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Distributed Leader-Follower Formation Control for Multiple
Quadrotors with Weighted Topology

Zhicheng HOU and Isabelle FANTONI

Abstract— This paper addresses the problem of controlling
a leader-follower formation of quadrotors (UAVs), which can
be considered as a System of Systems. A distributed control
scheme for the motion of the formation is proposed, ensuring
consensus of the UAVs and collision avoidance. Each UAV
has local and limited neighbors and uses weighted relative
positions and velocities of its neighbors. In the simulation
section, a comparison of using the formation controllers with
weighted and unweighted topology is given. The results show
that the proposed control strategy can keep the formation with
some initial conditions, unlike the strategy with unweighted
topology. The simulations also show that our proposed control
strategy can be applied for both one leader and multiple leaders
formation.

I. INTRODUCTION
The Systems of Systems (SoSs) are large-scale integrated

systems which are heterogeneous and independently operable
on their own, but are networked together for a common goal
[1]. A robotic multi-agent system can be considered as an
application of Systems of Systems (SoS). Our objective is
to control a formation of robotic flying robots (quadrotors)
as a multi-agent system for object searching in a huge
area. For multi-agent systems, consensus is one of the most
studied problems, which means that all agents need to
reach an agreement on certain quantities of interest (such
as positions and velocities) under some control protocols
[2]. The cooperative control of leader-follower (L-F) multi-
agent systems has recently attracted the attention. Within the
field of mobile robotics, L-F formations arise in applica-
tions ranging from searching, surveillance, inspection, and
exploration [3]. According to [2] and [4], we can rephrase
the L-F consensus problem as follows: for L-F multi-agent
systems, all the followers follow the leader (leaders) and
all of the agents can track a reference signal (e.g. desired
moving trajectory), which is given to the leader (leaders).
Additionally, all the agents maintain some inter-distances
to avoid collisions. Such a L-F consensus has practical
significance. For example, in the task of searching [5], it
is more efficient to find the object in a large area by using
multiple robots with L-F formation than using a single robot.
The followers can be considered as the extended “eyes” of
the leader.
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The L-F approach has the advantage of simplicity, since
the moving trajectory of the flock is clearly given to the
leader (or leaders) [6]. Then, the followers follow the leader
(or leaders) to keep the formation. In the “behavior-based”
approach without leader, the agent in the flock usually has
random behaviors to overcome local maxima or minima [7].
Although the behavior-based approach is usually considered
as an approach more robust than L-F approach, the random
behavior could possibly have blindness of some searching
areas. Therefore, the L-F approach is efficient and simple
for object searching in a huge area.

The L-F formation problem is treated in a large amount of
papers, but in most of them, for example papers [4][8], the
leader is treated as a special agent whose motion is indepen-
dent of all the other agents. The formation of multiple UAVs
(quadrotors for example) is considered by several papers. In
[9], the generation of the formation trajectory is developed.
In [10], each quadrotor can obtain the error of position of
the group from the prescribed trajectory. In our work, A
UAV, although the leader, senses its neighbors instead of
all the UAVs in the flock. Each leader has interactions with
neighboring UAVs (leaders or followers).

Motivated by this searching application, we propose a
distributed control law for the L-F multiple UAVs system,
using weighted relative positions and velocities to its neigh-
bors, such that all the UAVs achieve L-F consensus and
maintain some formations without collision. In the sequel,
the relative position and velocity vectors between a UAV
and its neighbors will be called RPVVs. The formation
controller of each UAV is designed by using RPVVs and their
corresponding weights. The weights are added to improve
the robustness of the formation. This argument is illustrated
by the simulation results, which are given by the simulator
designed by our laboratory Heudiasyc. The simulator will
be introduced in section IV. In general, a distributed control
means that algorithm runs in each UAV instead of in a ground
station [11]. In our proposed formation control strategy, the
control algorithm runs in each UAV. Additionally, each UAV
uses relative positions or velocities of its nearest neighbors.
Therefore, our formation control strategy is distributed ac-
cording to [11][12].

The outline of this paper is as follows. The mathematical
modeling of the multi-UAV system is given in section II.
The distributed control with weighted RPVVs is proposed in
section III. A comparison of using weighted and unweighted
RPVV is given in the simulation section IV. Finally, some
concluding remarks and future works are stated in section V.



II. MULTI-UAV SYSTEM MODELING

A. System structure

A multi-UAV system with n autonomous UAVs is shown
in Fig.1. In this system, each UAV has a distributed formation
controller. To calculate the weight of the RPVV, each UAV
is identified by a Priority Coefficient (abbreviated by ‘PrC’,
which will be detailed in section III). The input for each UAV
is the received data, which contain its neighbors’ positions,
velocities and PrCs, and its own position and velocity. The
output is the position, velocity and the PrC of itself. The data
communication is carried out by WIFI.
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Fig. 1. Distributed control for the L-F formation. Since the algorithm
is distributed, UAVs do not necessarily know all the others. The lines
of dashes just show the possible communications. The objective of this
paper is to design the “Distributed formation controller” module and the
“Transformation module”.

The dynamics of quadrotor can be divided into rotational
and translational dynamics as shown in Fig.1. We assume
that the rotational dynamics have been stabilized, and the
attitude angles (φi, θi, and ψi) are able to track some smooth
references φ r

i , θ r
i , and ψr

i . Therefore, in this paper, we are
not concerned by the tracking problem of the rotational
dynamics, which is well studied in a large number of papers
for example [15]. We assume that the reference yaw angle
ψr

i = 0 and that

θi = θ r
i +∆θi, φi = φ r

i +∆φi, and ψi = ∆ψi

where ∆θi, ∆φi and ∆ψi are the tracking errors of the angles,
which are bounded and approximately equal to zero. In the
sequel, we assume that the tracking errors are zero.

B. Multiple UAVs dynamics
In our scenario, we are only interested in the dynamics of

translation for attaining some formations of multiple UAVs.
We assume that the altitudes of UAVs are stabilized and
keep constant such that Z̈i = 0 and Żi = 0, so we are
only concerned by the planar dynamics. We assume the
UAVs have the same masses m, then, according to [13], the
translational dynamics of UAV i, i ∈ V w.r.t a global frame
(note that the yaw angle is zero) can be rewritten as follows

Ẍi = g tanθ r
i

Ÿi =−(g/cosθ r
i ) · tanφ r

i
(1)

We refer to Xi, Yi as the position states in the global frame,
Ẋi, Ẏi as the velocity states.

For a quadrotor, the translational movement is produced by
using pitch and roll angles. Therefore, we have to find proper
pith and roll angles for realizing a formation. The control
output u†

i = [uX
i ,u

Y
i ] for UAV i are related to the reference

pitch and roll angles by uX
i = g tanθ r

i and uY
i =−g tanφ r

i
cosθ r

i
such

that the transformation module in Fig.1 satisfies the following
two functions

θ r
i =arctan

(
uX

i
g

)
φ r

i = arctan
(
−uY

i cos(arctan(uX
i /g))

g

) (2)

We replace θ r
i and φ r

i in (1) by equation (2), then, we obtain
the planar dynamics in the following decoupled form: Ẍi =
uX

i and Ÿi = uY
i .

Since the dynamics along axes X and Y are decoupled, we
only consider the dynamics along one axis (X for example)
in the following analysis. The result on the other axis can
be obtained with the same analysis.

The vector xi = [Xi, Ẋi]
T consists of the states of the

decoupled dynamics on X-axis. Such a simplified model of
dynamics can be represented by the following two cascade
integrators equation

ẋi = Axi +Bui (3)

where we abbreviate uX
i by ui. This abbreviation will be used

throughout the rest of the paper. Matrices A and B satisfy

A =

(
0 1
0 0

)
and B =

(
0
1

)
To design the controller for such a system, we represent the
system in discrete-time. We denote by T the sample period.
Then, we can obtain an approximate discrete-time model of
(3) as follows

xi((k+1)T ) = A′xi(kT )+B′ui(kT )

where we suppose that the sample time T is sufficiently small
such that A′ ≈ I2 +AT , B′ ≈ BT . Notation I2 represents the
identity.

Now we are ready to present the model of cooperation
of multiple UAVs. First, we define a full state as x =
[x1, . . . ,xn]

T and a full input vector as u= [u1, . . . ,un]
T , where

n is the number of UAVs. We denote a constant matrix
IN ∈ RN×N as a identity matrix of size N ×N. Then, the
discrete-time overall model for the flock of UAVs can be
represented as follows

x(k+1) =A′x(k)+B′u(k) (4)

where A′ = In ⊗ A′ and B′ = In ⊗ B′. The symbol “⊗”
represents the Kronecker product. We omit the sampling time
“T” here and in the sequel as long as it will not cause any
ambiguity. The design of the distributed formation controller
“u” will be given in the following section.

III. DISTRIBUTED FORMATION CONTROLLER DESIGN

We denote the set V = {1,2, . . . ,n} by the indices of UAV
1,2, . . . ,n. The neighbor set is represented by Ni = { j ∈ V :√
(X j−Xi)2 +(Yj−Yi)2 ≤ d}, where d is a positive scalar.

The definition of neighbor set indicates that two UAVs are



neighbors, if their inter distance is smaller than d. (shown in
Fig.3). The interaction topology of agents are usually repre-
sented by a graph [2][4][6]. Before designing the distributed
formation controller, we calculate the weighted Relative
Position and Velocity Vectors (RPVVs) in subsection A.

A. Weighted RPVVs
We denote a matrix 1M ∈ R1×M of size 1×M with all

the entries equivalent to 1. The UAV i (leader or follower)
makes a weighted measurement, which can be represented
by the following weighted RPVV

yi = ω l
ii(xi− r(t))+∑ j∈Ni

ω
f

i j(xi− x j) (5)

where “xi − x j” represents the RPVV of UAV i and j,
“xi− r(t)” represents the RPVV of UAV i and the reference
trajectory r(t). We assume that the reference signal r(t)
r(t) = [rX (t), ṙX (t)]T given to the leader (or leaders) is slowly
changing such that we have r̈X ≈ 0 and r̈Y ≈ 0. Scalars ω

f
i j

and ω l
ii are some weights. The weights ω l

ii = 1 (or ω l
ii = 0), if

UAV i∈V is a leader (or follower). The weights ω
f

i j embody
which neighbor j ∈ Ni is more “believable” for UAV i. For
example, among the neighbors of UAV i, there are a leader
and several followers, thus, the leader is more believable and
the leader’s weight within ω

f
i j is greater.

For UAV i ∈ V , the PrC is a scalar represented by pi(k).
The calculation of pi(k) is given by algorithm 1. According
to algorithm 1, a UAV, which has a smaller PrC, is closer
to the leader. The leader’s PrC is 1. The weights ω

f
i j, j ∈Ni

are calculated according to the PrCs (p j(k), j ∈ Ni) of the
neighbors of UAV i. The detailed calculation of the weights
and the weighted RPVV can be found in algorithm 2, and
detailed for an example below.

Algorithm 1 Update PrC pi for UAV i
Input:

PrCs of neighbors: p j(k), j ∈Ni.
Output:

Updated PrC of UAV i: pi(k+1).
1: for j = 1; j <= n; j++ do
2: if UAV j is a neighbor of i then
3: per[ j] = p j(k)
4: else
5: per[ j] = n //Store p j(k), j ∈Ni into vector per[n]
6: end if
7: end for
8: if UAV i is a leader then
9: pi(k+1) = 1

10: else
11: pi(k+1) = σn{min j∈Ni{p j(k)}+1}
12: end if
13: return pi(k+1) //UAV i transmits pi(k+1) to others within

its neighborhood.

As shown in Fig.1, the formation control algorithm runs
in every UAV instead of running in a central UAV or ground
station, such that the formation control strategy is distributed.
Additionally, in this work, each UAV takes its own decision
depending only on neighboring UAVs’ behavior instead of
all the other UAVs. We give the flow chart of the program
on a UAV in Fig.2.

Algorithm 2 Calculate weighted RPVVs for UAV i
Input:

Positions (X j,Y j), velocities (Ẋ j,Ẏ j) and PrCs p j(k)
where j ∈Ni

Output:
Weighted RPVV yi // shown in equation (5)

1: for j = 1; j <= n; j++ do
2: if UAV j is a neighbor of i then

3: ω
f

i j(k) =
1

p j (k)

∑ j∈Ni
1

p j (k)

4: else
5: ω

f
i j(k) = 0

6: end if
7: end for
8: if UAV i is a leader then
9: ω l

ii(k) = 1
10: else
11: ω l

ii(k) = 0
12: end if
13: return yi = ∑ j∈Ni

ω
f

i j(xi− x j)+ω l
ii(xi− r(t))

Stop
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Finish
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r(t), when UAV i is a leader

Fig. 2. The program flow chart of a UAV in the flock.

Now we give an example to explain how to calculate the
weighted RPVVs by using algorithms 1 and 2.

Example 1: A multi-UAV system has four UAVs. There
are one leader UAV 1 and three followers UAV 2, UAV 3, and
UAV 4, which are shown in Fig.3.

In Fig.3.(a), the inter distance of leader UAV 1 and 2 is
smaller than d, therefore, UAV 1 is a neighbor of UAV 2.
Similarly, UAV 1 and UAV 3 are the neighbors of UAV 2.
UAV 3 has two neighbors UAV 2 and 4. UAV 4 has only one
neighbor UAV 3.

According to Fig.2.(a), all the PrCs are initialized by
pi(0) = 0, i = 1,2,3,4. According to algorithm 1, we have
p1(1) = 1, p2(1) = 4, p3(1) = 4, p4(1) = 4. After the second
sampling time, we have p1(2) = 1, p2(2) = 2, p3(2) = 4,
p4(2) = 4. Then, after the third sampling time, we have
p1(3) = 1, p2(3) = 2, p3(3) = 3, p4(3) = 4. The PrCs will
not change after the forth sampling time except that the
neighboring relationship changes or the leader changes. This
paper does not deal with a formation with switching topology
[14]. Nevertheless, the proposed strategy can be applied with
switching topology (such as change of leader and followers).
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Fig. 3. Examples of possible topologies. The leader is UAV 1, and the
followers are represented by UAV 2, UAV 3, and UAV 4. The limited
communicating distance is represented by d.

It will be the purpose of an other future contribution. We
concentrate here on the weighted topology.

We can write out the weighted RPVVs for UAVs by
algorithm 2: y1 = x2 + r, y2 = 3

4 x1 +
1
4 x3, y3 = 2

3 x2 +
1
3 x4,

and y4 = x3.
Similarly, according to algorithm 1, we can obtain the

PrCs will keep invariable after one sampling time, such that
p1(k) = 1, p2(k) = 4, p3(k) = 4, p4(k) = 4, k = 2,3, . . . .
Then, we can also rewrite out the weighted RPVVs as
follows: y1 = r, y2 = x3, y3 =

1
2 x2 +

1
2 x4, and y4 = x3.

B. Distance of security
Definition 1: The L-F consensus of system (4), is said to

be achieved if, for each UAV i, i ∈ V , there is a distributed
control law ui(k), such that the closed-loop system satisfies

lim
k→∞
‖xi(k)− r(k)−di0‖= 0, i = 1, . . . ,n (6)

for some initial condition xi(0), i = 1, . . . ,n.
The constant offset vector di0 represents the desired inter
distance of UAV i and the reference signal with respect to
X-axis. After the L-F consensus has been achieved, we obtain
that di0 = [Xi− rX ,0]T . Similarly, for j ∈ Ni, we also have
d j0 = [X j− rX ,0]T after L-F consensus have been achieved.
If we define d0i = [rX −Xi,0]T and di j = [Xi−X j,0]T , then,
we have

di j = di0 +d0 j = di0−d j0 (7)

where di j is called the distance of security of UAV i and its
neighbor UAV j.

We can imagine if we get rid of the term di0 in definition
1 (both on X-axis and Y -axis) for all the UAVs, the inter-
distance of UAVs will be equal to zero after the L-F consen-
sus have been achieved, which practically means collisions
of the UAVs.

According to definition 1, if we define an error vector as
follows

ei(k) = xi(k)− r(k)−di0 (8)

then, we can write the error dynamics for UAV i as follows

ei(k+1) = A′ei(k)+B′ui(k) (9)

Note that r̈X ≈ 0 and r̈Y ≈ 0, we have ṙ = Ar. Then, r(k+
1) = A′r(k).

For the overall system, the error dynamics is

e(k+1) =A′e(k)+B′u(k) (10)

where u(k) = [u1,u2, · · · ,un]
T . According to equation (8),

(10) and definition 1, we can include that the L-F consensus
will be achieved, if the overall error “e” converge to zero.

C. Distributed formation control

The distributed controller design is given in this subsection
to guaranty that the error “e” in equation (9) converges to
zero.

We propose a distributed control law ui(k) for UAV i
(either a leader or a follower) as follows

ui(k) =−K
(

yi(k)−∑
n
j=1 ω

f
i jdi j−ω l

iidi0

)
(11)

where K ∈ R1×2 is the gain matrix. If UAV i is a leader, then,
ω l

ii > 0. Otherwise, ω l
ii = 0. We can see that the proposed

controller only needs the relative positions and velocities
instead of the absolute positions and velocities.

Since ω
f

i j = 0, when j /∈Ni, we have the following result

∑ j∈Ni ω
f

i j(xi(k)− x j(k)) = ∑
n
j=1 ω

f
i j(xi(k)− x j(k)) (12)

If we replace yi(k) in (11) by (5) and using (12), (8) and (7),
we obtain that, for each instant “k”

ui =−K
(

ω l
ii(xi− r−di0)+∑

n
j=1 ω

f
i j(xi− x j−di j)

)
=−K

(
ω l

iiei +∑
n
j=1 ω

f
i j
(
xi− r− x j + r− (di0 +d0 j)

))
=−K

(
ω l

iiei +∑
n
j=1 ω

f
i j
(
xi− r−di0− (x j− r−d j0)

))
=−K

(
ω l

iiei +∑
n
j=1 ω

f
i j
(
ei− e j

))
=−K

(
(∑n

j=1 ω
f

i j +ω l
ii)ei−∑

n
j=1 ω

f
i je j

)
According to the foregoing equation, we can write out the
overall control input u as follows

u =−K ·




∑
n
j=1 ω

f
1 j +ω l

11 . . . −ω
f

1n
...

. . .
...

−ω
f

n1 . . . ∑
n
j=1 ω

f
n j +ω l

nn

⊗ I2

·e (13)

where K = In⊗K.
We denote the matrix before the Kronecker product sym-

bol in the foregoing equation by interaction matrix G, which
is composed of the weights ω

f
i j and ω l

ii. The matrix G
describes the weighted topology of the multi-UAV system.
We can rewrite equation (13) by

u(k) =−K · (G⊗ I2) · e(k) (14)

Note that we use the Kronecker product to adapt the
dimension of G and e.

Lemma 1: Matrix G is nonsingular, if (a) the flock of
UAVs has at least one leader; (b) each follower connects to
the leader (or leaders) directly or via other followers.

Proof: According to the weights updating equation on
line 3 of algorithm 2, we can conclude that ∑

n
j=1 ω

f
i j = 1,

i ∈ V .
According to the condition (a), the flock has at least one

leader. Without loss of generality, we suppose that the UAV
1 ∼ m are leaders and UAV m+1 ∼ n are followers.

For the followers m+1 ∼ n, we denote the first nonzero
members of each line is G(m + 1,αm+1), . . . , G(n,αn).
We suppose that αm+1 ≤ αm+2 ≤ ·· · ≤ αn. According to
condition (b), we conclude that αm+1 < m+1, . . . , αn < n.



Then, the matrix G can be represented as the following
general form

1+ω l
11 . . . −ω

f
1m −ω

f
1(m+1) . . . −ω

f
1n

...
. . .

...
...

. . .
...

−ω
f

m1 . . . 1+ω l
mm −ω

f
m(m+1) . . . −ω

f
mn

0 . . . −ω
f
(m+1)αm+1

. . . 1 . . . −ω
f
(m+1)n

...
. . .

...
...

. . .
...

0 . . . 0 . . . −ω
f

nαn . . . 1


We denote the four sub-blocks in the foregoing matrix by
Gul (upper-left), Gur (upper-right), Gll (lower-left) and Glr
(lower-right).

We prove this lemma by contradiction. Firstly, we suppose
that G is singular. Therefore, it has a zero eigenvalue
associated with the eigenvector v= [vT

u ,v
T
l ]

T , which satisfies(
Gul Gur
Gll Glr

)(
vu
vl

)
= 0

Without loss of generality, we denote the maximum absolute
value of the member of the nonzero eigenvector v by vmax,
where ‘vmax’ is the i-th member of v.
• If i ≤ m, then vmax in vu. We have (1 + ω l

ii)vmax =

∑
n
j=1, j 6=i ω

f
i jv j. Since ω l

ii > 0 (UAV i ≤ m are leaders
and ω l

ii = 1), we have |(1+ω l
ii)vmax|= (1+ω l

ii)|vmax|=
∑

n
j=1, j 6=i ω

f
i j|v j| and 1+ω l

ii ≤ ∑
n
j=1, j 6=i ω

f
i j
|v j |
|vmax| ≤ 1.

This inequality contradicts 1+ω l
ii > 1. Therefore, vmax

should not be contained in vu and the absolute value of
the members of vu should be smaller than vmax.

• If i > m, we have |vmax| = ∑
n
j=1, j 6=i ω

f
i j|v j| such that

|v j| = |vmax|, for all j ∈ Ni. Then, for example, if
i = m+ 1, there exists |v j| = |vmax|, j < m+ 1, which
implies that a ‘|vmax|’ exists in vu. That contradicts the
fact that “vmax should not be in vu”. Therefore, |vmax|
is not the (m+ 1)-th member of v. If we continue to
take the example that i = m + 2, . . . , i = n, we will
find that such an i exist unless there is G(i,αi) = 1
(i = m+1 . . .n−1) in the sub-block Glr. It means that
there are n− i + 1 UAVs isolated, which contradicts
condition (b).

Thus, if conditions (a) and (b) are satisfied, the eigenvector
that renders the matrix G singular does not exist. Then, the
matrix G is nonsingular.

In fact, according to lemma 1 and the Gershgorin circle
theorem [16], we can obtain that the eigenvalues of matrix
G satisfies 0 < λ (G)≤ 3.

We replace “u” in equation (10) by equation (14),
then we have e(k+1) = (A′−B′K· (G⊗ I2)) · e(k). By us-
ing the mixed-product property of Kronecker product, we
can rewrite the foregoing equation as follows e(k+1) =
(In⊗A′− (G⊗B′K)) ·e(k). According to matrices B′ and K,
we are able to find n elementary matrices S1, . . . ,Sn, which
render G⊗B′K as follows

(Πn
i=1Si)

(
G⊗B′K

)
(Πn

i=1Si)
T =

[
0 0

k1T G k2T G

]
We recall that “T ” is the sampling period. If we denote
S = Πn

i=1Si and set ẽ = Se, then, we have ẽ(k+1) =Acẽ(k),

where Ac satisfies

Ac =

[
In T In

−k1T G In− k2T G

]
We denote vector [ET

1 ,E
T
2 ]

T by a eigenvector of matrix Ac,
where E1,E2 ∈ Rn. Then, we have{

E1 +T E2 = λE1

−k1T GE1 +E2− k2T GE2 = λE2

where λ represents a eigenvalue of Ac. Thus, we simplify
the foregoing equation as follows

(−k1T 2− k2T λ + k2T )GE1 = (λ −1)2E1 (15)

Equation (15) means that E1 is a eigenvector of matrix G
with eigenvalue λi(G). In this notation, we have (−k1T 2−
k2T λ + k2T )λi(G) = (λ − 1)2. We rewrite this equation as
follows

λ
2 +(k2T λi(G)−2)λ +(k1T 2− k2T )λi(G)+1 = 0 (16)

According to the definition of L-F consensus of multiple
UAVs system (see definition 1), the origin of (10) should be
asymptotically stable such that the eigenvalues of matrix Ac
should satisfy |λ |< 1. Therefore, the eigenvalues of matrix
G should satisfy λi(G) 6= 0, i = {1,2, . . . ,n}.

IV. SIMULATION

To illustrate the performance of the proposed distributed
controller for L-F formation, we present here the results of
simulation.

Heudiasyc laboratory has developed a PC-based simulator-
experiment framework for controlling a quadrotor and also a
flock of quadrotors. The programs (written in C++) running
in the UAVs are the same, both in the simulator and in the
embedded processors of real UAVs. This framework permits
the simulation to reflect better the real-time experiment.

In this example of simulation, the number of UAV is n= 4,
the maximum distance of sensing is d = 3m, and the distance
of security is 1.5m.

We present two simulations in Fig.4 with the same initial
positions as follows: UAV 1, (0,0); UAV 2, (−1.49,−2.6);
UAV 3, (1.49,−2.6); and UAV 4, (0,−4). All the UAVs has
zero initial velocities. The tasks of these two simulations
are to track the same reference signals (shown in Fig.4). In
Fig.4.(a), the controller (17), which is proposed in [6], is
used for the purpose of comparison.{

ui(k) =−K
(

∑ j∈Ni
1
|Ni| (xi− x j−di j)

)
, if i is a follower

ui(k) =−K(xi− r(t)), if i is a leader
(17)

We note that in (17), each agent has no special weights and
they are undifferentiated. Since in controller (17), the RPVVs
are used but without different weights, we call it “unweighted
RPVVs” method. The motion of the leader only depends on
the reference signal, as defined in [4]. The corresponding
interaction matrix is represented by G1.

In Fig.4.(b), our proposed controller in (11) is used. This
controller is based on the weighted RPVVs. The weighted
RPVVs introduced in section IV embodies which neighbor
j ∈ Ni is more “believable” for UAV i. A neighbor is more
“believable”, if it is nearer to the leader. In our strategy, the



leader has interaction with the followers. Then, according to
example 1 and the structure of the interaction matrix, we
obtain the G2 as follows (in fact, the interaction matrix G2
keeps constant after several times of updating).

G1=


1 0 0 0

− 1
3 1 − 1

3 − 1
3

− 1
3 −

1
3 1 − 1

3

0 − 1
2 − 1

2 1

 G2=


2 − 1

2 − 1
2 0

− 6
11 1 − 3

11 − 2
11

− 6
11 − 3

11 1 − 2
11

0 − 1
2 − 1

2 1


According to equation (16), the controller gain for each

UAV is selected as k = [1.39,1.2], which ensures the spectral
radius of the matrix Ac smaller than 1. In this scenario, our
task is to make all the UAVs achieve consensus around a
destination point at (2,3) and keep some inter-distances to
avoid collisions. In Fig.4, we give the comparison between
the formation controllers with unweighted RPVVs and with
weighted RPVVs. In Fig.4.(a) the UAVs fail to maintain
the formation. The followers are outside of the leader’s
neighborhood a few seconds after the formation has begun.
In Fig.4.(b), with the same initial positions and velocities,
the followers always follow the leader. This simulation shows
that the our control strategy with weighted RPVVs can better
maintain the formation than unweighted RPVVs.
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Fig. 4. Formations of four UAVs (UAV 1 is the leader and UAV 2, 3, 4 are
followers). In (a), the unweighted RPVVs is used. The formation starts at
t = 2.4s. After a very short time, UAV 2,3,4 are outside of the neighborhood
of UAV 1. In (b), the weighted RPVVs is used. The UAVs keep connected
and the followers follow the leader.
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Fig. 5. Formation of 5 UAVs with 2 leaders and 3 followers. UAVs 1 and
2 are leaders. UAVs 3 ∼ 5 are followers. The inter-distances of each UAV
and its neighbors are 2m.

In Fig.5, a formation with 2 leaders and 3 followers is
shown. The task of the flock is to move from the initial
place to the point of destination. We note that in Fig.5.(a), the
UAVs arrive the desired point (−4,2) after about 5 seconds.
Fig.5.(b) shows that the UAVs keep some inter-distances to
avoid collision.

A L-F multi-UAV system with multiple leaders can im-
prove the robustness of the system, because if one leader
does not work, the other leaders can also guide the followers.
This problem will be presented in our future work.

V. CONCLUSION AND FUTURE WORK

In this paper, a distributed formation control with weighted
topology is proposed for the formation of L-F multi-UAV
system, which can be considered as a System of Systems.
The distributed control law of each UAV is built using
weighted relative position and velocity vectors to the neigh-
bors, which produces a weighted interaction matrix for the
formation. The stability analysis of the L-F formation control
has been proved. Simulations show the satisfactory perfor-
mance of such a strategy. The future work is to implement
our algorithm with a formation of real UAVs using their own
sensors (like camera).
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