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I. ABOUT THE PURITY CHANGE PC

A. PC as an entanglement 
riterion

Here we prove, that if the state is separable, then its purity 
hange PC de�ned as

PC ≡ Tr1,2,...,N [ρ2]− Tr2,...,N [(Tr1ρ)
2] (1)

has to be or zero or negative. We remind that the mixed state ρsep is separable, if and only if it


an be written in the form

ρsep =
∑

k

ck ρ
(1)
k ⊗ ρ

(2)
k ⊗ . . .⊗ ρ

(N)
k , (2)

where

∑

k ck = 1 and ∀ici ≥ 0. Using the de
omposition (2) it is easy to 
ompute formally square

of the density matrix

(ρsep)
2 =

∑

k,l

ckcl

(

ρ
(1)
k ρ

(1)
l

)

⊗
(

ρ
(2)
k ρ

(2)
l

)

⊗ . . .⊗
(

ρ
(N)
k ρ

(N)
l

)

(3)

and the purity

Tr
{

(ρsep)
2
}

=
∑

k,l

ckcl

N
∏

m=1

Tr
{

ρ
(m)
k ρ

(m)
l

}

. (4)

In order to 
ompute the purity 
hange PC we need to tra
e over a single atom. Without loosing

generality we tra
e out the Hilbert spa
e of the "�rst" atom:

Tr1 {ρsep} =
∑

k

ck ρ
(2)
k ⊗ . . .⊗ ρ

(N)
k . (5)
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Applying Eqs. (3) and (4), for the full and for the redu
ed density matrix, we 
ompute PC:

PC =
∑

k,l

ckcl

(

Tr
{

ρ
(1)
k ρ

(1)
l

}

− 1
)

N
∏

m=2

Tr
{

ρ
(m)
i ρ

(m)
j

}

(6)

For any matri
es A and B, the matrix (A−B)2 is semi-positive, hen
e it has nonnegative tra
e.

This leads to inequality Tr {AB} ≤
(

Tr
{

A2
}

+Tr
{

B2
})

/2. This inequality leads to the 
on
lusion

Tr
{

ρ
(1)
k ρ

(1)
l

}

− 1 ≤ 0 for any ρ
(1)
k and ρ

(1)
l . On the other hand the produ
t of two density matri
es

has to be positive-de�nite, thus Tr
{

ρ
(m)
k ρ

(m)
l

}

is larger then zero. We 
on
lude that ea
h term

under the sum (6) has to be non-positive, so is the whole sum.

Finally, if the state has positive purity 
hange, PC > 0, this state has to be non-separable.

B. PC in χŜ2
z model

As an example, here we 
ompute PC as a fun
tion of time for an initial 
oherent spin state

(CSS):

|ψ(t = 0)〉 = 1

2N/2

N
∑

n=0

√

(

N

n

)

|n,N − n〉F (7)

where |n,N − n〉F is a bosoni
 Fo
k state, with n atoms in state |1〉 and the rest of them o

upying

state |0〉, evolving a

ording to the Hamiltonian H/~ = χŜ2
z . Notably, the unitary part of the

evolution studied in the main part of the paper, in some regimes redu
es to this model. We remind,

that the initial state CSS, in the 
ase without any dissipation, would evolve �rst to the squeezed

states, then after time π/(2χ
√
N) to highly entangled states in
luding ma
ros
opi
 superpositions

of few entangled states, eventually at time π/(2χ) it will rea
h the 
at state (see the same e�e
ts

for photons [1℄)

At the time t the evolved state reads

|ψ(t)〉 = 1

2N/2

N
∑

n=0

√

(

N

n

)

e−iχ(n−N/2)2t |n,N − n〉F . (8)

As the state is pure, its purity is 
onstant in time and equal to 1, Tr
{

ρ2
}

= 1. In order to


ompute PC one has to �nd the redu
ed density matrix Tr1 {|ψ(t)〉 〈ψ(t)|}. This for
es us to


al
ulate 〈0|n,N − n〉F and 〈1|n,N − n〉F (where 〈0| and 〈1| represents the internal state of the
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"�rst" atom). To a

omplish this task, we 
ome ba
k from the Fo
k basis to the more general one:

〈1|n,N − n〉F = 〈1| 1
√

(N
n

)

∑

a1+a2+...+aN=n

|a1, a2, . . . aN 〉

=
1

√

(

N
n

)

∑

a2+...+aN=n−1

|a2, . . . aN 〉

=

√

n

N
|n− 1, N − n〉F . (9)

Similarly 〈0|n,N − n〉F =
√

N−n
N |n,N − n− 1〉F. The redu
ed density matrix reads:

ρ1 =
1

2
|ψ0〉 〈ψ0|+

1

2
|ψ1〉 〈ψ1| , (10)

where

|ψ0(t)〉 =
√
2 〈0|ψ(t)〉 =

N−1
∑

n=0

√

(N−1
n

)

2N−1
e−iχ(n−N/2)2t |n,N − 1− n〉F (11)

and

|ψ1(t)〉 =
√
2 〈1|ψ(t)〉 =

N−1
∑

n=0

√

(N−1
n

)

2N−1
e−iχ(n+1−N/2)2t |n,N − 1− n〉F (12)

The purity of the state (10) is

Tr
{

ρ21
}

=
1

2

(

1 + |〈ψ0|ψ1〉|2
)

=
1

2

(

1 + (cosχt)2(N−1)
)

, (13)

whi
h leads us to the following PC

PC =
1

2
[1− (cosχt)2(N−1)] (14)

The formula manifests di�erent entangles states appearing in the evolution, mentioned before. Note

that although PC rea
hes its maximal value 1/2 exa
tly at �
at� time, it stays 
lose to 1/2 in a

mu
h wider range of times dete
ting entanglement [2℄.

C. Properties and 
omparison with other 
riteria and entanglement measures

Essentially PC is used to qualify the bipartition entanglement, where one part is just a single

atom (qbit), and the se
ond part 
onsists of the other N − 1 atoms. Up to prefa
tors, PC 
oin
ides

in spe
ial 
ases with quantities sensitive to quantum 
orrelations already dis
ussed in the literature.

In 
ase of two quits, the 
on
urren
e is de�ned as

Concurrence ≡
√

2
(

1− Trρ2red
)

. (15)
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FIG. 1: Purity 
hange PC as a fun
tion of time. The initial 
oherent spin state is evolving under the

Hamiltonian H = χŜ2
z .

so that in this 
ase

PC =
(Concurrence)2

2
. (16)

PC is also a parti
ular form of the 
onditional entropy I that is the di�eren
e between the entropy

of the total density matrix and of the redu
ed density matrix [3℄:

I ≡ S (ρAB)− S (TrB {ρAB}) . (17)

When evaluated for the linear entropy Slin = 1−Tr
{

ρ2
}

the 
onditional entropy I gives ba
k PC

Ilin = −PC (18)

The 
onditional entropy with linearized entropy was already used, and ben
hmarked against di�er-

ent versions of 
onditional entropy in [4℄.

II. ENTANGLED STATES IN THE STRONG COUPLING REGIME

The entangled states that we �nd in the strong 
oupling regime are due to the joint e�e
t

of 
avity losses and atom-photon entanglement. To understand their nature, it is 
onvenient to

proje
t the system density matrix onto the symmetri
 subspa
e spanned by Fo
k states |m〉 ≡
∣

∣

N
2 +m, N2 −m

〉

F
, eigenstates of Sz with eigenvalue m ∈ [−N/2, N/2].

ρsym =
∑

m,m′

〈m|ρ|m′〉|m〉〈m′| (19)

〈m|ρ|m′〉 =
∑

ǫ1,ǫ2

〈m|ǫ1〉〈ǫ1|ρ|ǫ2〉〈ǫ2|m′〉 (20)
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�Werner-like� state

a) SU(2) Wigner fun
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) SU(2) Husimi fun
tion

0

π

-π 0 π

θ

φ

name u 2:1:($3)  matrix

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

e) Density matrix
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b) SU(2) Wigner fun
tion
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d) SU(2) Husimi fun
tion
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FIG. 2: Left 
olumn: �Werner-like� state (23), Right 
olumn: state obtained in our system at 2κt = 2.5t0,

where we restri
ted to symmetrized subspa
e. The weight of the symmetrized subspa
e given by the tra
e

of ρsym (19) is 0.91 at this time. From top to bottom, we show the Wigner fun
tion, the Husimi fun
tion,

and the modulus of the density matrix elements in the Fo
k basis

.

The tra
e of ρsym tells us about the importan
e of the symmetri
 subspa
e in our state.

Let us 
onsider for simpli
ity the 
ase without spontaneous emission: Γ = 0. From 
ombinatory
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arguments and using Eq (5) of the main text, one derive

〈m|ρ|m′〉Γ=0 = pmpm′〈α(m)|α(m′))〉1+2κt

×eiκt[|α(m)|2(δ/κ+φ0m)−|α(m′)|2(δ/κ+φ0m′)]
(21)

where pm =
√

1
2N

( N
m+N

2

)

is the probability of �nding the Fo
k state |m〉 in the initial superposition

and Tr[ρsym] = 1, as the system remains in the symmetri
 state. We now evaluate the overlap

〈α(m)|α(m′)〉1+2κt
m6=m′ (�rst line in (21)) for large φ0. Using the formula | 〈α|β〉 |2 = e−|α−β|2

, and the

dependen
e of the 
avity 
oherent state α(m) upon the atomi
 state with δ = κ ≃ κeff

α(m) =
η/κ

1 + i(1 + φ0m)
(22)

that we expand for φ0m≫ 1 ifm 6= 0, one sees that 〈α(m)|α(m′)〉1+2κt
m6=m′ tends to zero ifmm′ = 0 on a

times
ale t0 = 2κ/η2 while ifmm′ 6= 0 it stays 
lose to one for a long time s
ale (κ/η2)φ20(mm
′/(m′−

m))2 ≥ t1 = (κ/η2)φ20/4.

In a times
ale t0, the initial 
oherent state |ψ(t = 0)〉 =
√
p0 |m = 0〉 + √

1− p0
∣

∣ψ⊥〉
is thus

mapped to the mixture of a twin Fo
k state |m = 0〉 and the state

∣

∣ψ⊥〉
:

|ψ(t = 0)〉 7→ p0 |m = 0〉 〈m = 0|+ (1− p0)
∣

∣

∣
ψ⊥

〉〈

ψ⊥
∣

∣

∣
(23)

that survives for a time t1 ≫ t0. We will refer here to the state (23) as to the �Werner-like"

state. A 
omparison between the �Werner-like" state and the state that we a
tually produ
e in

our system, with spontaneous emission is shown in Fig.2 and we note that the main features are

indeed the same. Furthermore, the purity of the state obtained in the simulation (with spontaneous

emission) ni
ely mat
hes the analyti
al value p20 + (1 − p0)
2
obtained for the state (23). It is also

straightforward to tra
e out a single atom from the "Werner-like" state and to 
ompute purity of

the resulting redu
ed density matrix

Tr2,...,N [(Tr1ρWerner−like)
2] =

1

2
p20 + p0 q0 +

1

2
(1− q0)

2 +
1

2
(1− 2q0)

2 , (24)

where q0 =
1

2N−1

(N−1
N/2

)

. Finally the purity 
hange of "Werner-like" state is:

PC = −1

2
p20 + p0 q0 +

1

2
(1− q0)

2 +
1

2
(1− 2q0)

2 − (1− p0)
2. (25)

We 
he
ked for N = 50 that the state appearing in evolution at the time t has approximately this

purity 
hange. An example of su
h 
omparison is given also for N = 10 in Fig. 3 of the main text.
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A. Fisher Information of "Werner-like"state

The Fisher Information of any mixed state is de�ned via the 
ovarian
e matrix:

γij [ρ] =
1

2

∑

l 6=m

Cij [|m〉 , |l〉] , (26)

where

Cij[|m〉 , |l〉] = (λl − λm)2

λl + λm
ℜ{〈l|Si|m〉〈m|Sj |l〉} (27)

and |l〉, |m〉 are eigenve
tors of the density matrix ρ with eigenvalues λl and λm, respe
tively. Si

with i = x, y, z are angular momentum operators. The optimal Fisher information IF of a mixed

state is equal to the largest eigenvalue of the matrix γ, multiplied by 4:

IF = 4max {λ ∈ R+ : γ |λ〉 = λ |λ〉} . (28)

To �nd the expli
it form of the matrix (26) one has to �nd the eigenve
tors and eigenvalues of

the "Werner-like" state. Two eigenve
tors 
an be read dire
tly from Eq. (23):

• the twin Fo
k state |m = 0〉 with eigenvalue p0

•
∣

∣ψ⊥〉
with eigenvalue (1− p0).

The other eigenstates span the N −1 dimensional spa
e, orthogonal to both

∣

∣ψ⊥〉
and |N/2〉. Ea
h

of these eigenve
tors have the eigenvalue equal to 0.

We 
he
ked that the matrix γ is diagonal. These diagonal terms are equal to

γxx = N2p0

(

3

4
− p0 −

1

4 (1− p0)

)

+
1

4
p0 (N + 1) , (29)

γyy =
1

8
N2p0 −

3

8
Np0 +

1

2
N, (30)

γzz =
N

4
. (31)

In the main text we 
ompute the Fisher information of the Werner-like state dire
tly from (28)

and from the formulas giving the diagonal terms of the 
ovarian
e matrix (29)-(31).

In the limit N ≫ 1, we approximate p0 with

1√
2πN

. It turns out that in this limit the largest

eigenvalue of the 
ovarian
e matrix Cij is γxx. This leads to the following s
aling of the Fisher

Information

IF
N≫1
= 2

√

2

π
N3/2. (32)
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B. Role of spontaneous emission
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FIG. 3: Fisher information IsymF of the density matrix proje
ted onto symmetri
 subspa
e ρsym. The 
olored

Z axis is log(IF)/ logN (whi
h is equal to 2 for a 
at state and equal to 1 for a 
oherent state). All values

smaller than 1 are proje
ted to 1.

Top: 50 atoms, bottom: 200 atoms. The �rst 
olumn : no spontaneous emission emission (Γ = 0), the

se
ond 
olumn : Rubidium like spontaneous emission (∆/Γ = 500).

In the presen
e of spontaneous emission, the state leaves the spa
e spanned by the Fo
k basis (

so the "symmetri
 subspa
e"), where the "Werner-like" states lives. It is not easy to verify to whi
h

extent the state produ
ed during evolution mat
hes the "Werner-like" state in 
ase of spontaneous

emission and large number of atoms.

To understand better the role of spontaneous emission at least for mesos
opi
 systems, we


ompared the Fisher Information of the symmetri
 part of the density matrix, denoted as IsymF in

two 
ases: evolution with and without spontaneous emission. In 
ase without spontaneous emission

the Fisher Information of the symmetri
 subspa
e, IsymF is equal to the total Fisher Information

IF . However if the spontaneous emission is present, then we have IsymF < IF . In Figure 3 we show

lands
ape of the Fisher Information (a 
ounterpart of Fig. (2) from the main text) for these two


ases and for two number of atoms: N = 50 and N = 200. The Fisher Information in the strong


oupling regime 
orresponding to large values of φ0
√
N is a�e
ted, but not 
ompletely 
hanged.



9

This suggests that in this regime the state will remain in the symmetri
 subspa
e and it will remain

entangled. We see also the typi
al feature of entangled states: the more atoms in the sample, the

more sensitive is the state to de
oheren
e. On the other hand, the Fisher Information in the region

φ0
√
N ≪ 1 is 
ompletely damped by the spontaneous emission. The reason is that the state leaves

the symmetri
 subspa
e, and in this region one has to analyze the whole density matrix, as it is

done in the main part of the paper.

III. QUANTUM AVERAGES FOR A GENERALIZED Ŝ2
z MODEL WITH

DECOHERENCE

We 
onsider an e�e
tive Hamiltonian of the form

Heff/~ = χŜ2
z −

i

2

∑

α∈jumps

d†αdα (33)

with the jump operators

dc =
√

ΛCŜz (34)

diel =
√

ΛRay/2|σ〉〈σ|i; σ = 0, 1 (35)

diRam =
√

ΛRam|σ〉〈σ′|i; σ 6= σ′; σ, σ′ = 0, 1 (36)

diX =
√

ΛX|X〉〈σ|i; σ = 0, 1; X 6= 0, 1 (37)

The quantum averages 
an be obtained analyti
ally :

〈Sx〉 =
N

2
e−ΛCt/2e−(ΛX+ΛRam+ΛRay)t (H1(t))

N−1

〈

S2
z

〉

=
N

4
e−ΛXt

〈n̂0 n̂1〉 =
N(N − 1)

4
e−2ΛXt

〈

S2
y

〉

=
N

4
e−ΛXt +

(N − 1)N

8
e−2(ΛX+ΛRay+ΛRam)t

(

1− e−2ΛCt (H2(t))
N−2

)

2Re 〈SzSy〉 =
N(N − 1)

2
e−ΛCt/2e−(2ΛX+ΛRay+2ΛRam)tG(t) (H1(t))

N−2

where, by introdu
ing β = 1, 2 we have:

Hβ(t) =
β2χ2e−(ΛRam+ΛX)t

(

cosh(uβt) +
ΛRam+ΛX

uβ
sinh(uβt)

)

+ ΛX (ΛX + 2ΛRam)

β2χ2 + ΛX (ΛX + 2ΛRam)
(38)

G(t) =
χ sinh(u1t)

u1
(39)

uβ =
√

Λ2
Ram − β2χ2

(40)
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Starting from these exa
t formulas for quantum averages, in the limit of large number of atoms and

short evolution times and in the 
ase of Rayleigh and Raman s
atterings only (namely if ΛX = 0),

we re
over the approximate results given in Eqns. (20) - (24) in the paper [6℄.

A. Re
overing an e�e
tive Ŝ2
z

Adiabati
 elimination of the 
avity �eld. The �eld within the 
avity falls onto a stationary

state on a times
ale 1/κeff . As a 
onsequen
e, for longer times, at whi
h squeezing arises, we 
an

treat the 
avity �eld as a 
onstant, but with the value depending on the state of atoms. Hen
e, it

is reasonable to eliminate the 
avity �eld from the des
ription by performing adiabati
 elimination.

In pra
ti
e it amounts to repla
e in the initial master equation the operators ĉ and ĉ† by α(Ŝz) and

α∗(Ŝz) where α(Ŝz) is the amplitude of the stationary 
oherent state in the 
avity for a given Ŝz

α(Ŝz) =
η

κeff + i(δ + κφ0Ŝz )
with κeff = κ



1 +
(N0 +N1)φ0Γ

4∆

∑

L=Ray,Ram,X

aL





N≪ ∆
Γφ0≃ κ,

(41)

where we have introdu
ed aRay = 2aσ,σ, aRam = |aσ′,σ|2/aσ,σ and aX =
∑

X 6=0,1 |aXσ |2/aσσ and

aσσ′
are de�ned in the last se
tion of this supplementary material. Here Nσ is the number of atoms

in the state |σ〉. Then the Hamiltonian, Eq. (1) of the main text, takes the form:

H/~ = −
∣

∣

∣
α(Ŝz)

∣

∣

∣

2 (

δ + κφ0Ŝz

)

(42)

whereas the jumps, Eq. (2) of the main text, are transformed into

di,el =

√

ΓRay

2
(|1〉 〈1| − |0〉 〈0|)i α(Ŝz) (43)

di,σσ′ =
√

ΓRam |σ〉
〈

σ′
∣

∣ α(Ŝz) (44)

di,Xσ =
√

ΓX |X〉
〈

σ′
∣

∣ α(Ŝz) (45)

dc =
√
2κ α(Ŝz) (46)

where rates ΓRay, ΓRam,ΓX are de�ned in the main text.

This elimination is valid as long as the entanglement between internal degrees of freedom of

atoms and photons is relatively small. More pre
isely, in the 
al
ulation of atomi
 observables

for squeezing, that involve only one or two body 
oheren
es, the adiabati
 elimination amounts to

repla
ing by one the overlaps 〈α(m)|α(m± 1)〉 and 〈α(m)|α(m± 2)〉, whi
h is 
orre
t as long as

φ0 ≪ 1.
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Expansions with respe
t to small parameter. The main idea for further simplifying the

master equation relies on the Taylor expansion of α in powers of ǫŜz, on
e we identify a small

parameter ǫ. To this aim we introdu
e the 
riti
al atom number, Eq. (12) in the main text

Nc ≡
(

4∆/Γ

aRay + aRam + aX

)2

. (47)

1. Case : N ≪ Nc and φ0
√
N ≪ 1

Both 
onditions N ≪ Nc and φ0
√
N ≪ 1 together guaranties that the broadening of the 
avity

line width due to spontaneous emission is negligible, namely

κeff
κ

− 1 ≈ N
φ0
4

Γ

∆
<

1

4

√

N

Nc
≪ 1 (48)

The dispersion of Ŝz operator is equal to
√
N/2, hen
e if φ0

√
N ≪ 1 ( whi
h is the se
ond 
ondition


hara
terizing this regime) then the quantity φ0Ŝz is small and 
an be used as the small parameter

in the expansion.

The Taylor expansion of the master equation lead us to

Heff/~ = v Ŝz + χŜ2
z −

i

2

∑

α∈jumps

d†αdα (49)

whi
h has the form of the general Hamiltonian (33) of se
tion III, plus a drift term, with the jump

operators (37) where now the rates are given by

v =
|η|2φ0κ
δ2 + κ2

χ = − |η|2φ20 δκ2
(δ2 + κ2)2

(50)

ΛC =
2κ

δ
|χ| ΛRam/aRam = ΛRay/aRay = ΛX/aX =

κφ0
4

Γ

∆

|η|2
δ2 + κ2

∝ χ

φ0
(51)

For δ = κ we �nally obtain

χ = −1

4
η2φ20; ΛC = 2|χ|; (52)

ΛRam/aRam = ΛRay/aRay = ΛX/aX =
|χ|
2φ0

Γ

∆
≡ |χ|

4C
, (53)

where we introdu
ed the 
ooperativity C = g2/κΓ = φ0∆/(2Γ) ≈ φ0
√
N
√

Nc/N . From (53) the

ratio Γ/χ between the spontaneous emission and squeezing rates s
ales as 1/C. This explains the

fa
t that spontaneous emission deteriorate the squeezing in the weak 
oupling regime as one 
an

see in Fig. 4 of the main text. On the other hand one 
an show that if N−1/10 ≪ φ0
√
N ≪ 1 then
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the squeezing is limited mostly by 
avity losses, whi
h plays here larger role than s
attering into

free spa
e. The best squeezing and the time at whi
h this squeezing is rea
hed are given by:

ξ2min =
5

6
(3)4/5N−2/5; (54)

tmin =
2

η2φ20
(3)1/5N−3/5. (55)

2. Case N ≫ Nc , φ0
√
N ≫ 1

Due to the assumption N ≫ Nc the rate of photon losses in the empty 
avity, κ, is mu
h smaller

than the rate of s
attering a single photons on some of atoms.

κeff
κ

= 1 +N
φ0
4

Γ

∆
>

√

N

Nc
> 1 (56)

We again expand the 
oherent state amplitude in a Taylor expansion,

∆
NΓ

√
N =

√

Nc

N being the

small parameter. When repeating the steps from the previous part we fall ba
k again into the

Hamiltonian (33) of se
tion III, plus a drift term. In 
ase of Rayleigh jumps, the resulting quantum

averages are well des
ribed by the model (33) with rates:

χ =
η2

2

(

κφ0
κeff

)3

; ΛC = 2χ; ΛRay =
χ

4

(

Γ

∆
aRay

)2

N (57)

In the limit N → ∞ the squeezing 
onverges to a small 
onstant

ξ2opt = e

(

Γ aRay

∆

)2

χtbest = 2

(

∆

ΓaRay

)2 1

N
(58)

In the more general 
ase, assuming laser-
avity detuning equal to δ = λκeff one obtains:

ξ2 =
1 + λ2

2λ2

(

Γ

∆
aRay

)2

e χtbest =
4λ

1 + λ2

(

∆

ΓaRay

)2 1

N
(59)

IV. CALCULATION OF THE EFFECTIVE JUMPS RATES

The aσ′σ 
oe�
ients entering the expressions of the jump operators modeling the e�e
t of spon-

taneous emission are 
al
ulated for the

87
Rb D2 line as follows [5℄:

aσ′σ = ∆

∣

∣

∣

∣

∣

∣

∑

e,q′

〈σ′|dq′ |e〉〈e|dq |σ〉
ωp − ωσ,e

∣

∣

∣

∣

∣

∣

. (60)
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FIG. 4: Spin squeezing optimized over time and φ0 as a fun
tion of total number of atoms, for ∆/Γ = 10

and (η/κ)2 = 10−2
. Solid line: full model, Eq. (5) of the main part of the paper, with 
avity losses and

Rayleigh s
attering with aRay = 0.702. Dot-dashed blue line: analyti
al results (55) in the regime of small

number of atoms N ≪ Nc and small φ0
√
N ≪ 1 des
ribed in the subse
tion IIIA 1. Horizontal dot-dashed

green line: analyti
al results (58) in the regime with large number of atoms N ≫ Nc and large φ0
√
N ≫ 1

des
ribed in the subse
tion IIIA 2.

The ele
tri
 dipole moment matrix element 〈σ|dq |e〉 is normalized to one for the 
losed transition

|F = 2,mF = 2〉 → |Fe = 3,me = 3〉, q is the laser polarization, ωp the laser frequen
y and ωσ,e the

atomi
 transition frequen
y from |σ〉 to |e〉. The sum goes over all ex
ited states |e〉 of the 5P3/2

manyfold and all polarizations q′ = −1, 0, 1.

The lightshifts for the |σ〉 and |σ′〉 states are equal and opposite when

∣

∣

∣

∣

∣

∑

e

|〈e|dq|σ〉|2
ωp − ωσ,e

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

e

|〈e|dq |σ′〉|2
ωp − ωσ′,e

∣

∣

∣

∣

∣

. (61)

We �nd the laser frequen
y that ful�lls this 
ondition for |σ〉 = |F = 1,mF = 0〉 and |σ′〉 = |F =

2,mF = 0〉 and q = 0. We then 
al
ulate the aσ′σ from (60).
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