
HAL Id: hal-01180453
https://hal.science/hal-01180453v1

Submitted on 27 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A k-shortest paths based algorithm for multimodal
time-dependent networks to compute alternative routes

Grégoire Scano, Marie-José Huguet, Sandra Ulrich Ngueveu

To cite this version:
Grégoire Scano, Marie-José Huguet, Sandra Ulrich Ngueveu. A k-shortest paths based algorithm
for multimodal time-dependent networks to compute alternative routes. LAAS-CNRS. 2015. �hal-
01180453�

https://hal.science/hal-01180453v1
https://hal.archives-ouvertes.fr

A k-shortest paths based algorithm for

multimodal time-dependent networks to compute

alternative routes

Grégoire Scano1,2,4, Marie-José Huguet1,2, Sandra Ulrich Ngueveu1,3

1 Université de Toulouse, LAAS-CNRS, F-31400 Toulouse, France
2 Université de Toulouse, INSA, LAAS, F-31062 Toulouse, France

3 Univ de Toulouse, INP, LAAS, F-31400 Toulouse, France
4 MobiGIS, F-31330 Grenade, France

Abstract. Usual computations of alternative routes and the measure
of their similarities and/or di�erences do not embrace the variability of
networks speci�cs and user preferences. Indeed, the de�nition and eval-
uation of the di�erence between paths is often embedded into algorithm
internals and thus does not take into account that similar or dissimilar
paths may vary depending on the user and/or the network. In this article,
a generic method to generate alternative routes on FIFO time-dependent
multimodal graphs with regular language constraints is presented. It re-
lies on the computation, in a �rst stage, of the k-shortest paths before
the enforcement of a distinction criteria based on word metrics and com-
parison procedures in a second stage. We �rst present a variant of a
k-shortest paths algorithm taking into account both the multimodality
and the time-dependency inherent to transportation networks. Then, we
propose several methods for evaluating the di�erences between routes.
Experiments are conducted in realistic cases of transportation networks
and associated results show the relative e�ciency and interest of the
approach.

Keywords: k-shortest paths, multimodal time-dependent networks, al-
ternative routes

1 Introduction

Users of transportation networks can be interested not only in the shortest path
between the origin and the destination of their journey but also in alternative
routes with respect to their personal preferences. In addition, if a relevant set of
solutions can be presented instead of a single solution, it underlines the quality
of the network, allowing to travel from place to place with di�erent means, and
thus can be used by transit authorities to monitor the consistency of the trans-
port o�er. However, handing out multiple routes supposes to be able to remove
many almost identical propositions so as not to overwhelm the user and conceal
or miss potentially relevant paths. It is important to select only relevant candi-
dates for the user to skim through, which means selecting the best yet dissimilar

2

paths according to the user's own priorities.
Existing methods to compute alternative paths, such as plateau and penalty,
have drawbacks because either they are based on a bidirectional search with op-
timal cost which is not e�cient for time dependent networks and/or they assert
the di�erence between two paths within the algorithm which implies an a priori
knowledge.
In this paper, we propose a generic approach for generating alternative routes in
time-dependent and multimodal transportation networks. We assume that the
de�nition of the di�erence between two paths can vary depending on the net-
work and/or the user. The proposed approach is decomposed in two stages. The
�rst one relies on the computation of the k-shortest paths whereas the second
one relies on �ltering based on word metrics and comparison procedures. The
combination of both produces alternative routes di�erent enough according to a
di�erence criterion and a threshold, while guaranteeing minimal costs.
The challenge is to compute alternatives while keeping the number of elements
limited though as dissimilar as requested. We assume that the shortest path has
to be presented because it carries the nominal cost as a reference for comparison
to other solutions. Computationally, algorithms should run in polynomial time
and with user tuning capabilities to compute alternatives.
To prove our point, we �rst de�ne the problem under study and notations used
throughout the article in section 2. Then, in section 3 we describe existing solu-
tions. After presenting the proposed method in section 4, we focus on the �rst
stage, computing the k-shortest paths in section 5 and then move, in section 6,
to the selection of alternatives among those paths using word metrics. Finally,
computational experiments validate the proof of concept in section 7.

2 De�nitions and Problem Statement

Considering a �nite set of vertices V , a �nite set of edges E and a �nite set of
modesM , a multimodal transportation network is modeled with an edge-labeled
graph G = (V,E,Σ) where each edge is denoted (i, j,m) with i ∈ V, j ∈ V and
m ∈ M . A path π̄ is a sequence of consecutive edges and π is the associated
sequence of nodes. A path π is simple (resp. elementary) i� it contains at most
once any arc (resp. vertex). The ith vertex (resp. edge) in π (resp. π̄) is denoted
by π[i] (resp. π̄[i]) and π(u, v) denotes the path from node u to node v. A cost
function fuvm is associated to each labeled edge (u, v,m) to represent the travel
time. These costs may be static or time-dependent. In the latter case, fuvm(t)
gives the travel time from u to v in mode m when leaving u at time t.

In a monomodal transportation networks, alternative routes are usually char-
acterized in terms of number of separate nodes (or arcs). But in the context of
multimodal transportation networks, two di�erent routes in terms of nodes (or
arcs) but using the same transportation mode for example, may be considered
as similar by a user and di�erent by another. As an illustration, let us consider
the transportation network depicted in �gure 1 which represents a simple multi-

3

modal graph with static cost containing six modes, pedestrian (p), subway (s1,
s2) and bus (b1, b2), and spread over three �geographic" zones, north (n) in red,
center (c) in green and south (s) in blue.

1

2

s2 - 3

3

w - 7

4
w - 6

b1 - 2

5
s2 - 1

s1 - 2

6
w - 2

s1 - 1

b2 - 3

7
b1 - 2

s2 - 2

b2 - 1

Fig. 1. Example graph

We consider three users A, B and C interested in alternative routes from node
x1 to node x7, each having personal preferences on alternative itineraries. User A
characterizes his itineraries with the sequence of transportation line used. In this
case, two routes using for example the same subways in the same order will be
considered similar even if the transfer stations are di�erent. User B only focuses
on the transportation mean utilized, regardless of the order or the speci�c line.
In his case, taking a bus then a metro is equivalent to taking a metro then a
bus, and the speci�c line of metro or bus used does not matter. Finally, user C
is only concerned with the regions or districts traversed during the journey. We
assume that all users are interested in paths with a level of di�erence of at least
1 with regards to their preferences. In this case, paths (1-2-4-7) and (1-2-4-5-7)
are considered di�erent by user A, but similar by users B and C. Likewise, paths
(1-4-7) and (1-3-6-7) are considered similar by user B, but di�erent by users A
and C.

In this context, we developed a generic method able to adapt easily to various
users' de�nitions of what constitute similar or di�erent paths. The goal was to
propose alternative paths to users in increasing order of cost, whilst ensuring
that each new path was di�erent enough, with regards to the user's own prefer-
ences, from the previous selected paths. The resulting methodology is detailed
in Section 4.

4

3 Related works

Given a weighted graph G = (V,E), an origin node o and a destination node d,
the Shortest Path Problem (SPP) from o to d is solved in polynomial time with
the well-known Dijkstra algorithm. In this algorithm, a label is associated
to each node, each label containing the current shortest path from the origin
to the corresponding node. Two main speed-up techniques were introduced to
improve the e�ciency of this algorithm, A* and bidirectional. In the A∗ goal
directed search, the Dijkstra algorithm is guided towards the destination using
an estimate cost between the current node and the destination d. Obtaining the
optimal solution at the end of such algorithm is guaranteed if the estimation
is a lower bound of the exact cost. In a bidirectional algorithm, two algorithms
start: one running from o to d (forward search) and the other one from d to o in
the reverse graph (backward search). When a connection is found between the
forward and the backward algorithms, a feasible solution is obtained. However,
this solution may not be optimal and the two algorithms keep running until
there is no better solution connecting the forward and the backward labels.

Some extensions of the SPP were proposed to deal with the time-dependency
of travel times. It has been shown [8] that the resolution of the SPP with such
a cost is polynomial i� the function is increasing every time an edge is added
to the current path. The graph is then said to have the FIFO property because
given any initial cost, a shortest path starting with a greater cost will have a
greater �nal cost than any other path starting with a lower cost from the same
departure node and arriving at the same �nal node. However, many e�cient
techniques based on bidirectional search cannot be easily extended in the time-
dependent case as the exact starting time is only given at the origin.

In transportation networks, the sequence of modes corresponding to a path
can be restricted to a language in order to match user constraints. The regular

language constrained shortest path problem can be solved in polynomial time [4]
using the DRegLC algorithm presented in [3] that is an extension of the Dijkstra
algorithm on the product graph of G and the automaton accepting L. Regarding
bidirectional search and assuming that the automaton is deterministic, bidirec-
tional methods despite correctness, may be exponentially complex if the reverse
automaton is non deterministic since crossing an edge from a given state may
result into several non dominated states.

To the best of our knowledge, three main methods were proposed to consider
alternative routes and rely on variants of the SPP.

The �rst method considers multiple objectives and aims to determine Pareto
solutions. Instead of having one cost to optimize, a vector of costs is used yielding
to a large number of candidate paths. This approach raises two issues related
to the formulation of the parameters and the use of the results. Firstly, the
objectives are obtained from the user and even if for certain objectives, such
as the number of transfers combined with the cost of the path, a dedicated
algorithm [1] could have better performances than Martins' [11] algorithm, this is
not the case for most combinations of objectives. Secondly, the solution returned
form a potentially large set which has to be processed in order to reduce the

5

number of solutions o�ered to the user. Therefore the selection process �ltering
candidates remains to be done, leaving the problem partly unsolved.
The plateau methods ([13],[2]) compute paths using a bidirectional search from
both the origin and the destination. Then, the shortest path trees form simple
paths at each node they intersect. An edge is in the plateau if the cost of both
its source and target on the forward and backward paths tree are equal. As
the number of plateaus can be rather important, they have to be �ltered by
selecting paths maximizing the number of edges in a plateau minus the number
of edges in a path. The main drawback of plateaus lies into the impossibility of
carrying e�ciently the backward search with optimal costs in multimodal and
time-dependent context as previously stated.
The penalty method ([2],[9]) consists in computing successive shortest paths,
changing the cost of the edges after each iteration to make the previous solution
paths less likely to be selected in further explorations. The key point of the
procedure is the costs update which has to ensure that potential good solutions
will not be dismissed. Various cost adaptation including penalty-factor, multiple-

increase and rejoin-penalty can be combined to limit the possibility of skipping a
good path lying next to a previously found route. For time-dependency network,
the adaptation of traveling cost implies the modi�cation of the whole timetable
to keep the FIFO property.

4 Proposed approach for computing alternative routes

The proposed approach comprises two independent stages. The �rst stage relies
on any algorithm that computes k single cost point to point elementary shortest
paths, followed, in a second stage, by a selection procedure based on any given
metric between paths.
Note that the value k given to the �rst algorithm is not the same as the k sup-
plied by the user for the whole method. For instance, 3 alternative routes could
be based upon either 3 or more paths. From now on, k will denote the number
of alternatives and k′ the argument of the k shortest paths algorithm.
The property of the paths returned by the �rst procedure is that the paths are
ordered with respect to their cost. When the kth elementary path is computed
we know that there are no other elementary path with a lower cost.
First, we select the shortest path, i.e. the nominal route. Then, until k paths have
been selected, we compute the di�erence from the current alternative routes to
all other paths and add the path with minimal cost and having a di�erence
higher than the threshold to the solution set.
Such a procedure gives alternative routes depending on the de�nition of the dif-
ference function supplied by the user and minimizing the cost of the paths. In
other words, the kth route is the route with minimal cost respecting the thresh-
old di�erence to the k − 1 paths.
Note that we could have used the di�erence measure inside the search but it
would have turned the problem into a resource constrained shortest path prob-
lem (pseudo-polynomial at best).

6

The advantages of this method is that both algorithms can be enhanced or
changed independently and then plugged back in without much e�orts. For in-
stance, speed up techniques using pre-computations to compute the shortest
paths could be used to signi�cantly improve the running time. Also, once the
shortest paths have been computed it is possible to change the comparison pro-
cedure to obtain di�erent results without recomputing the k paths.

In the two following sections, we present a new variant of k-shortest paths algo-
rithms in the context of multimodal and time-dependent network and a method
for selecting alternative routes based on usual distance metrics between words.

5 k-shortests paths for multimodal and time-dependent

network

5.1 Existing k-shortest path algorithms for monomodal graphs

The k-shortest paths problem consists in computing a given number of non de-
creasing cost paths between two nodes. Depending on the type of the required
paths, either unrestricted or simple, di�erent types of algorithms exist in the
literature.
Yen's algorithm [14] computes the k elementary shortest paths. It uses a short-
est path algorithm as a subroutine and successively calls it from di�erent origins
after discarding from the graph previously used edges. The complexity of the
algorithm is k|V |P (|V |, |E|) where P (|V |, |E|) is the complexity of the shortest
path algorithm being used. An extension given by Lawler [10] reduces the num-
ber of iterations by keeping some information from earlier computations.
Computing k paths containing cycles is easier than simple paths since there is
no need to track and prevent the appearance of loops within the paths. The
algorithm of Eppstein [5] runs with an excellent complexity of O(|E|+ |V |+ k).
It can be observed that to compute the kth path, only nodes in the kth− 1 path
have to be visited. The REA algorithm [6] uses this fact to compute paths with
cycles with a higher complexity of O(|E|+ k|V |log(|V |)), but the running time
in practice is better than that of Eppstein's. However, this idea can be applied
to make a lazy version of the former algorithm [7] by delaying the construction
of some parts of the intermediary graph. Such adaptation does not change the
worst case complexity.
Unfortunately, Eppstein's algorithm cannot be extended e�ciently to time-dependent
graphs since it uses as a �rst step the computation of a backward shortest path
tree.
Our goal is to compute k elementary shortest paths using algorithms which com-
pute paths, eliminating cycles during and after the search. The rationale is that
it might be faster to use algorithms with lower complexities and a little extra
work since the graphs considered are quite large.

7

5.2 Adaptation proposed to multimodal time-dependent graphs

In the following, the computation of the k-shortests paths is always done in the
context of a multimodal time-dependent network. Thus, we consider any regular
language and the non deterministic automaton that accepts it.
In the case of Yen's algorithm, the extension is straightforward using the DRegLC

algorithm as the subprocedure instead of the Dijkstra algorithm. For Epp-
stein's algorithm, the modi�cation is not possible since the algorithm requires
the computation of a backward shortest path tree at the beginning. Instead,
we adapted the REA algorithm that computes k shortest paths with cycle. For
this purpose, we propose in algorithm 1 a forward implementation in place of
the recursive calls in order to cut short cycles. Moreover, this procedure is di-
rectly adapted for edge-labeled graph G = (V,E,Σ) using the product graph
V × S where S is the number of states of the automaton accepting the regular
language and, with time-dependent cost function f on each arc respecting the
FIFO property.

Indeed, after testing REA, we found that the number of cycles using short
cycles (≤ 2) is very large, hiding non cycles solutions after the 10000th �rst
paths on non trivial instances. If continuing the algorithm once a certain number
of paths were found to compute more paths is not mandatory, the number of
elements kept for each node can be limited to k so as to narrow the search.

In addition, REA allows loops to happen on the origin or the destination
but looping through the destination makes no sense since we are interested in
the earliest arrival time, and going through the origin multiple times would
just shift the departure time. If multiple departure times are to be considered
for alternatives, one should launch the computation of the kth shortest paths
several times with a predetermined departure time shift not to miss potential
solutions.

6 Selection of minimum cost dissimilar paths

The goal of the selection process is to extract a partition of k paths among the
precomputed set of elementary paths. This partition contains elements which
are as dissimilar as required by the user preference but which have a minimal
cost.
The procedure to select the alternative routes is summarized in algorithm 2 and
consists in initializing the pool of selected paths with the minimum cost path
and then iteratively adding in the pool the minimum cost path that satis�es the
di�erence criterion, with a given threshold, in comparison to the other selected
paths of the pool.

8

Algorithm 1 kth shortest cost from s to t with loops longer than l on G using
cost f

Input: G = (V,E), s ∈ V , t ∈ V , k ∈ N∗, f : E × E → R+, l ∈ N
Output: (k∗, c∗) cost c∗ of the maximum k∗ shortest path found

1: H ← {(s, 0, 0)} . Candidates set
2: S ← V . Currently available nodes
3: P ← ∅ . Set of predecessors
4: r∗ = (0, 0) . Default return value
5: K[V]← 0 . Number of paths found on nodes
6: while H 6= ∅ ∧K[t] 6= k do
7: (u, c, n)← minH,u∈S(c) . Select best cost candidate which node is available
8: H ← H \ (u, c, n)
9: S ← S \ {u} . Make the node unavailable for the moment
10: K[v]← K[v] + 1
11: if u 6= t then
12: for v ∈ {w ∈ V \ {s} | (u,w) ∈ G} do
13: if v 6∈ P l(u, n) then . Successor is not in the lth predecessors of u
14: H ← H ∪ (v, c+ f(u, v),K[v])
15: P (v,K[v])← (u, n)
16: end if

17: end for

18: else

19: r∗ ← (c, n) . Set new current solution
20: (w, n′)← (t, n)
21: while w 6= s do . Backtrace the path to node s
22: S ← S ∪ {w} . Make the nodes on the path available
23: (w, n′)← P (w, n′)
24: end while

25: end if

26: end while

27: return r∗

Algorithm 2 Alternative routes selection among candidate paths

Input: k the number of alternatives, P the set of candidate paths, c the function
associating a path to a cost, d the di�erence function, t the threshold
Output: A the alternative routes

1: P ′ ← P . Initialize the set of candidates
2: repeat
3: A← A ∪ {argmin

p∈P ′
c(p)} . Select the best candidate

4: P ′ = {p ∈ P −A | ∀s ∈ A, t ≤ d(p, s)} . Update candidates di�erent enough
from previously selected elements

5: until |A| = k ∨ P ′ = ∅ . k paths were found or no more paths are candidates
6: return A

9

To satisfy the requirement of genericity and adaptability to the user prefer-
ences, the di�erence functions were chosen based on the assignment of words to
paths, and then the evaluation of the di�erence between paths as the di�erence
between their respective words. Two word metrics were applied: the edit distance
and the occurence of patterns.

Table 1 summarizes all existing paths from x1 to x7 on the graph of �gure 1,
ranked in increasing cost order. For each path, are speci�ed the sequence of nodes
visited, the cost, the transportation modes used (which form a basic word), the
location of edges used (which form a basic word) and �nally the result of the
word assignment functions of the three users (A, B, C) that were identi�ed in
Section 2. For example, for path p1 = (1− 2− 5− 7), which is the shortest path,
user A will assign the word s2, corresponding to the only transportation mode
used by this path. For user B, who focuses on the transportation mean and not
the speci�c lines, the word assignment function produces letter s if at least one
subway is used, p for pedestrian and b for bus. Since the order of usage does not
matter, the letters of each word are reordered in lexicographical order to facilitate
future comparisons. As a result, the word bs is assigned to path π2 even though
the subway was used before the bus. For user C, only the geographical location
of the used edges matter, as a consequence path π2 is assigned the word nc,
resulting from the concatenation of nnc which re�ects the geographic location
of each arc used, and path π3 is assigned only n, even though the path uses four
di�erent transportation modes.

Table 1. Set of paths

path nodes cost modes location A B C

π1 1-2-5-7 6 s2s2s2 nnn s2 s n

π2 1-2-4-7 7 s2b1b1 nnc s2b1 bs nc

π3 1-2-4-5-7 8 s2b1s1s2 nnnn s2b1s1s2 bs n

π4 1-4-7 8 pb1 cc pb1 bp c

π5 1-2-4-6-7 9 s2b1b2b2 nnss s2b1b2 bs ns

π6 1-3-6-7 10 ppb2 sss pb2 bp s

π7 1-3-4-7 11 ps1b1 ssc ps1b1 bps sc

π8 1-3-4-5-7 12 ps1s1s2 ssnn ps1s2 ps sn

π9 1-3-4-6-7 13 ps1b2b2 ssss ps1b2 bps s

6.1 Patterns

The evaluation of word metrics using patterns recognition is based on the iden-
ti�cation of the number of occurences of certain tuples in the words considered.
For instance, considering pairs, each path is associated with all the pairs of
consecutive edges it uses. In this case, the word path for example will be charac-
terized by the pairs pa, at, and th. When comparing two words, the number of
pairs in common are counted and divided by the total number of pairs in both

10

words. The lower the results, the more dissimilar the words are. Note that this
metric is normalized and can only vary between 0 and 1. The complexity of the
procedure is O(N logN) where N is the total length of both words.

To apply this metric taking into account the user's preferences, paths are
compared by evaluating the pattern ratio of their respective user words. The
user can enforce the level of dissimilarity he wants by setting the threshold value
τp ∈]0, 1], in which case two paths will be considered dissimilar i� the pattern
ratio is less or equal to τp. Note that in the case of pattern recognition based on
n-tuples, it is not possible to evaluate words of less than n letters. Consequently,
for the pattern recognition based on pairs, it is not possible to evaluate and
compare single digit words because the ratio leads to 0

0 , which is undetermined.
To counter that, we modify each word by adding a dummy letter (here ε) at the
beginning and at the end of each user word. For example, user A assigns the
word εs2ε to path π1 and word εs2b1b2ε to path π5. As a consequence, the pair
pattern ratio between the two words (and thus between the two corresponding
paths) is 2

6 = 1
3 . Similarly, for user C, the pair pattern ratio between paths π2

and π5 is 2
6 = 1

3 while the pair pattern ratio between paths π5 and π8 is 0
6 .

Table 2 summarizes the resulting ordered set of alternative paths obtained on
the graph 1 using patterns recognition for each of the users introduced in Section
2 and in function of τp. Let us focus on user C and threshold value τ = 1

3 for

Table 2. Alternative paths using patterns recognition

Threshold τp A B C

1 all all all

1/2 (π1, π2, π4, π6, π7, π8) (π1, π2, π4) (π1, π2, π4, π5, π6, π7, π8)

1/3 (π1, π4, π5, π6, π7) (π1, π4) (π1, π4, π6)

0 (π1, π4) (π1, π4) (π1, π4, π6)

example. The set is initialized with the shortest path π1. Path π2 is disregarded
because its pair pattern ratio with path π1 is 0.4, higher than the threshold.
Path π3 is disregarded because it is equivalent to π1. Path π4 is selected because
the pair pattern ratio with π1 is 0, lower or equal to τp. At this stage, the set of
selected paths is {π1, π4}. Path π5 is disregarded because its pair pattern ratio
with path π1 is 0.4, higher than τp. Path π6 is selected because its pair pattern
ratio with π1 is 0 and its pair pattern ratio with π4 is 0, both values lower or
equal to τp. At this stage, the set of selected paths is {π1, π4, π6}. Path π7 is
disregarded because its pair pattern ratio with path π6 is 0.4, higher than τp.
Path π8 is disregarded because its pair pattern ratio with path π6 is 0.4, higher
than τp. Finally, π9 is disregarded because it is equivalent to π6. Therefore, the
set of alternative paths to produce for user C when he sets a threshold value
τp = 1

3 is, in increasing cost order, {π1, π4, π6}.

11

6.2 Edit distance

The edit distance is a widely spread method and computationally very e�cient
to measure the similarity of words. It consists in computing the number of atomic
operations necessary to transform one word into another. A user might vary the
level of dissimilarity enforced by setting the threshold value τe ∈ N, in which
case two paths will be considered dissimilar i� the edit distance between their
corresponding words exceeds or equals τe.

Table 3 summarizes the resulting ordered set of alternative paths obtained
on the graph 1 using edit distance for each of the users (A, B, C) introduced in
Section 2 and in function of τe.

Table 3. Alternative paths using edit distance

Threshold τe A B C

0 all all all

1 all (π1, π2, π4, π7, π8) (π1, π2, π4, π5, π6, π7, π8)

2 (π1, π3, π4, π5, π6, π8) (π1, π4) (π1, π4, π6)

3 (π1, π3, π4, π9) (π1, π4) (π1, π7)

Let us focus on user C and threshold value τ = 2 for example. The set is
initialized with the shortest path π1. Path π2 is disregarded because its edit
distance with π1 is one, less than τe. Path π3 is disregarded because it is similar
to π1. Path π4 is selected because the edit distance to π1 is two, greater or equal
to τe. At this stage, the set of selected paths is {π1, π4}. Path π5 is disregarded
because its edit distance to π1 is one, less than τ . Path π6 is selected because
its edit distance to π1 is two and its edit distance to π4 is two, both values
greater or equal to τe. At this stage, the set of selected paths is {π1, π4, π6}.
Path π7 is disregarded because its edit distance to π6 is one, less than τ . Path
π8 is disregarded because its edit distance to π6 is only one. Finally, path π9 is
disregarded because it is similar to π6. Therefore, the set of alternative paths to
produce for user C if when he sets a threshold value τe = 2 is, in increasing cost
order, {π1, π4, π6}..

Many algorithms exists to compute the edit distance, we use Myers' algorithm
[12] with the memory re�nement. The algorithm performs in O(ND) using O(N)
memory where N is the sum of the lengths and D the edit distance between the
two words.

7 Computational evaluation

7.1 Instances, Programming and Parameter Settings

The tests were carried out on an Intel(R) Core(TM) i5-3337U CPU @ 1.7GHz
with 6144 KB cache and 3GB main memories and running Linux 3.2.0.4-amd64.

12

All algorithms were implemented in C++ and compiled with gcc with optimiza-
tion level 2.

Regarding the instances, we used as transportation network a multimodal
graph modeling the city of Toulouse (France). All transportation data used
are freely available data : the road network corresponds to the OpenStreetMap
datasets and was provided by GeoFabrik and our public transportation network
is based on The General Transit Feed Speci�cation format. Once converted into
an edge-labeled multimodal graph, it contains 75837 nodes, 484426 road edges
and 43318 public transport edges. All combinations of transportation modes
are authorized, including pedestrian. A generic automaton that allows bus and
subway is used and the departure time is set to 9:AM.

7.2 Evaluation of the proposed k-shortest path algorithm for

multimodal and time-dependent graph

In the �rst part of experiments, we aim to evaluate the e�ciency of the pro-
posed k-shortest path algorithm on multimodal and time-dependent networks.
We consider a realistic multimodal and time-dependent graph from Toulouse
(France), and computations were performed with the value of k′ ranging from
100 to 400 with a step of 100. For each value of k′, the average computing times
were evaluated on 1000 randomly generated pairs origin-destination. The same
random generator seed is used to keep the sequence of points unchanged from
one instance to another. The results are given in table 4 in which column k′

reports the number of paths generated, column k reports the number of elemen-
tary paths that were found among the k′ paths and column time gives the CPU
time in milliseconds.

Table 4. Experimental results for the proposed algorithm

k′ 100 200 300 400

cycles cut time (ms) k time (ms) k time (ms) k time (ms) k

0 � 100 13 � 100 20 � 100 28 � 100 34

1 113 95 134 186 170 276 318 365

2 116 97 140 190 175 283 310 374

3 116 98 141 195 177 291 297 386

4 116 99 147 196 189 293 357 389

5 130 99 173 197 243 295 483 393

We observe that the proposed algorithm is e�cient. If the CPU time grows
with the length of eliminated cycles, it is however still less than 500 ms in our
more complex experiments (k′ = 400, and length cycle equals to 5).

7.3 Alternative routes

In the second part of experiments, we evaluate the selection of alternative routes.
We consider that a set of k = 491 shortest paths was previously obtained (with

13

k′ = 500 and length cycle reduction equals to 5). We used 4 models to associate
paths with words so as to enumerate the alternatives a user may de�ne.

a Maps an arc to its type as a letter
b Associates each mode to a letter and writes a letter only once every time a
mode is used no matter how long the transportation system is used

c Same as b but writes the transportation lines instead of the modes

For each model, Table 5 summarizes the average number of alternatives given
a threshold varying between 1 to 5 for the edit distance.

Table 5. Experimental results for alternative routes based on the edit distance

threshold a b c

0 490.86 490.86 490.86

1 5.56 1.017 490.86

2 3.01 1.014 433.52

3 2.20 1.010 414.04

4 1.79 1.009 330.45

5 1.57 1.001 324.29

With a threshold of 0, i.e. no �ltering, the maximum executing time peaked at
137 ms so execution times for higher thresholds are lower. In addition, for a same
threshold of 0, all users have the same number of paths 490 since no �ltering
is applied. Then, when the threshold increases, we can observe an important
deviations between users. User a seems to be the ideal case where a good number
of solutions (5.56) are found for a single di�erence and then slowly decreases as
the constraint increases. However, user b cannot make any di�erences between
paths. And user c cannot make a �ne statement about which path to pick because
it has too much information about the paths.
For patterns based selection, models a and c perform poorly. On the contrary,
user b has a relevant set computed in less than 500 ms in average (the CPU time
using patterns recognition is higher than the CPU time with edit distance). For
a threshold of 2, it has 1.85 and 2.28 paths in average for a pattern length of 2
and 3 respectively. Then, for a di�erence of 3 or higher it has 1.57 and 1.85. So
the longer the pattern is, the more paths are selected.

8 Conclusion

In this paper we proposed an approach based on the computation of a large
number of paths to select a few of them as alternatives.
To compute the paths, we adapted one of the best k-shortest paths algorithm
to eliminate cycles of a speci�c length with a good average running time and
generating an acceptable number of paths without cycles.
The de�nition of the di�erence between two paths, though supposed to be an

14

operation on some strings, is quite general and may suit speci�c needs. Exper-
iments revealed that the transformation of a path into a word as well as the
algorithm used to measure the di�erence between words have a great impact on
the results, not to mention particularities of the network and associated automa-
ton.
Thus, even if the results are encouraging, any application in a real word environ-
ment supposes the ability for the user to specify his criterion and the measure
between words he wants to use, which is for the moment to be conceived.

9 Acknowledgments

This work was motivated and supported by the MobiGIS company. We would
especially like to thank Sylvain Gaudan and Christophe Lapierre for their help
and comments.

References

1. Christian Artigues, Marie-José Huguet, Fallou Gueye, Frédéric Schettini, and Lau-
rent Dezou. State-based accelerations and bidirectional search for bi-objective mul-
timodal shortest paths. Transportation Research Part C: Emerging Technologies,
27:233�259, 2013.

2. Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. Alterna-
tive route graphs in road networks. In Alberto Marchetti-Spaccamela and Michael
Segal, editors, Theory and Practice of Algorithms in (Computer) Systems, volume
6595 of Lecture Notes in Computer Science, pages 21�32. Springer Berlin Heidel-
berg, 2011.

3. Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, Madhav Marathe,
and Dorothea Wagner. Engineering Label-Constrained Shortest-Path Algorithms,
volume 5034 of AAIM '08, chapter 5, pages 27�37. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

4. Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained
path problems. SIAM J. Comput., 30(3):809�837, May 2000.

5. David Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652�673,
February 1999.

6. Víctor M. Jiménez and Andrés Marzal. Computing the k shortest paths: A new
algorithm and an experimental comparison. In Proceedings of the 3rd International
Workshop on Algorithm Engineering, WAE '99, pages 15�29, London, UK, UK,
1999. Springer-Verlag.

7. Víctor M. Jiménez and Andrés Marzal. A lazy version of eppstein's k shortest
paths algorithm. In In: WEA, pages 179�190. Springer, 2003.

8. David E. Kaufman and Robert L. Smith. Fastest paths in Time-Dependent net-
works for intelligent Vehicle-Highway systems application. Journal of Intelligent
Transportation Systems, 1(1):1�11, 1993.

9. Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker. Evolution and
evaluation of the penalty method for alternative routes. In In ATMOS, 2013.

10. Eugene L. Lawler. A procedure for computing the k best solutions to discrete opti-
mization problems and its application to the shortest path problem. Management
Science, 18(7):401�405, 1972.

15

11. E. Martins. On a multicriteria shortest path problem. European Journal of Oper-
ational Research, 16(2):236�245, 1984.

12. Eugene W. Myers. An o(nd) di�erence algorithm and its variations. Algorithmica,
1:251�266, 1986.

13. Andreas Paraskevopoulos and Christos Zaroliagis. Improved Alternative Route
Planning. In Daniele Frigioni and Sebastian Stiller, editors, 13th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems,
volume 33 of OpenAccess Series in Informatics (OASIcs), pages 108�122, Dagstuhl,
Germany, 2013. Schloss Dagstuhl�Leibniz-Zentrum fuer Informatik.

14. Jin Y. Yen. Finding the k shortest loopless paths in a network. Management
Science, 17(11):712�716, July 1971.

