6)

To this day, there exists no theory allowing us to go beyond these 
laws and we must use experiments to determine the behavior of the 
unknown function (Re)xC . Figure 1b shows the result for the flow 
past the sphere. The behavior obtained for Re 0→  is logical: the 
more viscous the fluid, the more energy must be dissipated to move 
in it. On the other hand, the saturation of xC  at high Reynolds num-
bers is not intuitive. We will see that it is in fact quite surprising. 

Returning to (6), the experiment of Figure 1b shows that

( )Re 1lim Re>> ≈xC Cte , so that:

3
0

Re 1lim UCte
D>> < ε > ≈ ×     (7)

We conclude that at high Reynolds numbers, the power per unit mass 
absorbed by the viscous friction becomes independent of the viscosity ! 
This is the very paradox we mentioned. Following (7), this power 
becomes equal to a constant fraction of the power 3

0U D injected 
during the interaction between the object of size D and the flow of 
velocity 0U ; it does not depend on anything else, especially not on 
the viscosity. Furthermore, in light of (4), relation (7) is equivalent to 

2
0lim u Cteν→ < ν ∇ > ≈ which implies that the flow would be 

capable of developing singularities ( u∇ → ∞ ) in the limit case where 
0ν → . Richardson (1922) and Kolmogorov (1941) contributed to 

assemble these elements into a phenomenological model which un-
ravels the paradox mentioned above. This model, referred to as the 
Richardson-Kolmogorov cascade, constitutes an essential basis for 
the interpretation of the physics, and thus the measurement, of turbu-
lent fluid flows. 

The model is based on the principle of a fragmentation of scales that 
adjusts the rate of the energy dissipated within the flow volume to the 
power developed by externally imposed forces. Sticking to the essen-
tial points, in the Richardson-Kolmogorov cascade model turbulence 
is viewed as a set of imbricated “fluid structures” whose character-
istic size decreases according to a dynamic process of successive 
fragmentations of the structures into smaller and smaller structures. 
This model is shown schematically in Figure 2. In this way, the 

Figure 1 – Influence of the Reynolds number 0 0Re = νU D  on the flow around a smooth sphere ( 0U  is the speed of flow far upstream of the sphere and D, 
the diameter of the sphere): (a) dye visualization by colorant in a hydraulic tank for 0Re 400000≈ 400 000 (Werlé, 1987), (b) drag coefficient of the sphere 

( )1
2

2 2
0= ρx xC F U D as a function of 0Re .

Figure 2 - The Richardson-Kolmogorov cascade: definitions (From Jacquin and Tabeling, 2006)
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kinetic energy of the largest scales of characteristic length 0l  and ve-
locity 0u and on which external forces act, is transferred to the small 
scales of the motion. In the case of the wake of the sphere of Figure 1, 
we can consider that these largest scales of the turbulent movement 
verify: 0 ~l D , 0 0~u U . The rate of energy transfer per unit mass is 
thus in this case:

 (8)

Through this process of scale fragmentation, the kinetic energy per 
unit mass 2

0U  is transferred from scale to scale without any loss 
until turbulent structures become small enough to be eliminated by 
the viscous friction. There, the energy will be finally transformed into 
heat. Thus, in this cascade, it is not energy that is conserved from 
scales to scales, but the rate of transfer of this energy. This rate re-
mains constant and equal to 0ε  (see Figure 2). The characteristic 
velocity scale lu of the structures of size l  is given, whatever l , by 
the relation 3

0~ ~l lu lε ε  or:

( )1 3
0~lu lε  (9)

For the velocity gradients, we obtain 2 3~ ~l lu u l l−∇ . Accord-
ing to this law, the decrease in the flow scales within the cascade 
process is as a matter of fact able to produce the gradients which are 
necessary to dissipate the energy, see (4).

Figure 3 provides an example that illustrates the relevance of this 
model in a complex flow. It shows results based on the measurement 
of the three components of the velocity by PIV in a massive turbulent 

3
0 0~ U Dε

separation region over a rounded ramp. The geometry of the channel 
and the mean velocity field determined in several vertical cross sec-
tions are shown in Figure 3a. Averaging is made on a set of 1000 
images for each of the planes. The images are recorded using a 
1376 pixel x 1040 pixel digital camera and the velocity is determined by 
a standard cross-correlation method. An analysis of the turbulent be-
havior is done in an exploration window of 100 mm x 200 mm located 
in the lower part of the section at x = 450 mm. Figure 3b shows the 
longitudinal velocity averaged on 1000 images. This averaged field 
corresponds to a shear. Figure 3c isolates one of the images. The 
variable represented in this latter Figure is not the velocity but the 
component of the vorticity perpendicular to the observation plane, 

x V x U yω = ∂ ∂ − ∂ ∂ .

We see that the turbulent vorticity ‘superimposed’ on the mean shear 
of Figure 3b presents a very fragmentary and homogeneous aspect 
that does not in any way reflect the average structure of the flow. Note 
that in these first three figures, the spatial resolution of PIV is deter-
mined by the size 2 232 32 pixelN = ×= 32 x 32 pixel2 assigned to the interrogation 
window ; the corresponding physical scale is about 3L mm≈ 3 mm. In 
Figure 3d, we show the result of an exploration of the scales of this 
turbulent motion made by modulating the resolution of PIV between    

2 232 32 pixelN = ×= 16 pixels ( 3L mm≈ 1.5 mm) and 2 232 32 pixelN = ×= 512 pixels ( 3L mm≈ 48 mm). We 
plot in this Figure log x< ω >  as a function of log 2 232 32 pixelN = ×. In accordance 
with (9), the theory provides the following scaling law for the vorticity:

2 3~ ~l
l

u l
l

−ω  (10)
 
We see in Figure 3d that the observations correctly reproduce this 
behavior. Thus, there is a fluctuating movement superimposed on 

Figure 3 – Separated flow in a curved channel: (a) channel geometry, mean longitudinal velocity and projected stream lines obtained by 3C PIV in planes 
perpendicular to the upstream flow (averaging is made on 1000 images), (b) mean longitudinal velocity in the plane x = 450 mm (resolution: 2 232 32 pixelN = ×= 32x32 pixel2),
(c) longitudinal component of the fluctuation of instantaneous vorticity measured in the same window as Figure b (resolution: 2 232 32 pixelN = ×= 32x32 pixel2),
(d) average of the absolute value of the vorticity xω  as a function of ( )L N  for ( )L N = 2n and 4 9n = −= 4-9, log-log plot. The physical sizes ( )L N  of these
windows are shown in superimposition in Figure 3c. The white circle in Figure 3b indicates the point of coordinates ( x = 450 mm, y = 0, z = -127 mm) where the 
spectrum of Figure 4 is determined. Figure 3a is taken from Gardarin and Jacquin (2008).
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the well structured mean shear of Figure 3b, which is fragmented 
according to the scheme of the Richardson-Kolmogorov cascade. 
Through (10), this movement may be seen as a vorticity field with 
an intensity which varies as the power -2/3 of the vortex scale. This 
means that turbulence can be seen as a distribution of more and more 
intermittent and singular vortices as we refine the scale of observa-
tion. The limit of this fragmentation is fixed by a minimum scale where 
viscous regularization can take place. 

The smallest scales of the flow

The Kolmogorov scale

The limit of the iner tial process described above is fixed by viscos-
ity which selects the smallest scales of the motion. These scales, 
of size minl  and characteristic velocity minu , are those for which 
the Reynolds number is of order unity, min min minRe 1u l= ν ≈1:
in accordance with (2), in these conditions viscosity once again 
becomes efficient and transforms the kinetic energy into heat. By 
combining this relation with 3

0 min min~ u lε , we find that the smallest 
possible scales verify:
  

( )1 43
min 0~l ν ε ≡ η  (11)

This is the Kolmogorov scale. By combining (8) and (11), we find that 
the ratio between the largest scale 0l  and the smallest one, η , is:

3 40
0~ Rel

η
 (12)

This demonstrates that the extent of the range of cascading scales 
adapts to the Reynolds number by evolving as its power 3/4. 

As an example, for the wake of the sphere of Figure 2, where 
0Re 400000≈ 400 000, if we consider a diameter of 0l = 0.1 m (say, an 

average scale for a sport ball), we obtain 6 mη ≈ µ . At a fixed point 
located in the turbulent wake of this sphere, the measured frequencies 
are obtained by taking the local convection velocity of the scales 0l  

and η . By taking for this velocity the upstream velocity 0U ≈  5 ms-1, 
the frequencies obtained are 0 0 0f U l≈ ≈ 40 Hz, for the largest 
scale, and 0f Uη ≈ η ≈ 640 kHz (!) for the smallest one. These are 
the characteristic scales of this flow. 

In the channel flow of Figure 3, at the point of coordinates 
(x = 450 mm, y = 0, z = -127 mm) indicated in Figure 3b, if
we take as a characteristic velocity the difference in the velocities 
that shears the flow, here 1

0 30u ms−≈ 30 ms-1, and if we consider
that the scale of energy injection is 0 0.2l m  0.2 m (the height of the
rounded ramp), we obtain the same Reynolds number as previously, 

0Re 400000≈ 400 000. (12) then yields 12 mη ≈ µ12 12 mη ≈ µ  for the Kolmogorov 
scale. At this point, the local convection velocity is 0U ≈  5 ms-1 (see 
Figure 3b) so that, in terms of frequency, the limits of the turbulent 
cascade are equivalent to the preceding ones: 0 0 0f U l≈ ≈ 25 Hz 
and 0f Uη ≈ η ≈ 417 kHz.

Figure 4 shows the power spectral density of the fluctuations of the 
longitudinal velocity measured with a hot-wire probe placed at the 
point represented in Figure 3b. The hot-wire technique is based on 
the measurement of voltage variations at the tips of a small heated 
metallic filament in which a current is modulated so as to maintain 

a constant temperature of the filament. The voltage fluctuations are 
proportional to the variations of the flow velocity, that influences the 
filament temperature, and thus its resistance. This miniature sensor 
has a low enough thermal inertia to allow resolution of the small 
spatial and temporal scales of a turbulent flow (when the mean con-
vection velocity is not too large). The hot-wire probe signal is here 
acquired with a frequency of 9 kHz. It is low-pass filtered with a 
cut-off frequency of 2cf kHz==2 kHz (here, this low value was sufficient 
for the author’s purposes; note that in this flow a hot wire could 
discriminate the scales up to a frequency of more than 10 kHz). 
Beyond the frequency 0f  where energy is injected, the spectral den-
sity follows the famous “-5/3” power law predicted by the Richard-
son-Kolmogorov model (the demonstration may be found in any text 
book dealing with turbulence; see e.g. Jacquin and Tabeling, 2006, 
in French). The measurement is here under-resolved because, as 
shown by the theoretical dotted line, the cascade continues until the 
viscous frequency fη which is well beyond the low-pass cut-off of 
the filter. However, the contribution to the total energy of the unre-
solved scales located in the range cf f fη≤ ≤ can be considered as 
negligible. We also see in gray in this Figure the range of the inertial 
scales of the cascade accounted for by PIV according to the scale 
of resolution ( )L N( 2 232 32 pixelN = ×= 2n) with 12 mη ≈ µ= 4-9 as indicated in Figure 3c.

It must be realized that while the cascade produces finer and finer 
and more intense vor tices ( 2 3~l l−ω , see (10)), these vor tices 
carry less and less energy ( 2 2 3~lu l , see (9)). The smallest vor ti-
ces play a fundamental role which is to regulate the energy at the 
end of its process of injection/transfer/dissipation. But the ener-
getic content of these scales is evanescent and their measurement 
is a feat that can be judged to be of no value in the case of free 
flows such as the wake of an object (Figure 1) or in a mixing layer 
(Figure 3). 

But we will see however, that resolving these small scales is of pri-
mary importance for wall flows.
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Figure 4 - Power spectral density of the velocity fluctuations at the point indi-
cated in Figure 3b. Solid line: hot-wire measurement (acquisition at frequency 

9acqf kHz== 9 kHz, low-pass filtering at 9acqf kHz== 2 kHz); dotted line: non-resolved 
part. The turbulent energy cascade theoretically develops between frequencies 

0 0 0f U l≈  25 Hz and 0f Uη ≈ η ≈ 417 kHz. The gray band represents the 
frequencies covered by the PIV resolutions tested in Figure 3.
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Wall flows

On the upstream part of the sphere (Figure 1a), or on the flat plate up-
stream the rounded ramp (Figure 3a, 450X mm=< 0), the flow is attached and 
the scales of motion are constrained by the proximity of a solid wall 
and by the adherence condition ( )0u z → = 0. These flow regions 
are called boundary layers. This situation is summarized in Figure 5a: 
when a fluid flows with a velocity 0U ≈ above a solid surface located 
at z= 0, viscous friction, which slows down the flow, is propagated 
over a thickness δ which defines the boundary layer thickness (usu-
ally defined by ( )u z = δ = 0.99 0U ).
In agreement with the preceding, we can seek the smallest scales
of the movement taking as a hypothesis that the flow is turbulent, 
as in Figure 5b.

(a)

(b)

To do this, we must evaluate the length scale 0 0.2l m and the velocity scale  
1

0 30u ms−≈ which characterize the process of energy injection in the turbu-
lent cascade. For the length scale, one can remark that the physical 
distance to the wall prevents the motion from developing vertically. 
The scale of injection of the turbulent energy is thus variable according 
to the altitude, and we have:

0 ~l z  (14)

The evaluation of the corresponding characteristic velocity character-
izing the input of energy is a delicate point. Following for example 
the argument of Landau & Lifchitz (1971), we must remark that 
the variability of the flow over the thickness of the boundary layer, 

i.e. between z= 0 and δ, is an effect that is caused by the action 
of the viscous friction on the wall. This introduces the wall friction 

( )0 0u z zτ = µ ∂ ∂ =  where ( )0 0u z zτ = µ ∂ ∂ = is the dynamic viscosity (the kine-
matic viscosity being ν = µ ρ ) as a scaling parameter of the 
problem. This dynamic parameter allows us to define a characteristic 
velocity scale: putting 2

0 0uτ = ρ , we obtain an ‘external’ velocity 
scale 1

0 30u ms−≈ of the energy cascade in the form

0 0~u uττ ρ ≡  (15)

This velocity is called the friction velocity and its evaluation usually 
requires experimental measurements. In that respect, the following 
reasoning may be considered. If we assume that the flow is turbu-
lent, it must develop an iner tial cascade as described previously. 
The flow at these scales no longer explicitly depends on viscosity ; 
its proper ties are only fixed by 0 0~u uττ ρ ≡  and z . For example, the dis-
sipation occurs with a rate ( ) 3

0 ~z u zτε and the shear u z∂ ∂
must verify ~u z u zτ∂ ∂ . Integrating this latter relation leads to 

( ) ~ logu z z . Therefore, if the flow is turbulent, its velocity must 
be distributed logarithmically. This is indeed confirmed by the 
measurements, as will be seen below. Note that these functions 
do not diverge when 0z →  because there is a minimum physical 
distance minz where the flow ceases to be turbulent under a strong 
action of viscosity. By definition, at this distance the local Reyn-
olds number must be of order unity, i.e. min minRe 1u zτ= ν ≈ . 
Hence:

minz uτ= ν  (16)

This scale characterizes the thickness of the laminar sub-layer found 
at the bottom of boundary layers. To evaluate it, we measure the dis-
tribution of velocity u< > as a function of minz uτ= ν and smooth the turbulent 
fluctuations by taking a time average u< >  of u< > on a sufficiently 
long period. 

We now have enough elements to give some orders of magnitude of 
the flow scales in a boundary layer, particularly the minimum scale 

minz that separates the laminar region from the turbulent one. 

Table 1 reports dimensional and non dimensional quantities that char-
acterize three boundary layers of increasing Reynolds number. The 
first and the third cases are illustrated by the diagrams in figures 6 and 
7. These are measurements made with Laser Doppler Velocimetry 
(LDV) specially adjusted to near wall approaches by minimizing the 
measurement volume. Following the above dimensional analysis, we 
traced in these two figures the mean velocity, its standard deviation 
and the height normalized by their respective reference scales (15) 
and (16) :

Table 1 – Characteristic scales in three boundary layers. Case 1 corresponds to Figure 6,  and case 3 to Figure 7. v
+φ designates the characteristic scale of the LDV 

measurement volume normalized by the viscous length scale minz . The other parameters are defined in the text. Note the values of the minimal scales minz ( wall 
unit lengthscale) and 15zz + =

(height of the turbulence production region) as well as their reduction when the Reynolds number increases (Losfeld et al. 2003).

0U

( ) 0u z U= δ =( ) 0u z U= δ =
( ) 0u z U= δ =

Case 0U ≈
(( )1ms− )

uτ
(( )1ms− )

minz
( )mµ

15zz + =
( )mµ v

+φ δ
( )mm

θ

( )mm
Reθ

1 10 0.46 21.74 33 500 1.2 21.4 25.25 1500

2 40 1.67 23.95 9 135 4.4 16.9 1.57 3400

3 240 9.24 25.97 1.6 24 50 3.46 0.38 6015

0

u
U

τ

Figure 5 - Boundary layer : (a) definitions, (b) dye visualization of a tur-
bulent boundary layer on a NACA0012 airfoil for a Reynolds number 

0Rec U c= ν = 300 000, where c is the chord of the profile (view from 
above; the left and right limits of the image correspond to the leading and 
trailing edges of the airfoil; taken from Werlé, 1987). 



Issue 1 - December 2009 - Scales in Turbulent Motions
6

u u u+
τ= < >   (17a)

' '2u u u+
τ= < >   (17b)

minz z z u z+
τ= = ν   (17c)

As seen in (17c), minz z z u z+
τ= = νis the Reynolds number that characterizes the 

flow at height z. Its upper limit, minz u+
τδ = δ = δ ν , provides a 

Reynolds number for the whole boundary layer. As the determination
of δ  and uτ  are generally tricky, it is more convenient to use an inte-
gral scale, called momentum thickness, in order to compare various 
boundary layers:

( )
0

0 0
1u ux dz

U U
∞  

θ = − 
 

∫   (18)

This provides the values of the Reynolds number 0Re Uθ = θ ν  
listed in Table 1.

In agreement with the above theoretical prediction, we see in figures 
6 and 7 that the measured mean velocity follows a logarithmic law 
in the region 1 z+ +<< << δ  where a turbulent cascade is possible. 
In the example of Figure 6, minz u+

τδ = δ = δ νis small and the logarithmic region 
extends over about a decade in minz z z u z+

τ= = ν. In Figure 7, the Reynolds num-
ber 0Re Uθ = θ ν  is four times higher (this flow is produced in a 
transonic wind tunnel ; its Mach number is 0.6M ==0.6). As the friction 
velocity uτ  increases with the Reynolds number, the viscous scale 

minz  decreases, see (16), and the extent of the logarithmic region 
increases. At minz z z u z+

τ= = ν=O(1), by definition, turbulence disappears. A
Taylor-expansion then leads to                                   , whence 
u z+ +≈ . This is indeed what is seen in Figure 6a where this linear law 
is characterized. In the case of Figure 7, the viscous scale minz  falls 
below 2 ( )mµ (!), see Table 1. In this case, the measurement system is 
no longer capable of characterizing the flow in the laminar sub-layer. 

With regard to the fluctuations indicated in the right sides of figures 6a 
and 7a, we note some remarkable facts. First, the maximum intensity 
of the fluctuations is not obtained in the fully turbulent region, but at 
the level of its lower boundary, i..e. at about minz z z u z+

τ= = ν=15. This corre-
sponds to about minz z z u z+

τ= = ν=500 ( )mµ  in case No. 1 and minz z z u z+
τ= = ν=24 ( )mµ  (!) in case 

No. 3. This is the most unstable region of the flow, where production 
of the fluctuation energy of the turbulent boundary layer is maximal. 
Lastly, figures 6b and 7b show the probability density functions  of the 
velocities measured at various heights. These distributions become 
singular in the laminar regions minz z z u z+

τ= = ν=O(1) and minz z z u z+
τ= = ν=O( minz u+

τδ = δ = δ ν), and their 
enlargement in the regions where turbulence may develop character-
izes the richness in scales of the turbulent process. Note that most of 
these histograms are skewed and deviate from a Gaussian distribu-
tion: this is one of the characteristics of turbulent shear flows.

The limits of flow simulation

We will now show that to capture all turbulent scales in a turbulent 
flow, from the larger to the smaller, supercomputers are indeed nec-
essary. In accordance with (12), the minimum number 124 10ptN ≈ of nodes 
required to capture all details of a turbulent flow is:

3
9 40
0~ ~ Rept

lN  
 η 

 (19)

For the case of Figure 1 where 0Re Uθ = θ ν= 400 000, this gives 124 10ptN ≈ 4 1012

nodes. Furthermore, to solve the Navier-Stokes equations (1) with a 
numerical method, a minimum number of time steps is also neces-
sary. It can be demonstrated that this number verifies 1 2

0~ RetN .
A simulation thus requires a spatio-temporal meshing with at least 

11 4
0~ Rept tN N×  points which leads to the astronomical number 

of 2.51015 points to handle the case of a simple sport ball. We are 
still far from having the technology needed to do this. Not to speak 
of an aircraft, for which 0Re Uθ = θ ν can reach 109, or even a car, for which 

7 8
0Re 10 10≈ − . Now think of the atmosphere…

Figure 6a gave an example of a direct numerical simulation of a 
boundary layer sufficiently resolved in 1990 thanks to its moderate 
Reynolds numbers. Note that once validated, such a direct simulation 
(DNS), free of any modeling, became a reference because it provides 
information on quantities that are not measurable. Case of Figure 7 
has a larger Reynolds number and requires a meshing that is about 
20 times denser. Such a case can be simulated nowadays. But we 
should now remember that this is just a boundary layer on a smooth 
flat plate. 
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Figure 6 – LDV measurements in an incompressible boundary layer (case 
N°1 of table 1 : 0U =10 ms-1, 0Re Uθ = θ ν=1500): (a) average (left) and standard 
deviation of the fluctuations (right) of the longitudinal velocity component in 
wall variables and comparison with a direct simulation done at 0Re Uθ = θ ν=1410 
(Spalart, 1990), (b) probability density function of the fluctuations at various 
altitudes. The characteristic scale of the measurement volume is φν=40 ( )mµ , 
to be compared with the viscous scale minz =33 ( )mµ ( v

+φ =1.2, see Table 1). 
Taken from Losfeld et al., ( 2003). 
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These limitations not only concern computing time, but also data stor-
age. For each time step and at each point where we solve the equa-
tions of fluid mechanics, we must store the three components of ve-
locity and pressure. If the flow is not incompressible, we must add 
temperature and density. This means recording four or six variables, 
to which we must add the four indices of the node (space and time), 
which becomes soon an unmanageable problem. Besides, we are just 
speaking here of a non-electrically charged and non-reacting flow. This 
gives an idea of the extent of the problem of simulating (and measur-
ing) high Reynolds number flows from a practical standpoint.

In light of these difficulties, over the course of history, the Navier-
Stokes equations were degraded by means of various statistical filter-
ing methods. The success of these methods seems to be guaranteed 
by the apparently stable and repeatable nature of the statistical proper-
ties of turbulent flows (turbulent motion, which is chaotic if we try to 
follow a trajectory, becomes stable in the sense of ensemble statistics 
; we thus realize, at the risk of destroying a stereotype, that turbulence 
is a fundamentally regularizing process). The activity which consists in 
formalizing the ‘turbulent’ terms of the equations resulting from these 
filtering operations is referred to as ‘turbulence modeling’; A great re-
search effort has been made on turbulence modeling in the 1980-90’s. 
It led in particular to the current steady calculation methods, called 

RANS methods (for Reynolds Averaged Navier-Stokes). The calcula-
tion of the flow around a complete aircraft is now feasible thanks to 
such methods. But models become ineffective when turbulence is not 
in equilibrium, as it is often the case when it is subjected to mecha-
nisms such as rotation, curvature, compressibility, shock waves, heat 
release, etc, or when it is no longer separable without ambiguity from 
a mean field, as is the case in highly unsteady flows. In such cases, 
turbulence can no longer be easily integrated into an artificial viscos-
ity or in an inter-scale transfer function that are the artifacts used in 
most practical simulation tools. The success of the simulation then 
depends on the ‘know-how’ of the operator who must choose the best 
compromise among the tools at his disposal. But this also depends on 
the operator’s physical knowledge of the simulated problem and on the 
availability of measurements he can validate his choices with.

Metrology is challenging flow physics

In the context of the massive investment of computational fluid me-
chanics which characterizes now the discipline, the role assigned to 
experimentation has evolved. In recent years, its role has been mainly 
to validate the numerical solutions by providing information needed for 
calibration of specific physical models. For instance, flow surveying 
by LDV played a major role in the development of RANS methods by 
allowing to measure with a high accuracy the statistical moments of 
velocity involved in the RANS equations. But measurements are also 
constantly challenging the researcher and accompanying him in both 
his theoretical analyses and modeling efforts. This is exemplified by 
PIV, a technique which is supplanting progressively LDV: while the 
commercial success of PIV came from a significant reduction of op-
erational difficulties (compared to LDV), it opens up new possibilities 
that are not covered by the current simulation tools and their modeling 
capacities. In a near future, thanks to continuous progress in the field 
of lasers and digital cameras, PIV should provide a direct and complete 
description of the spatio-temporal kinematics of turbulent flows. Only 
direct numerical simulation of the Navier-Stokes equations (DNS), 
which is model-free, could be comparable to this. The current limita-
tion of PIV lies in the handling of the considerable mass of data it pro-
duces. What can we do with all this information? What kind of model 
could use it? We should expect that PIV will contribute to modifying 
the landscape of modeling in fluid mechanics by giving rise to new 
theoretical proposals. Presently, on the fundamental basic research 
side, PIV is already at the core of modern analyses of hydrodynamic 
stability and flow control. 

Conclusion 

In this article, we first presented the physical principles that determine 
the characteristic scales of monophasic and incompressible flows at 
high Reynolds numbers, which are that found in wind tunnel experi-
ments. The key analysis tool is the famous phenomenological theory 
of Kolmogorov, the basics of which we have outlined. The two experi-
ments used here to illustrate the introduced concepts involve three 
main velocimetry techniques of fluid mechanics: PIV, LDV and hot 
wire anemometry. Note that beyond the limited framework of mono-
phasic flows considered here, specific measurement methods exist 
to investigate multiphase flows, reactive flows, or plasmas; other 
physical scales are involved in these problems, which make the mea-
surements more complex. Finally, we emphasized how challenging 
turbulence is for computational fluid mechanics and how important 
measurement is for the stimulation and development of scientific 
research in fluid mechanics 

Figure 7 – LDV measurements in a compressible boundary layer (case N°3 of 
table 1: 0U =240 ms-1, 0Re Uθ = θ ν=6015): (a) average (left) and standard devia-
tion of the fluctuations (right) of the longitudinal velocity component in 
surface variables, (b) probability density function of the fluctuations at 
various altitudes. The characteristic scale of the volume of measurement is 

80v mφ = µ=80 ( )mµ , to be compared to the viscous scale minz =1.6 ( )mµ ( v
+φ =50, 

see Table 1). Taken from Losfeld et al. (2003). 
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