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Fault Diagnosis and Fault-Tolerant Control Strategy for Rotor Failure
in an Octorotor

Majd Saied1,2, Benjamin Lussier1, Isabelle Fantoni1, Clovis Francis2, Hassan Shraim2 and Guillaume Sanahuja1

Abstract— This paper presents a fault tolerant approach for
a coaxial octorotor regarding rotor failures. A complete ar-
chitecture including error detection, fault isolation and system
recovery is presented. The diagnosis system is designed with
a nonlinear observer to generate residuals and an inference
model to evaluate them and isolate the faulty motor. Once the
motor failure is diagnosed, a recovery algorithm is applied.
It uses the built-in hardware redundancy of the octorotor and
compensates the loss of the failing motor by controlling its dual
to keep a stable flight that allows the multirotor to continue its
mission. This architecture is validated on real flights.

I. INTRODUCTION

Multirotors unmanned aerial vehicles (UAV) are expected
to provide services in the near future in a wide range of
industrial applications such as: railway monitoring, super-
vision of electrical power lines, development of the preci-
sion agriculture, package delivery, etc. They have several
advantages over comparably-scaled helicopters and planes
because of their take off, landing and hovering capabilities,
their mechanical simplicity and their inherent robustness.
However, many constraints slow down their integration into
civil airspace, particularly a poor reliability record, and the
absence of regulations and standards regarding their own
usage.

In order to solve the first restriction, fault tolerant control
(FTC) strategies applied to UAV multirotors have received
considerable attention in the last years. For quadrotors,
partial failure was investigated in [1] - [5], where various
approaches for fault recovery have been proposed: model
reference adaptive control, flatness-based adaptive control,
etc. Robust controllers were also developed to stabilize the
quadrotor in a degraded mode: sliding mode, backstepping
approach, optimal LQR... A total failure was studied in [6]
and [7] where the strategy is to sacrifice the yaw control so
that the vehicle rotates freely around an axis, and then tilt
this axis for translational control. For multirotors with more
than four rotors (hexarotor, octorotor), the objective of the
FTC strategy is to maintain normal and stable flight and full
control of the system despite the complete failure of one or
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more propellers [8] - [10]. The method used in these three
papers is the control allocation.

Most of these papers consider only one aspect of the FTC,
which is the recovery part. However, another critical part of
fault tolerant mechanisms is error detection and diagnosis.
Indeed, accurate information on the fault occurrence time and
location, as well as its severity, are necessary for the recovery
phase. Several algorithms were applied to quadrotors to
estimate the faults using nonlinear observers, Kalman filter
or polynomial observers in [11] - [14]. But to the best of our
knowledge, no diagnosis strategy has been developed for a
multirotor with more than four rotors.

In this paper, we propose a complete architecture for
error detection and system recovery of an octorotor, using
a coaxial arrangement of rotors. The detection algorithm is
based on a nonlinear sliding mode observer using as entries
the angular positions, and the recovery algorithm consists of
synchronizing the uncontrollable failed rotor and its dual one,
and reallocating the control effort on the six other motors.

This paper is organized as follows: Section II presents
some definitions and concepts about Fault Tolerance (FT).
Section III presents the dynamics of the octorotor and the
controller used to stabilize the body angles and the altitude.
Section IV is dedicated to the detection and recovery algo-
rithms. The results are then validated in real experiments
in section V, and the paper concludes with perspectives in
section VI.

II. FAULT TOLERANT CONTROL PROBLEM : DEFINITIONS

This section presents some basic concepts and definitions
regarding computing systems’s dependability. More infor-
mation can be found in [15]. Dependability is the ability
to justifiably trust in the deliverance of a system’s correct
service. It has means (like fault tolerance), attributes (like
safety and reliability) and threats (faults, errors and failures).
A failure is an event that occurs when the behavior of
the system deviates from the correct expected service. The
previous incorrect state of the system is called an error, and
the cause of this error is a fault. On a multirotor, faults
affecting the actuators have been identified as the highest
priority due to their impact on the system stability and their
significant probability of occurrence [10].

FT is one of four means to attain dependability with
fault elimination, fault prevention and fault prediction. Its
purpose is to allow the system to operate properly despite the



Fig. 1: The coaxial octorotor and the reference frames

presence of faults. The implementation of FT requires redun-
dancy in the system: hardware and/or software redundancy.
Hardware redundancy consists of using additional hardware
to compensate failures. It is a fundamental technique to
provide fault tolerance in safety critical systems like planes,
trains or nuclear plants. The octorotor is an example of
vehicles with built-in hardware redundancy and the proposed
fault tolerant control strategy is based on this characteristic.

III. OCTOROTOR DYNAMICS AND CONTROL STRATEGY

In this section, we present the coaxial octorotor’s dynamics
and the control strategy that we use to stabilize the pose of
the multirotor.

A. Dynamical Modeling of the Coaxial Octorotor

The configuration of the octorotor is represented in Fig. 1.
It is similar to a quadrotor with two coaxial counter-rotating
motors at the ends of each arm. This configuration has several
advantages compared to the star configuration used in the
literature [8], [9] in terms of stability and size. A classical
star octorotor needs more arms, and each arm needs to be
longer to guarantee adequate spacing among the rotors. We
have adopted this configuration for its higher thrust to weight
ratio.

Consider first a body-fixed reference frame RB with the
X, Y, Z axis originating at the center of mass of the vehicle.
The X axis points to the front direction, the Y axis to the
left direction and the Z axis upwards. Consider second an
inertial frame RI fixed to the earth {o, x, y, z}.

The equations governing the motion of the system are
obtained using the Euler-Lagrange approach and give the
commonly used model [16]:
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We finally have the following expressions for the control
inputs of the system and the disturbance Ω:

uf = F12 + F34 + F56 + F78

τφ = (F78 + F56 − F34 − F12) ∗ l ∗
√
2
2

τθ = (F34 + F56 − F78 − F12) ∗ l ∗
√
2
2

τψ = (τ2 + τ3 + τ6 + τ7)− (τ1 + τ4 + τ5 + τ8)
Ω = ω2 + ω3 + ω6 + ω7 − ω1 − ω4 − ω5 − ω8

(2)

In these equations, x, y and z denote the position of the
vehicle and φ, θ, ψ the Euler angles with respect to the
earth frame. p, q and r denote the angular velocities of the
vehicule with respect to the body frame, Ixx, Iyy, Izz and
Jr are respectively the moments of inertia of the octorotor
on the three axes with respect to RB and the rotor inertia, l
is the length of the arm, and ωi is the speed of the rotor i.
The thrust produced by each pair of coaxial rotors i and j
is given by [17] :

Fij = αij ∗ (Fi + Fj) ∗ (1 + Ss

Sprop
)

Fi = Kf ∗ ω2
i

(3)

αij is the coefficient of loss of aerodynamic efficiency due
to the aerodynamic interference between the upper and lower
rotors of each pair of coaxial rotors. S = (1 + Ss

Sprop
)

represents the shape factor of the propellers, with Ss denoting
the propeller’s surface and Sprop the surface of the circle that
the propeller would make when rotating. Kf is the thrust
factor. The torque produced by each rotor is expressed by:

τi = Kt ∗ ω2
i (4)

with Kt is the reaction torque coefficient.

B. Control Strategy

A control strategy for stabilizing the octorotor while
hovering is presented in this section. The altitude and the
yaw positions are controlled by a PID controller that makes
use of information obtained respectively from an ultrasonic
sensor and an Inertial Measurement Unit (IMU):

u = Kpe+Kdė+KI

∫ t

0

e(τ)dτ (5)

Kp, Kd and KI are the controller’s gains, and e is the state
error compared to the desired position.

The roll and pitch angles are controlled using saturation
functions, where each state is bounded separately. The sta-
bility of this control law is proved in [20].

τφ = Ixx

g [σpy(kpy(y − yd)) + σdy(kdy ẏ)−
σpφ(kpφφ)− σdφ(kdφφ̇)]

τθ = − Iyy

g [σpx(kpx(x− xd)) + σdx(kdxẋ)−
σpθ(kpθθ)− σdθ(kdθ θ̇)]

(6)

where kpy , kdy , kpφ, kdφ, kpx, kdx, kpθ and kdθ are positive
gains, and σpy , σdy , σpφ, σdφ, σpx, σdx, σpθ, and σdθ are
saturation functions defined as follows: σbi(s) = bi if s > bi

σbi(s) = s if −bi < s < bi
σbi(s) = −bi if s < −bi

(7)

IV. FAULT TOLERANT ARCHITECTURE

As mentioned before, fault tolerance is carried out via
error detection and system recovery. These two components
are detailed in this section.



A. Error Detection

The goal of the error detection component is to first
detect the presence of an error in the system by calculating
residuals that compare the predicted behavior of the system
with the observed one. Second, it diagnoses the problem
by applying classification or inference methods. We present
in this section the residual generation method and then the
residual evaluation that allows to detect and diagnose an error
in the system.

1) Residual generation: To generate residuals, a nonlinear
sliding mode observer is used. We define xT = [φφ̇θ θ̇ψ ψ̇]T

as the state vector, and y = [φθψ]T as the output vector given
by the IMU. Note that with these three outputs the system is
observable. The angular velocities are also measured by the
IMU but they are only used in the residuals. The observer is
derived from (1) and has the form:

ˆ̇x1(t) = x̂2 + µ1

ˆ̇x2(t) =
Iyy−Izz
Ixx

x̂4x̂6 − Jr
Ixx

x̂4Ω + 1
Ixx

τφ + µ2

ˆ̇x3(t) = x̂4 + µ3

ˆ̇x4 = Izz−Ixx

Iyy
x̂2x̂6 + Jr

Iyy
x̂2Ω + 1

Iyy
τθ + µ4

ˆ̇x5(t) = x̂6 + µ5

ˆ̇x6(t) =
Ixx−Iyy

Izz
x̂2x̂4 + 1

Izz
τψ + µ6

(8)

where: {
µi = Kisign(xi − x̂i)
µi+1 = Ki+1sign(xi − x̂i)

for i = 1, 3, 5 (9)

Ki are positive gains.
The observer error dynamics are given by ˙̃xi = xi − x̂i.
According to [18], the convergence of this observer is
conducted in two steps. The first step is the convergence
of the measured variables, and the second step is the con-
vergence of the errors x̃ii=2,4,6

. No injection is made for the
channels (i = 2, 4, 6) before reaching the sliding manifolds
sign(µi) = 0i=1,3,5.

The residuals are built as the differences between the
system outputs and the observer outputs.

r1(t) = φ(t)− φ̂(t) r2(t) = φ̇(t)− ˆ̇
φ(t)

r3(t) = θ(t)− θ̂(t) r4(t) = θ̇(t)− ˆ̇
θ(t)

r5(t) = ψ(t)− ψ̂(t) r6(t) = ψ̇(t)− ˆ̇
ψ(t)

(10)

They satisfy the following properties [19] :
- Invariance Relation: When no fault occurs, the mean of the
residual is zero.
- Fault Detectability: When a fault occurs, the mean of the
residual deviates from zero.

2) Residual evaluation: Once the residuals are generated,
they are examined for the likelihood of faults by using fixed
thresholds. A diagnostic inference model is illustrated in Ta-
ble I. Given the previous residuals and the angular velocities
from the IMU, it diagnoses the failing rotor based on a
model analysis of the eight failure modes. The inferences are
constructed using the residuals mentioned above to detect the
occurrence of a fault in the system, and the information about
the orientation of the octorotor are used in case of an error to

Fig. 2: Recovery Strategy for FT octorotor

isolate the failed actuator (see e.g. (11)). Note that a 1 in the
table indicates that the residual exceeds the threshold. Since
the body fixed frame is not within the arms of the octorotor,
all residuals will be affected in case of the failure of any of
the eight motors. This explains why all residuals exceed the
thresholds when one actuator fails.

if (ri > thresholdi)

{if (φ̇ < 0 & θ̇ < 0 & ψ̇ < 0)}
then motor 6 in failure

(11)

The algorithm in (11) is used to detect the failure of
one motor. The fault diagnosis is more complicated for an
octorotor than a quadrotor, because the number of faults to
be estimated is higher. This implies that more outputs are
needed to observe the system and to diagnose the faults.

f1 f2 f3 f4 f5 f6 f7 f8

r1 1 1 1 1 1 1 1 1
r2 1 1 1 1 1 1 1 1
r3 1 1 1 1 1 1 1 1
r4 1 1 1 1 1 1 1 1
r5 1 1 1 1 1 1 1 1
r6 1 1 1 1 1 1 1 1
φ̇ + + + + - - - -
θ̇ + + - - - - + +
ψ̇ + - - + + - - +

TABLE I: Diagnosis inference model for one rotor failure

B. System Recovery

The octorotor has a built-in hardware redundancy. Apart
from its bigger payload, a motivation for using this type of
multicopters instead of quadrotors is that the vehicle is able
to maintain normal flight and full controllability in case of
one motor failure (full stop or just loss of efficiency).
If a motor fails, a counteraction on its dual motor is sufficient
to compensate this loss of thrust and to maintain a stable and
safe flight. This can be shown in the expressions of τφ,τθ
and τψ in (2). The adopted recovery strategy is presented
in Fig. 2. It is done in two steps. Once an error has been
detected, the first step is to reduce the speed of the dual motor
to compensate the missing amount of torque. The duality
between the motors is based on the geometrical construction
of the UAV and presented in Table II.

The second step is to increase the other motors speeds to
generate sufficient thrust to maintain the UAV at the desired
altitude. This is done in the inverted movement matrix where
the motors thrust are computed from the four control efforts.
In normal flight, the general form of the equation of the



speed of any motor i, ωi = f(uf , τφ, τθ, τψ), is given by:

ωi =

√
1

8
∗ (

uf
αijSKf

± τφ
αijSKfd

± τθ
αijSKfd

± τψ
Kt

)

(12)
The positive sign in front of uf indicates that all motors
give positive thrust. The signs in front of the moments are
selected depending on whether the force created by the motor
generates a positive or negative moment. After an error
detection, a correction factor is added to ensure that the same
total thrust and moments as in normal flight are generated,
resulting in equation (13):

ωi = pi

√
(
1

8
+ ci)(

uf
αijSKf

± τφ
αijSKfd

± τθ
αijSKfd

± τψ
Kt

)

(13)
where pi means the percentage of motor failure, and ci is the
correction factor depending on the number and percentage of
motor failures. This method doesn’t need the resolution of
any optimization problem. This leads to a lower computa-
tional effort on the main controller unit and it is also much
easier to validate (and ultimately to trust) than more complex
control methods like control allocation. It is independant
from the constraints on the inputs (motors’ speeds) and it
restores the system even when moving or following a given
trajectory as will be demonstrated later in section V.

Motor Dual Motor
1 6
2 5
3 8
4 7

TABLE II: Duality between motors

V. VALIDATION

An indoor test environment has been developed to validate
the proposed fault tolerant architecture on a real octorotor.
Fault injection is used to simulate motor failure.

A. Experimental Platform

The experimental UAV is shown in Fig. 3. It is a coaxial
octorotor built at the Heudiasyc laboratory. It uses Bl2827−
35 brushless motors driven with BLCTRLV2 controllers
(Mikrokopter) giving motors speeds measurements.

The multirotor is equiped with a Microstrain 3DMGX3-
25 IMU composed of accelerometer, gyroscope, and mag-
netometer sensors giving Euler angles and rotation speed
measurements at 100 Hz, and an ultrasonic sensor SRF08
giving altitude measurements. The control law is executed
in real time onboard the vehicle. The UAV’s program is
connected to a ground station where the parameters (control
laws, filters...) are tuned during the system’s development.

The octorotor’s inertia was extracted from the software
Catia and was found to be as follows: Ixx = Iyy =
4.2x10−2Kg.m2, Izz = 7.5x10−2Kg.m2. The propeller’s
inertia was neglected. The vehicle’s mass was measured to
be 1.6 kg, and the distance from the center of mass to the
center of the propellers is l = 0.23m.

The propellers were characterized using a force/torque
sensor. The thrust and reaction torque coefficients were
estimated as Kf = 3x10−5Ns2/rad2 and Kt =
7x10−7Nm/rad2. They are able to produce thrust forces
up to 6.5 N .

Fig. 3: Experimental Octorotor

B. Activity and Fault Injection
Two scenarios are considered. First, the octorotor hovers in

the room. Second, the octorotor follows a circular trajectory.
A motion capture system is used in this second scenario to
obtain the position of the octorotor 1.

To illustrate a total failure in the propeller system, a motor
is turned off by setting its power to zero from the ground
station or by remote control.

C. Results on the Hovering Flight
The octorotor is first brought to a stable hovering position

using the altitude and attitude controllers. The position is
not controlled, the measurements available being only the
Euler angles and the angular velocities. The motor 6 is turned
off. The fault is detected online after 60 ms roughly, and
the recovery algorithm is applied. Fig. 4 shows the motors
speeds. It confirms that the fault is injected at time 20.27 s,
and the detection is at time 20.86 s. The speeds of the motor
6 and its dual are shown to be null.

Fig. 4: Motors speeds during hovering flight when injecting total failure in
rotor 6; The vertical dashed line indicates the injection fault time.

1) Error detection: When the actuator 6 stops, the dy-
namic of the real system behaves in a different way than the
observer, and the residuals raise above the values they had
in the faulty-free case. The parameters of the observers are
given below : K1 = K2 = 1, K3 = K4 = 0.7, K5 = 1.7,
K6 = 1.4.
The thresholds are determined from experiments and are
selected in a way to avoid wrong decisions, such as false
alarm or fault ignored.

1The two experiments are shown in the video accompanying this paper.



Fig. 5: Residuals on angles and angular velocities during hovering flight;
The vertical dashed line indicates the injection fault time

Fig. 6: Angular velocities during hovering flight [rad/s]; The first dashed
line indicates the failure injection time and the second the detection and

recovery time

Residuals are shown in Fig. 5, and the angular velocities in
Fig. 6. A similar behavior can be seen if any of the actuators
fails. As presented in section (IV-A.2), the diagnosis is based
on the orientation of the octorotor after the failure occurs. A
low pass filter is used to eliminate the noise on the angular
velocities. As the filtered signals are used only to evaluate the
signs of the speeds, the slight loss of information in filtering
is inconsequential.
Fig. 6 shows that the three velocities are negative after the
fault due to the displacement of the UAV in the direction of
the faulty motor, which corresponds in this case to negative
deviations around the three axis. According to Table I, the
system thus correctly diagnoses a failure in motor 6.

2) Recovery of the system: As previously mentioned, the
position is not controlled in this scenario. The recovery
algorithm reacts 0.6 s after the fault injection. We present
in Fig. 7 and Fig. 8 the Euler angles and the altitude
respectively. The two vertical dashed lines mark the failure
occurrence and its detection times respectively. It can be
observed that the angles deviate quickly from their initial
values after the failure has occured, however the recovery
algorithm is able to bring back the angles to stable values.

D. Results with a Circular Trajectory

In this scenario, the octorotor follows a circular trajectory.
The UAV’s position is measured using a motion capture
system: An Optitrack system composed of 12 cameras. Due

Fig. 7: Euler angles during hovering flight [deg]; The first dashed line
indicates the failure injection time and the second the detection and

recovery time.

Fig. 8: Altitude during hovering flight [m]; The first dashed line indicates
the failure injection time and the second the detection and recovery time

to the lack of time for experiments, only the recovery is
tested in this case, assuming that the fault is detected after
1 s (a rather pessimistic value). Fig. 9 shows the UAV’s
trajectories with and without fault injection. In the latter case,
the recovery algorithm was also able to quickly stabilize the
pose of the system.

E. Discussion

The performed experiments show a good behavior of
the detection and recovery algorithms after fault injection.
The recovered behavior is very comparable to the nominal
flight. However two points must be noted. First, in hovering
mode, the octorotor will deviate slowly in position after the
recovery since the position is not controlled in this case.
Second, due to the reduction of the speed of the dual motor,
a loss in the total thrust occurs. We solve this problem
with a reconfiguration of the control law of the altitude by
increasing the control gain. This is possible since the actuator
limitations are not reached, but if the payload of the octorotor
was greater, it may not have been able to stay exactly at the
desired altitude.

The commonly used measurements for the diagnosis of a
quadrotor are the positions and Euler angles [11] - [14]. In a
closed space the positions can be given by a motion capture
system, but a GPS is needed outdoor. The outputs of the
GPS are biased in general and this may be a problem with
future outdoors experiments. The proposed diagnosis strategy



Fig. 9: Circle Trajectory of the octorotor with and without fault injection

based on the IMU measurements only, allows a detection in
less than 1 s. The experiments show that the reconfiguration
delay is a critical but somewhat lax parameter as recovery
is still possible after a detection delay of 1.5 s. However,
the lower the reconfiguration delay, the smaller the deviation
from the stable position. This diagnosis algorithm is based
on a sliding-mode observer and is thus robust to unknown
parameter variations and noise. However significant distur-
bances and gusts of wind can still lead to false positives.

Compared to quadrotor case, the redundancy of the octoro-
tor enables a full controllability of the UAV after the failure
of one or more propellers. This fact may justify the additional
costs and complexity in this architecture compared to the
results of [7]. In this paper, we tolerated only one motor
failure, but more failures can be detected and recovered from
by applying new diagnoses and recovery parameters to the
degraded mode.

Note that this architecture could be applied to any multi-
rotor UAV with redundant actuators (hexarotor, star-shaped
octorotor) by implementing minor modifications.

VI. CONCLUSION AND PERSPECTIVES

This paper presents an error detection and recovery archi-
tecture that allows an octorotor to maintain full controllabil-
ity after losing one propeller. The proposed method takes full
advantage of the octorotor configuration for FTC. It is based
on analytical diagnosis and hardware redundancy. A sliding
mode observer is used to estimate the angular speeds and
to generate residuals that are used to detect a failing motor.
The decision making algorithm is based on a set of if-else
inference rules taking into account the signs of the angular
velocities that are easy to trust and validate. To restore the
system operation, the dual motor of the faulty one is invested.

In future works we intend to implement and compare a
control allocation recovery method with the one presented
in this paper. We also intend to tolerate successive motor
failures in our UAV.
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