Grégoire Scano

Marie-José Huguet

Sandra Ulrich Ngueveu

A k-shortest paths based algorithm for multimodal time-dependent networks to compute alternative routes

Keywords: k-shortest paths, multimodal time-dependent networks, alternative routes

come

L'archive ouverte

Introduction

Users of transportation networks can be interested not only in the shortest path between the origin and the destination of their journey but also in alternative routes with respect to their personal preferences. In addition, if a relevant set of solutions can be presented instead of a single solution, it underlines the quality of the network, allowing to travel from place to place with dierent means, and thus can be used by transit authorities to monitor the consistency of the transport oer. However, handing out multiple routes supposes to be able to remove many almost identical propositions so as not to overwhelm the user and conceal or miss potentially relevant paths. It is important to select only relevant candidates for the user to skim through, which means selecting the best yet dissimilar paths according to the user's own priorities.

Existing methods to compute alternative paths, such as plateau and penalty, have drawbacks because either they are based on a bidirectional search with optimal cost which is not ecient for time dependent networks and/or they assert the dierence between two paths within the algorithm which implies an a priori knowledge.

In this paper, we propose a generic approach for generating alternative routes in time-dependent and multimodal transportation networks. We assume that the denition of the dierence between two paths can vary depending on the network and/or the user. The proposed approach is decomposed in two stages. The rst one relies on the computation of the k-shortest paths whereas the second one relies on ltering based on word metrics and comparison procedures. The combination of both produces alternative routes dierent enough according to a dierence criterion and a threshold, while guaranteeing minimal costs.

The challenge is to compute alternatives while keeping the number of elements limited though as dissimilar as requested. We assume that the shortest path has to be presented because it carries the nominal cost as a reference for comparison to other solutions. Computationally, algorithms should run in polynomial time and with user tuning capabilities to compute alternatives.

To prove our point, we rst dene the problem under study and notations used throughout the article in section 2. Then, in section 3 we describe existing solutions. After presenting the proposed method in section 4, we focus on the rst stage, computing the k-shortest paths in section 5 and then move, in section 6, to the selection of alternatives among those paths using word metrics. Finally, computational experiments validate the proof of concept in section 7.

Denitions and Problem Statement

Considering a nite set of vertices V , a nite set of edges E and a nite set of modes M , a multimodal transportation network is modeled with an edge-labeled graph G = (V, E, Σ) where each edge is denoted (i, j, m) with i ∈ V, j ∈ V and m ∈ M . A path π is a sequence of consecutive edges and π is the associated sequence of nodes. A path π is simple (resp. elementary) i it contains at most once any arc (resp. vertex). The i th vertex (resp. edge) in π (resp. π) is denoted by π[i] (resp. π[i]) and π(u, v) denotes the path from node u to node v. A cost function f uvm is associated to each labeled edge (u, v, m) to represent the travel time. These costs may be static or time-dependent. In the latter case, f uvm (t) gives the travel time from u to v in mode m when leaving u at time t.

In a monomodal transportation networks, alternative routes are usually characterized in terms of number of separate nodes (or arcs). But in the context of multimodal transportation networks, two dierent routes in terms of nodes (or arcs) but using the same transportation mode for example, may be considered as similar by a user and dierent by another. As an illustration, let us consider the transportation network depicted in gure 1 which represents a simple multi-modal graph with static cost containing six modes, pedestrian (p), subway (s 1 , s 2) and bus (b 1 , b 2), and spread over three geographic" zones, north (n) in red, center (c) in green and south (s) in blue. x 1 to node x 7 , each having personal preferences on alternative itineraries. User A characterizes his itineraries with the sequence of transportation line used. In this case, two routes using for example the same subways in the same order will be considered similar even if the transfer stations are dierent. User B only focuses on the transportation mean utilized, regardless of the order or the specic line.

In his case, taking a bus then a metro is equivalent to taking a metro then a bus, and the specic line of metro or bus used does not matter. Finally, user C is only concerned with the regions or districts traversed during the journey. We assume that all users are interested in paths with a level of dierence of at least In this context, we developed a generic method able to adapt easily to various users' denitions of what constitute similar or dierent paths. The goal was to propose alternative paths to users in increasing order of cost, whilst ensuring that each new path was dierent enough, with regards to the user's own preferences, from the previous selected paths. The resulting methodology is detailed in Section 4.

Related works

Given a weighted graph G = (V, E), an origin node o and a destination node d, the Shortest Path Problem (SPP) from o to d is solved in polynomial time with the well-known Dijkstra algorithm. In this algorithm, a label is associated to each node, each label containing the current shortest path from the origin to the corresponding node. Two main speed-up techniques were introduced to improve the eciency of this algorithm, A* and bidirectional. In the A * goal directed search, the Dijkstra algorithm is guided towards the destination using an estimate cost between the current node and the destination d. Obtaining the optimal solution at the end of such algorithm is guaranteed if the estimation is a lower bound of the exact cost. In a bidirectional algorithm, two algorithms start: one running from o to d (forward search) and the other one from d to o in the reverse graph (backward search). When a connection is found between the forward and the backward algorithms, a feasible solution is obtained. However, this solution may not be optimal and the two algorithms keep running until there is no better solution connecting the forward and the backward labels. Some extensions of the SPP were proposed to deal with the time-dependency of travel times. It has been shown [START_REF] Kaufman | Fastest paths in Time-Dependent networks for intelligent Vehicle-Highway systems application[END_REF] that the resolution of the SPP with such a cost is polynomial i the function is increasing every time an edge is added to the current path. The graph is then said to have the FIFO property because given any initial cost, a shortest path starting with a greater cost will have a greater nal cost than any other path starting with a lower cost from the same departure node and arriving at the same nal node. However, many ecient techniques based on bidirectional search cannot be easily extended in the timedependent case as the exact starting time is only given at the origin.

In transportation networks, the sequence of modes corresponding to a path can be restricted to a language in order to match user constraints. The regular language constrained shortest path problem can be solved in polynomial time [START_REF] Barrett | Formal-language-constrained path problems[END_REF] using the D RegLC algorithm presented in [START_REF] Barrett | Engineering Label-Constrained Shortest-Path Algorithms[END_REF] that is an extension of the Dijkstra algorithm on the product graph of G and the automaton accepting L. Regarding bidirectional search and assuming that the automaton is deterministic, bidirectional methods despite correctness, may be exponentially complex if the reverse automaton is non deterministic since crossing an edge from a given state may result into several non dominated states.

To the best of our knowledge, three main methods were proposed to consider alternative routes and rely on variants of the SPP.

The rst method considers multiple objectives and aims to determine Pareto solutions. Instead of having one cost to optimize, a vector of costs is used yielding to a large number of candidate paths. This approach raises two issues related to the formulation of the parameters and the use of the results. Firstly, the objectives are obtained from the user and even if for certain objectives, such as the number of transfers combined with the cost of the path, a dedicated algorithm [START_REF] Artigues | State-based accelerations and bidirectional search for bi-objective multimodal shortest paths[END_REF] could have better performances than Martins' [START_REF] Martins | On a multicriteria shortest path problem[END_REF] algorithm, this is not the case for most combinations of objectives. Secondly, the solution returned form a potentially large set which has to be processed in order to reduce the number of solutions oered to the user. Therefore the selection process ltering candidates remains to be done, leaving the problem partly unsolved.

The plateau methods ([START_REF] Paraskevopoulos | Improved Alternative Route Planning[END_REF], [START_REF] Bader | Alternative route graphs in road networks[END_REF]) compute paths using a bidirectional search from both the origin and the destination. Then, the shortest path trees form simple paths at each node they intersect. An edge is in the plateau if the cost of both its source and target on the forward and backward paths tree are equal. As the number of plateaus can be rather important, they have to be ltered by selecting paths maximizing the number of edges in a plateau minus the number of edges in a path. The main drawback of plateaus lies into the impossibility of carrying eciently the backward search with optimal costs in multimodal and time-dependent context as previously stated.

The penalty method ([2], [START_REF] Kobitzsch | Evolution and evaluation of the penalty method for alternative routes[END_REF]) consists in computing successive shortest paths, changing the cost of the edges after each iteration to make the previous solution paths less likely to be selected in further explorations. The key point of the procedure is the costs update which has to ensure that potential good solutions will not be dismissed. Various cost adaptation including penalty-factor, multipleincrease and rejoin-penalty can be combined to limit the possibility of skipping a good path lying next to a previously found route. For time-dependency network, the adaptation of traveling cost implies the modication of the whole timetable to keep the FIFO property. [START_REF] Barrett | Formal-language-constrained path problems[END_REF] Proposed approach for computing alternative routes

The proposed approach comprises two independent stages. The rst stage relies on any algorithm that computes k single cost point to point elementary shortest paths, followed, in a second stage, by a selection procedure based on any given metric between paths.

Note that the value k given to the rst algorithm is not the same as the k supplied by the user for the whole method. For instance, 3 alternative routes could be based upon either 3 or more paths. From now on, k will denote the number of alternatives and k the argument of the k shortest paths algorithm.

The property of the paths returned by the rst procedure is that the paths are ordered with respect to their cost. When the k th elementary path is computed we know that there are no other elementary path with a lower cost.

First, we select the shortest path, i.e. the nominal route. Then, until k paths have been selected, we compute the dierence from the current alternative routes to all other paths and add the path with minimal cost and having a dierence higher than the threshold to the solution set. Such a procedure gives alternative routes depending on the denition of the difference function supplied by the user and minimizing the cost of the paths. In other words, the k th route is the route with minimal cost respecting the threshold dierence to the k -1 paths.

Note that we could have used the dierence measure inside the search but it would have turned the problem into a resource constrained shortest path problem (pseudo-polynomial at best).

The advantages of this method is that both algorithms can be enhanced or changed independently and then plugged back in without much eorts. For instance, speed up techniques using pre-computations to compute the shortest paths could be used to signicantly improve the running time. Also, once the shortest paths have been computed it is possible to change the comparison procedure to obtain dierent results without recomputing the k paths.

In the two following sections, we present a new variant of k-shortest paths algorithms in the context of multimodal and time-dependent network and a method for selecting alternative routes based on usual distance metrics between words. Computing k paths containing cycles is easier than simple paths since there is no need to track and prevent the appearance of loops within the paths. The algorithm of Eppstein [START_REF] Eppstein | Finding the k shortest paths[END_REF] runs with an excellent complexity of O(|E|

+ |V | + k).
It can be observed that to compute the k th path, only nodes in the k th -1 path have to be visited. The REA algorithm [START_REF] Víctor | Computing the k shortest paths: A new algorithm and an experimental comparison[END_REF] uses this fact to compute paths with cycles with a higher complexity of O(|E| + k|V |log(|V |)), but the running time in practice is better than that of Eppstein's. However, this idea can be applied to make a lazy version of the former algorithm [START_REF] Víctor | A lazy version of eppstein's k shortest paths algorithm[END_REF] by delaying the construction of some parts of the intermediary graph. Such adaptation does not change the worst case complexity.

Unfortunately, Eppstein's algorithm cannot be extended eciently to time-dependent graphs since it uses as a rst step the computation of a backward shortest path tree.

Our goal is to compute k elementary shortest paths using algorithms which compute paths, eliminating cycles during and after the search. The rationale is that it might be faster to use algorithms with lower complexities and a little extra work since the graphs considered are quite large.

Adaptation proposed to multimodal time-dependent graphs

In the following, the computation of the k-shortests paths is always done in the context of a multimodal time-dependent network. Thus, we consider any regular language and the non deterministic automaton that accepts it.

In the case of Yen's algorithm, the extension is straightforward using the D RegLC algorithm as the subprocedure instead of the Dijkstra algorithm. For Eppstein's algorithm, the modication is not possible since the algorithm requires the computation of a backward shortest path tree at the beginning. Instead, we adapted the REA algorithm that computes k shortest paths with cycle. For this purpose, we propose in algorithm 1 a forward implementation in place of the recursive calls in order to cut short cycles. Moreover, this procedure is directly adapted for edge-labeled graph G = (V, E, Σ) using the product graph V × S where S is the number of states of the automaton accepting the regular language and, with time-dependent cost function f on each arc respecting the FIFO property.

Indeed, after testing REA, we found that the number of cycles using short cycles (≤ 2) is very large, hiding non cycles solutions after the 10000 th rst paths on non trivial instances. If continuing the algorithm once a certain number of paths were found to compute more paths is not mandatory, the number of elements kept for each node can be limited to k so as to narrow the search.

In addition, REA allows loops to happen on the origin or the destination but looping through the destination makes no sense since we are interested in the earliest arrival time, and going through the origin multiple times would just shift the departure time. If multiple departure times are to be considered for alternatives, one should launch the computation of the k th shortest paths several times with a predetermined departure time shift not to miss potential solutions.

Selection of minimum cost dissimilar paths

The goal of the selection process is to extract a partition of k paths among the precomputed set of elementary paths. This partition contains elements which are as dissimilar as required by the user preference but which have a minimal cost.

The procedure to select the alternative routes is summarized in algorithm 2 and consists in initializing the pool of selected paths with the minimum cost path and then iteratively adding in the pool the minimum cost path that satises the dierence criterion, with a given threshold, in comparison to the other selected paths of the pool.

Algorithm 1 k th shortest cost from s to t with loops longer than l on G using cost f

Input: G = (V, E), s ∈ V , t ∈ V , k ∈ N * , f : E × E → R+, l ∈ N Output: (k * , c *) cost c * of the maximum k * shortest path found 1: H ← {(s, 0, 0)} Candidates set 2: S ← V
Currently available nodes 3: P ← ∅ Set of predecessors 4: r * = (0, 0)

Default return value 5:

K[V] ← 0
Number of paths found on nodes 6: while H = ∅ ∧ K[t] = k do 7:

(u, c, n) ← minH,u∈S(c) Select best cost candidate which node is available 8:

H ← H \ (u, c, n) 9:

S ← S \ {u} Make the node unavailable for the moment 10:

K[v] ← K[v] + 1 11: if u = t then 12: for v ∈ {w ∈ V \ {s} | (u, w) ∈ G} do 13: if v ∈ P l (u, n) then
Successor is not in the l th predecessors of u 14: To satisfy the requirement of genericity and adaptability to the user preferences, the dierence functions were chosen based on the assignment of words to paths, and then the evaluation of the dierence between paths as the dierence between their respective words. Two word metrics were applied: the edit distance and the occurence of patterns.

H ← H ∪ (v, c + f (u, v), K[v]) 15: P (v, K[v]) ← (u,
Table 1 summarizes all existing paths from x 1 to x 7 on the graph of gure 1, ranked in increasing cost order. For each path, are specied the sequence of nodes visited, the cost, the transportation modes used (which form a basic word), the location of edges used (which form a basic word) and nally the result of the word assignment functions of the three users (A, B, C) that were identied in Section 2. For example, for path p 1 = (1 -2 -5 -7), which is the shortest path, user A will assign the word s 2 , corresponding to the only transportation mode used by this path. For user B, who focuses on the transportation mean and not the specic lines, the word assignment function produces letter s if at least one subway is used, p for pedestrian and b for bus. Since the order of usage does not matter, the letters of each word are reordered in lexicographical order to facilitate future comparisons. As a result, the word bs is assigned to path π 2 even though the subway was used before the bus. For user C, only the geographical location of the used edges matter, as a consequence path π 2 is assigned the word nc, resulting from the concatenation of nnc which reects the geographic location of each arc used, and path π 3 is assigned only n, even though the path uses four dierent transportation modes. 1-4-7 8 pb1 cc pb1 bp c π5 1-2-4-6-7 9 s2b1b2b2 nnss s2b1b2 bs ns π6 1-3-6-7 10 ppb2 sss pb2 bp s π7 1-3-4-7 11 ps1b1 ssc ps1b1 bps sc π8 1-3-4-5-7 12 ps1s1s2 ssnn ps1s2 ps sn π9 1-3-4-6-7 13 ps1b2b2 ssss ps1b2 bps s

Patterns

The evaluation of word metrics using patterns recognition is based on the identication of the number of occurences of certain tuples in the words considered.

For instance, considering pairs, each path is associated with all the pairs of consecutive edges it uses. In this case, the word path for example will be characterized by the pairs pa, at, and th. When comparing two words, the number of pairs in common are counted and divided by the total number of pairs in both words. The lower the results, the more dissimilar the words are. Note that this metric is normalized and can only vary between 0 and 1. The complexity of the procedure is O(N log N) where N is the total length of both words.

To apply this metric taking into account the user's preferences, paths are compared by evaluating the pattern ratio of their respective user words. The user can enforce the level of dissimilarity he wants by setting the threshold value τ p ∈]0, 1], in which case two paths will be considered dissimilar i the pattern ratio is less or equal to τ p . Note that in the case of pattern recognition based on n-tuples, it is not possible to evaluate words of less than n letters. Consequently, for the pattern recognition based on pairs, it is not possible to evaluate and compare single digit words because the ratio leads to 0 0 , which is undetermined.

To counter that, we modify each word by adding a dummy letter (here) at the beginning and at the end of each user word. For example, user A assigns the word s 2 to path π 1 and word s 2 b 1 b 2 to path π 5 . As a consequence, the pair pattern ratio between the two words (and thus between the two corresponding paths) is 2 6 = 1 3 . Similarly, for user C, the pair pattern ratio between paths π 2 and π 5 is 2 6 = 1 3 while the pair pattern ratio between paths π 5 and π 8 is 0 6 .

Table 2 summarizes the resulting ordered set of alternative paths obtained on the graph 1 using patterns recognition for each of the users introduced in Section example. The set is initialized with the shortest path π 1 . Path π 2 is disregarded because its pair pattern ratio with path π 1 is 0.4, higher than the threshold. Path π 3 is disregarded because it is equivalent to π 1 . Path π 4 is selected because the pair pattern ratio with π 1 is 0, lower or equal to τ p . At this stage, the set of selected paths is {π 1 , π 4 }. Path π 5 is disregarded because its pair pattern ratio with path π 1 is 0.4, higher than τ p . Path π 6 is selected because its pair pattern ratio with π 1 is 0 and its pair pattern ratio with π 4 is 0, both values lower or equal to τ p . At this stage, the set of selected paths is {π 1 , π 4 , π 6 }. Path π 7 is disregarded because its pair pattern ratio with path π 6 is 0.4, higher than τ p . Path π 8 is disregarded because its pair pattern ratio with path π 6 is 0.4, higher than τ p . Finally, π 9 is disregarded because it is equivalent to π 6 . Therefore, the set of alternative paths to produce for user C when he sets a threshold value τ p = 1 3 is, in increasing cost order, {π 1 , π 4 , π 6 }.

All algorithms were implemented in C++ and compiled with gcc with optimization level 2.

Regarding the instances, we used as transportation network a multimodal graph modeling the city of Toulouse (France We observe that the proposed algorithm is ecient. If the CPU time grows with the length of eliminated cycles, it is however still less than 500 ms in our more complex experiments (k = 400, and length cycle equals to 5).

Alternative routes

In the second part of experiments, we evaluate the selection of alternative routes.

We consider that a set of k = 491 shortest paths was previously obtained (with k = 500 and length cycle reduction equals to 5). We used 4 models to associate paths with words so as to enumerate the alternatives a user may dene.

a Maps an arc to its type as a letter b Associates each mode to a letter and writes a letter only once every time a mode is used no matter how long the transportation system is used c Same as b but writes the transportation lines instead of the modes

For each model, Table 5 summarizes the average number of alternatives given a threshold varying between 1 to 5 for the edit distance. With a threshold of 0, i.e. no ltering, the maximum executing time peaked at 137 ms so execution times for higher thresholds are lower. In addition, for a same threshold of 0, all users have the same number of paths 490 since no ltering is applied. Then, when the threshold increases, we can observe an important deviations between users. User a seems to be the ideal case where a good number of solutions (5.56) are found for a single dierence and then slowly decreases as the constraint increases. However, user b cannot make any dierences between paths. And user c cannot make a ne statement about which path to pick because it has too much information about the paths.

For patterns based selection, models a and c perform poorly. On the contrary, user b has a relevant set computed in less than 500 ms in average (the CPU time using patterns recognition is higher than the CPU time with edit distance). For a threshold of 2, it has 1.85 and 2.28 paths in average for a pattern length of 2 and 3 respectively. Then, for a dierence of 3 or higher it has 1.57 and 1.85. So the longer the pattern is, the more paths are selected.

Conclusion

In this paper we proposed an approach based on the computation of a large number of paths to select a few of them as alternatives.

To compute the paths, we adapted one of the best k-shortest paths algorithm to eliminate cycles of a specic length with a good average running time and generating an acceptable number of paths without cycles.

The denition of the dierence between two paths, though supposed to be an operation on some strings, is quite general and may suit specic needs. Experiments revealed that the transformation of a path into a word as well as the algorithm used to measure the dierence between words have a great impact on the results, not to mention particularities of the network and associated automaton.

Thus, even if the results are encouraging, any application in a real word environment supposes the ability for the user to specify his criterion and the measure between words he wants to use, which is for the moment to be conceived.

Fig. 1 .

 1 Fig. 1. Example graph

1

 with regards to their preferences. In this case, paths (1-2-4-7) and (1-2-4-5-7) are considered dierent by user A, but similar by users B and C. Likewise, paths (1-4-7) and (1-3-6-7) are considered similar by user B, but dierent by users A and C.

 5 k-shortests paths for multimodal and time-dependent network 5.1 Existing k-shortest path algorithms for monomodal graphs The k-shortest paths problem consists in computing a given number of non decreasing cost paths between two nodes. Depending on the type of the required paths, either unrestricted or simple, dierent types of algorithms exist in the literature. Yen's algorithm [14] computes the k elementary shortest paths. It uses a shortest path algorithm as a subroutine and successively calls it from dierent origins after discarding from the graph previously used edges. The complexity of the algorithm is k|V |P (|V |, |E|) where P (|V |, |E|) is the complexity of the shortest path algorithm being used. An extension given by Lawler [10] reduces the number of iterations by keeping some information from earlier computations.

2

 and in function of τ p . Let us focus on user C and threshold value τ = 1 3 for

 Algorithm 2 Alternative routes selection among candidate pathsInput: k the number of alternatives, P the set of candidate paths, c the function associating a path to a cost, d the dierence function, t the threshold

				n)
	16:	end if		
	17:	end for		
	18:	else		
	19:	r * ← (c, n)			Set new current solution
	20:	(w, n) ← (t, n)	
	21:	while w = s do		Backtrace the path to node s
	22:	S ← S ∪ {w}		Make the nodes on the path available
	23:	(w, n) ← P (w, n)	
	24:	end while		
	25:	end if		
	26: end while		
	27: return r Output: A the alternative routes
	1: P ← P			Initialize the set of candidates
	2: repeat		
	3:	A ← A ∪ {arg min	c(p)}		Select the best candidate
		p∈P		
	4:	P = {p ∈ P -A | ∀s ∈ A, t ≤ d(p, s)}	Update candidates dierent enough
		from previously selected elements
	5: until |A| = k ∨ P = ∅	k paths were found or no more paths are candidates
	6: return A		

*

Table 1 .

 1 Set of paths

	path nodes cost modes location	A	B C
	π1 1-2-5-7 6 s2s2s2	nnn	s2	s n
	π2 1-2-4-7 7 s2b1b1	nnc	s2b1	bs nc
	π3 1-2-4-5-7 8 s2b1s1s2 nnnn s2b1s1s2 bs n
	π4			

Table 2 .

 2 Alternative paths using patterns recognition

	Threshold τp	A	B	C
	1	all	all	all
	1/2	(π1, π2, π4, π6, π7, π8) (π1, π2, π4) (π1, π2, π4, π5, π6, π7, π8)
	1/3	(π1, π4, π5, π6, π7)	(π1, π4)	(π1, π4, π6)
	0	(π1, π4)	(π1, π4)	(π1, π4, π6)

 Evaluation of the proposed k-shortest path algorithm for multimodal and time-dependent graph In the rst part of experiments, we aim to evaluate the eciency of the proposed k-shortest path algorithm on multimodal and time-dependent networks.We consider a realistic multimodal and time-dependent graph from Toulouse (France), and computations were performed with the value of k ranging from 100 to 400 with a step of 100. For each value of k , the average computing times were evaluated on 1000 randomly generated pairs origin-destination. The same random generator seed is used to keep the sequence of points unchanged from one instance to another. The results are given in table 4 in which column k reports the number of paths generated, column k reports the number of elementary paths that were found among the k paths and column time gives the CPU time in milliseconds.

). All transportation data used
	are freely available data : the road network corresponds to the OpenStreetMap
	datasets and was provided by GeoFabrik and our public transportation network
	is based on The General Transit Feed Specication format. Once converted into
	an edge-labeled multimodal graph, it contains 75837 nodes, 484426 road edges
	and 43318 public transport edges. All combinations of transportation modes
	are authorized, including pedestrian. A generic automaton that allows bus and
	subway is used and the departure time is set to 9:AM.
	7.2

Table 4 .

 4 Experimental results for the proposed algorithm

	k	100		200		300		400	
	cycles cut time (ms) k time (ms) k time (ms) k time (ms) k
	0	100 13	100 20	100 28	100 34
	1	113	95	134	186	170	276	318	365
	2	116	97	140	190	175	283	310	374
	3	116	98	141	195	177	291	297	386
	4	116	99	147	196	189	293	357	389
	5	130	99	173	197	243	295	483	393

Table 5 .

 5 Experimental results for alternative routes based on the edit distance

	threshold a	b	c
	0	490.86 490.86 490.86
	1	5.56 1.017 490.86
	2	3.01 1.014 433.52
	3	2.20 1.010 414.04
	4	1.79 1.009 330.45
	5	1.57 1.001 324.29

Acknowledgments

This work was motivated and supported by the MobiGIS company. We would especially like to thank Sylvain Gaudan and Christophe Lapierre for their help and comments.

Edit distance

The edit distance is a widely spread method and computationally very ecient to measure the similarity of words. It consists in computing the number of atomic operations necessary to transform one word into another. A user might vary the level of dissimilarity enforced by setting the threshold value τ e ∈ N, in which case two paths will be considered dissimilar i the edit distance between their corresponding words exceeds or equals τ e .

Table 3 summarizes the resulting ordered set of alternative paths obtained on the graph 1 using edit distance for each of the users (A, B, C) introduced in Section 2 and in function of τ e .

Let us focus on user C and threshold value τ = 2 for example. The set is initialized with the shortest path π 1 . Path π 2 is disregarded because its edit distance with π 1 is one, less than τ e . Path π 3 is disregarded because it is similar to π 1 . Path π 4 is selected because the edit distance to π 1 is two, greater or equal to τ e . At this stage, the set of selected paths is {π 1 , π 4 }. Path π 5 is disregarded because its edit distance to π 1 is one, less than τ . Path π 6 is selected because its edit distance to π 1 is two and its edit distance to π 4 is two, both values greater or equal to τ e . At this stage, the set of selected paths is {π 1 , π 4 , π 6 }. Path π 7 is disregarded because its edit distance to π 6 is one, less than τ . Path π 8 is disregarded because its edit distance to π 6 is only one. Finally, path π 9 is disregarded because it is similar to π 6 . Therefore, the set of alternative paths to produce for user C if when he sets a threshold value τ e = 2 is, in increasing cost order, {π 1 , π 4 , π 6 }.. Many algorithms exists to compute the edit distance, we use Myers' algorithm [START_REF] Myers | An o(nd) dierence algorithm and its variations[END_REF] with the memory renement. The algorithm performs in O(N D) using O(N) memory where N is the sum of the lengths and D the edit distance between the two words. The tests were carried out on an Intel(R) Core(TM) i5-3337U CPU @ 1.7GHz with 6144 KB cache and 3GB main memories and running Linux 3.2.0.4-amd64.