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I. ABOUT THE PURITY CHANGE PC

A. PC as an entanglement criterion

Here we prove, that if the state is separable, then its purity change PC defined as
PC =Tri,. N[p”] = Tra,. N[(Tr1p)?) (1)

has to be or zero or negative. We remind that the mixed state psep, is separable, if and only if it

can be written in the form

1 2
pep = > cupy) @ o0 @ 2o, 2)
k

where >, ¢, = 1 and V,;¢; > 0. Using the decomposition (2) it is easy to compute formally square

of the density matrix

2 N) (N
psep ZCkCl <pk P ) ® <p,(€ ) Pl( )> R...Q® (,0](€ ),01( )> (3)
kil

and the purity

Tr{ (Psep) } chcl H Tr{ (m) )}. (4)

In order to compute the purity change PC' we need to trace over a single atom. Without loosing

generality we trace out the Hilbert space of the "first" atom:

Tr1 {psep} = Z Ck Pi(f) ®...® P(N)- (5)
k



Applying Eqs. (3) and (4), for the full and for the reduced density matrix, we compute PC:

N
PC = " CLCy <Tr {pl(:) pl(l)} — 1) £2 Tr {P@('m) P;m)} (6)

For any matrices A and B, the matrix (A — B)2 is semi-positive, hence it has nonnegative trace.
This leads to inequality Tr { AB} < (Tr {A?} 4 Tr { B?}) /2. This inequality leads to the conclusion
Tr { p,(:) pl(l)} —1 <0 for any p,(:) and pl(l). On the other hand the product of two density matrices
has to be positive-definite, thus Tr { p,(cm) pl(m)} is larger then zero. We conclude that each term
under the sum (6) has to be non-positive, so is the whole sum.

Finally, if the state has positive purity change, PC > 0, this state has to be non-separable.

B. PCin XS? model

As an example, here we compute PC' as a function of time for an initial coherent spin state

(CSS):

1 & /N
it =00 = 55 3 () m ¥ e )

where |n, N — n) is a bosonic Fock state, with n atoms in state |1) and the rest of them occupying
state |0), evolving according to the Hamiltonian H/h = XS? Notably, the unitary part of the
evolution studied in the main part of the paper, in some regimes reduces to this model. We remind,
that the initial state CSS, in the case without any dissipation, would evolve first to the squeezed
states, then after time 7/(2xyv/N) to highly entangled states including macroscopic superpositions
of few entangled states, eventually at time 7 /(2y) it will reach the cat state (see the same effects
for photons [1])

At the time t the evolved state reads

1 X /N 2
[(t)) = N2 Z <n>elx(nN/2) t In, N — n>F ) (8)
n=0
As the state is pure, its purity is constant in time and equal to 1, Tr{p2} = 1. In order to

compute PC one has to find the reduced density matrix Try {|¢(¢)) (¢(¢)|}. This forces us to

calculate (O|n, N —n)p and (1|n, N —n)p (where (0] and (1| represents the internal state of the



"first" atom). To accomplish this task, we come back from the Fock basis to the more general one:

1
(1, N —n)p = (1] —— > a1, ag, ...an)

\/ (]7\;) ai+az+...+an=n
1

= — Z lag, ...an)
N

(n) az+...4+an=n—1

n
= N|n—1,N—n>F.

Similarly (O|n, N —n)p = % |n, N —n — 1)p. The reduced density matrix reads:

p1 = 5 o) (ol + 3 o) {9

where
N-1 (Nfl) ' ,
[o(t) = V20 () = 3 QN—nfleﬂX(an/z) Ln, N —1 —n)p
n=0
and
00 :
[P1(t)) = V2 (1[y(t)) = Z QNL_le—zx(n—i—l—N/Z) Uy N =1 n)g
n=0
The purity of the state (10) is
1 1
Tr {pi} = ) <1 + ’<¢0W1>!2> =3 <1 + (cos Xt)Q(N_1)> 7

which leads us to the following PC'

1
PC = 5[1 — (cos xt)? M=)

(11)

(13)

(14)

The formula manifests different entangles states appearing in the evolution, mentioned before. Note

that although PC' reaches its maximal value 1/2 exactly at “cat” time, it stays close to 1/2 in a

much wider range of times detecting entanglement [2].

C. Properties and comparison with other criteria and entanglement measures

Essentially PC' is used to qualify the bipartition entanglement, where one part is just a single

atom (gbit), and the second part consists of the other N — 1 atoms. Up to prefactors, PC coincides

in special cases with quantities sensitive to quantum correlations already discussed in the literature.

In case of two quits, the concurrence is defined as

Concurrence = /2 (1 — Trpfed).

(15)
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FIG. 1: Purity change PC as a function of time. The initial coherent spin state is evolving under the

Hamiltonian H = x.52.

so that in this case

(Concurrence)?

PC = 5 . (16)

PC is also a particular form of the conditional entropy I that is the difference between the entropy

of the total density matrix and of the reduced density matrix [3]:

I'=S8(pag) = S(Trp{pan}) . (17)
When evaluated for the linear entropy Siy =1 —Tr { ,02} the conditional entropy I gives back PC
Iy = —PC (18)

The conditional entropy with linearized entropy was already used, and benchmarked against differ-

ent versions of conditional entropy in [4].

II. ENTANGLED STATES IN THE STRONG COUPLING REGIME

The entangled states that we find in the strong coupling regime are due to the joint effect
of cavity losses and atom-photon entanglement. To understand their nature, it is convenient to

project the system density matrix onto the symmetric subspace spanned by Fock states |m) =

+m, 5 - m) ., eigenstates of S, with eigenvalue m € [-N/2, N/2].

psym =Y (mlp|m)[m)(m’| (19)

m,m’

(mlplm') = (mle1){elplea)(ea|m’) (20)

€1,€2
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FIG. 2: Left column: “Werner-like” state (23), Right column: state obtained in our system at 2xt = 2.5,
where we restricted to symmetrized subspace. The weight of the symmetrized subspace given by the trace
of psym (19) is 0.91 at this time. From top to bottom, we show the Wigner function, the Husimi function,

and the modulus of the density matrix elements in the Fock basis

The trace of peym tells us about the importance of the symmetric subspace in our state.

Let us consider for simplicity the case without spontaneous emission: I' = 0. From combinatory



arguments and using Eq (5) of the main text, one derive

(mlplm)r=0 = pmpm {a(m)]a(m))) 2
« gifit[Ja(m)|?(8/k+gom)—|a(m)[? (§/n+pom’)] (21)
where p,, = QLN (mf N ) is the probability of finding the Fock state |m) in the initial superposition
2
and Trlpsym] = 1, as the system remains in the symmetric state. We now evaluate the overlap
a(m)|a(m )25 (first line in (21)) for large ¢o. Using the formula | (a|B) |2 = e“o‘_BP, and the

dependence of the cavity coherent state a(m) upon the atomic state with 6 = kK ~ Keg
n/k
am) = ———— 22
(m) 14 i(1+ ¢om) (22)

142kt

! tends to zero if mm’ = Qon a

that we expand for ¢pgm > 1if m # 0, one sees that (a(m)|a(m’))
timescale tg = 2 /n* while if mm/ # 0 it stays close to one for a long time scale (k/1?)¢g(mm//(m’—
m))? >t = (k/n”)d5 /4.

In a timescale to, the initial coherent state [¢(t =0)) = /po|m = 0) + /T —po [¢p*) is thus

mapped to the mixture of a twin Fock state |m = 0) and the state ‘wl>:

[t = 0)) = po |m = 0) (m = 0] + (1 = po) [u:* ) (¥ (23)

that survives for a time ¢; > to. We will refer here to the state (23) as to the “Werner-like"
state. A comparison between the “Werner-like" state and the state that we actually produce in
our system, with spontaneous emission is shown in Fig.2 and we note that the main features are
indeed the same. Furthermore, the purity of the state obtained in the simulation (with spontaneous
emission) nicely matches the analytical value pZ + (1 — po)? obtained for the state (23). It is also
straightforward to trace out a single atom from the "Werner-like" state and to compute purity of
the resulting reduced density matrix

1 1 1
Tr?,...,N[(TrlpWernerflike)Z] = 517(2) +Poqo + 5 (1 - QO)2 + 5 (1 - 2QO)2 ; (24)

where gy = QN%I (1]\7\,721 ) Finally the purity change of "Werner-like" state is:

1 1 1
PC=—cpi+pogo+5(1—q) + 5 (1—20)" = (1—po)*. (25)

We checked for NV = 50 that the state appearing in evolution at the time ¢ has approximately this

purity change. An example of such comparison is given also for NV = 10 in Fig. 3 of the main text.



A. Fisher Information of "Werner-like'"state

The Fisher Information of any mixed state is defined via the covariance matrix:

il =5 3 i llmd 0], (26)
l#m
where
-~ 2
Cillmh 1] = S 2L o) ool @

and |l), |m) are eigenvectors of the density matrix p with eigenvalues A\; and \,,, respectively. S;
with ¢ = x,y, z are angular momentum operators. The optimal Fisher information Ir of a mixed

state is equal to the largest eigenvalue of the matrix -+, multiplied by 4:
Ir =4max{A € Ry :v|\) = A\ }. (28)

To find the explicit form of the matrix (26) one has to find the eigenvectors and eigenvalues of

the "Werner-like" state. Two eigenvectors can be read directly from Eq. (23):
e the twin Fock state [m = 0) with eigenvalue pg
° ‘zpj-> with eigenvalue (1 — pp).

The other eigenstates span the N —1 dimensional space, orthogonal to both |1/JJ‘> and |N/2). Each
of these eigenvectors have the eigenvalue equal to 0.

We checked that the matrix v is diagonal. These diagonal terms are equal to

3 1 1
= N2po (2 —pg— ——— —po (N +1 29
1 3 1
= ZN?py— =N -N 30
Yyy 3 Po 3 po + 5% ( )
N
T = (31)

In the main text we compute the Fisher information of the Werner-like state directly from (28)

and from the formulas giving the diagonal terms of the covariance matrix (29)-(31).

1
V2r N

eigenvalue of the covariance matrix Cj; is 7y,;,. This leads to the following scaling of the Fisher

In the limit N > 1, we approximate py with

. It turns out that in this limit the largest

Information



B. Role of spontaneous emission
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FIG. 3: Fisher information 137" of the density matrix projected onto symmetric subspace psym. The colored
Z axis is log(Ir)/log N (which is equal to 2 for a cat state and equal to 1 for a coherent state). All values
smaller than 1 are projected to 1.

Top: 50 atoms, bottom: 200 atoms. The first column : no spontaneous emission emission (I' = 0), the

second column : Rubidium like spontaneous emission (A/T' = 500).

In the presence of spontaneous emission, the state leaves the space spanned by the Fock basis (
so the "symmetric subspace'), where the "Werner-like" states lives. It is not easy to verify to which
extent the state produced during evolution matches the "Werner-like" state in case of spontaneous
emission and large number of atoms.

To understand better the role of spontaneous emission at least for mesoscopic systems, we
compared the Fisher Information of the symmetric part of the density matrix, denoted as 1,7 in
two cases: evolution with and without spontaneous emission. In case without spontaneous emission
the Fisher Information of the symmetric subspace, I}ym is equal to the total Fisher Information
Ir. However if the spontaneous emission is present, then we have I;7"™ < Ip. In Figure 3 we show
landscape of the Fisher Information (a counterpart of Fig. (2) from the main text) for these two

cases and for two number of atoms: N = 50 and N = 200. The Fisher Information in the strong

coupling regime corresponding to large values of ¢gv/N is affected, but not completely changed.



This suggests that in this regime the state will remain in the symmetric subspace and it will remain

entangled. We see also the typical feature of entangled states: the more atoms in the sample, the

more sensitive is the state to decoherence. On the other hand, the Fisher Information in the region

ooV N < 1is completely damped by the spontaneous emission. The reason is that the state leaves

the symmetric subspace, and in this region one has to analyze the whole density matrix, as it is

done in the main part of the paper.

III. QUANTUM AVERAGES FOR A GENERALIZED 52 MODEL WITH

DECOHERENCE

We consider an effective Hamiltonian of the form

Ha/h=x$2 =5 > dida

acjumps

with the jump operators
dC =V ACSZ
diet = \/ARay/2l0)(0li;; o =0,1
diRam = V/ARam|0)(0'|;; o #d'; 0,0’ =0,1

dix = VAx|X){(oli; o0=0,1; X #0,1

The quantum averages can be obtained analytically :

(S,) = %6—Act/267(Ax+ARam+ARay)t (Hl(t))N—l
N

(82) = zefAXt

L NN —=1) onxe

(g Nn) =

<S§> _ Ee—AXt n (N - 1)N6_2(AX+ARay+ARam)t (1 _ o—2Act (Hg(t))N72)

4 8

2Re (S.5,) — MefAct/267(2AX+ARay+2ARam)tG(t) (Hy (1) 2

2

where, by introducing f = 1,2 we have:

B2y 2e” (ARam+AX)E (Cosh(u5t) + % sinh(uﬂ)) + Ax (Ax + 2ARam)

BQXQ + AX (AX + 2AARam)
x sinh(u;t)
U1

ug = \/ A%{am - BQXQ

(38)
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Starting from these exact formulas for quantum averages, in the limit of large number of atoms and
short evolution times and in the case of Rayleigh and Raman scatterings only (namely if Ax = 0),

we recover the approximate results given in Eqns. (20) - (24) in the paper [6].

A. Recovering an effective S?

Adiabatic elimination of the cavity field. The field within the cavity falls onto a stationary
state on a timescale 1/kqg. As a consequence, for longer times, at which squeezing arises, we can
treat the cavity field as a constant, but with the value depending on the state of atoms. Hence, it
is reasonable to eliminate the cavity field from the description by performing adiabatic elimination.
In practice it amounts to replace in the initial master equation the operators ¢ and éf by a(Sz) and

a*(SZ) where a(S‘z) is the amplitude of the stationary coherent state in the cavity for a given S,

. Ny + Np) ¢l N<5s
a(S,) = . n - with Kot = k | 1+ M Z ar, ~ % K,
Keff + 2(5 + KpoS, ) 4A L=Ray,Ram,X
(41)
where we have introduced aray = 2040, GRam = |00 o|*/00s and ax = ZX;&O,I laxo|?/ase and

aso are defined in the last section of this supplementary material. Here N, is the number of atoms

in the state |o). Then the Hamiltonian, Eq. (1) of the main text, takes the form:

H/h=— ‘a(Sz) ’ (5 + mqsoﬁz) (42)

whereas the jumps, Eq. (2) of the main text, are transformed into

i = /752 (1) (1] - [0) (O], o(S2)

(43)
di,aa’ =V FRam|0'> <0'/‘ a(gz) ( )
dixe = VIx|X) (0| a(S.) (45)

d. = V2 o(S,) (46)

where rates I'Ray, I'Ram,['x are defined in the main text.

This elimination is valid as long as the entanglement between internal degrees of freedom of
atoms and photons is relatively small. More precisely, in the calculation of atomic observables
for squeezing, that involve only one or two body coherences, the adiabatic elimination amounts to
replacing by one the overlaps (a(m)|a(m £ 1)) and (a(m)|a(m £ 2)), which is correct as long as

¢ < 1.
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Expansions with respect to small parameter. The main idea for further simplifying the
master equation relies on the Taylor expansion of « in powers of eS‘z, once we identify a small

parameter €. To this aim we introduce the critical atom number, Eq. (12) in the main text

4A/T 2
N, = < / ) . (47)
GRay + GRam + aX

1. Case: N< N, and ¢ovVN < 1

Both conditions N < N, and ¢gv/'N < 1 together guaranties that the broadening of the cavity

line width due to spontaneous emission is negligible, namely

Reff (bOF 1 N
—1lxaN—— < =/ — 1 48
K 4A<4\/Nc<< (48)

The dispersion of S, operator is equal to v N /2, hence if bV N < 1 ( which is the second condition

characterizing this regime) then the quantity $0S. is small and can be used as the small parameter
in the expansion.
The Taylor expansion of the master equation lead us to
Ha/h=vS. +x82 =5 > dida (49)
a€jumps
which has the form of the general Hamiltonian (33) of section ITI, plus a drift term, with the jump

operators (37) where now the rates are given by

2 242 542
Pr— |77| ¢0"€ Y = _|77| ¢0 K2 (50)
62 + K2 (02 + K2)
2% koo T |n)? X
Ac = 7|X| ARam/aRam = ARay/aRay = AX/QX = TK(F T R2 X % (51)
For 6 = k we finally obtain
1
X = =705 Ao =2[x; (52)
IXI T _ x|
Am am:Aa a:A = = —,
Ram/0R Ray/GRay = Ax/ax 200D = iC (53)

where we introduced the cooperativity C' = g?/kI' = ¢pgA/(2T) ~ ¢ovVN+/N./N. From (53) the
ratio I'/x between the spontaneous emission and squeezing rates scales as 1/C. This explains the
fact that spontaneous emission deteriorate the squeezing in the weak coupling regime as one can

see in Fig. 4 of the main text. On the other hand one can show that if N-Y10 « qbo\/N < 1 then
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the squeezing is limited mostly by cavity losses, which plays here larger role than scattering into

free space. The best squeezing and the time at which this squeezing is reached are given by:

B = SN, (54)
2 _
tonin = W(3)1/5N 3/5. (55)
0

2. Case N>N, , ¢ovVN>1

Due to the assumption N > N, the rate of photon losses in the empty cavity, x, is much smaller

than the rate of scattering a single photons on some of atoms.

Reff ¢0 r N
=1+N——F>4/=>1 56
K + 4 A - N, - (56)
We again expand the coherent state amplitude in a Taylor expansion, % N = % being the

small parameter. When repeating the steps from the previous part we fall back again into the
Hamiltonian (33) of section III, plus a drift term. In case of Rayleigh jumps, the resulting quantum
averages are well described by the model (33) with rates:

B N W 4 R (57)
X = 2 Keff 3 C = 2X; Ray — 4 AaRay

In the limit NV — oo the squeezing converges to a small constant

Ia 2 A \?1
2 Ray o
gopt =e ( A > thest =2 <FaRay> N (58)
In the more general case, assuming laser-cavity detuning equal to & = Akeg one obtains:
1+ X (T ? 4\ A V1
2
=—— | —< thest = ——5 — 99
§ N2 (A(IRay> € XUbest 1+ A2 (FaRay> N ( )

IV. CALCULATION OF THE EFFECTIVE JUMPS RATES

The ay/, coefficients entering the expressions of the jump operators modeling the effect of spon-

taneous emission are calculated for the 8"Rb D2 line as follows [5]:

g = A3 el ldylo)| o0

Wp —w
ed p — Woe



13

FIG. 4: Spin squeezing optimized over time and ¢ as a function of total number of atoms, for A/T" = 10
and (n/k)? = 1072, Solid line: full model, Eq. (5) of the main part of the paper, with cavity losses and
Rayleigh scattering with aray = 0.702. Dot-dashed blue line: analytical results (55) in the regime of small
number of atoms N < N, and small ¢gv/N < 1 described in the subsection IIT A 1. Horizontal dot-dashed
green line: analytical results (58) in the regime with large number of atoms N > N, and large ¢ov/N > 1
described in the subsection IIT A 2.

The electric dipole moment matrix element (o|d,|e) is normalized to one for the closed transition
|F'=2,mp =2) = |F. = 3,m. = 3), q is the laser polarization, w, the laser frequency and wg . the
atomic transition frequency from |o) to |e). The sum goes over all excited states |e) of the 5P
manyfold and all polarizations ¢’ = —1,0, 1.

The lightshifts for the |o) and |o’) states are equal and opposite when
Z\ eldg|o)? Z\ eldglo’)* |
(AJp wo’ e wp - wO’ ;€

We find the laser frequency that fulfills this condition for |0) = |F = 1,mp = 0) and |0’) = |F =

2,mp = 0) and ¢ = 0. We then calculate the a,, from (60).
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