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I. ABOUT THE PURITY CHANGE PC

A. PC as an entanglement riterion

Here we prove, that if the state is separable, then its purity hange PC de�ned as

PC ≡ Tr1,2,...,N [ρ2]− Tr2,...,N [(Tr1ρ)
2] (1)

has to be or zero or negative. We remind that the mixed state ρsep is separable, if and only if it

an be written in the form

ρsep =
∑

k

ck ρ
(1)
k ⊗ ρ

(2)
k ⊗ . . .⊗ ρ

(N)
k , (2)

where

∑

k ck = 1 and ∀ici ≥ 0. Using the deomposition (2) it is easy to ompute formally square

of the density matrix

(ρsep)
2 =

∑

k,l

ckcl

(

ρ
(1)
k ρ

(1)
l

)

⊗
(

ρ
(2)
k ρ

(2)
l

)

⊗ . . .⊗
(

ρ
(N)
k ρ

(N)
l

)

(3)

and the purity

Tr
{

(ρsep)
2
}

=
∑

k,l

ckcl

N
∏

m=1

Tr
{

ρ
(m)
k ρ

(m)
l

}

. (4)

In order to ompute the purity hange PC we need to trae over a single atom. Without loosing

generality we trae out the Hilbert spae of the "�rst" atom:

Tr1 {ρsep} =
∑

k

ck ρ
(2)
k ⊗ . . .⊗ ρ

(N)
k . (5)
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Applying Eqs. (3) and (4), for the full and for the redued density matrix, we ompute PC:

PC =
∑

k,l

ckcl

(

Tr
{

ρ
(1)
k ρ

(1)
l

}

− 1
)

N
∏

m=2

Tr
{

ρ
(m)
i ρ

(m)
j

}

(6)

For any matries A and B, the matrix (A−B)2 is semi-positive, hene it has nonnegative trae.

This leads to inequality Tr {AB} ≤
(

Tr
{

A2
}

+Tr
{

B2
})

/2. This inequality leads to the onlusion

Tr
{

ρ
(1)
k ρ

(1)
l

}

− 1 ≤ 0 for any ρ
(1)
k and ρ

(1)
l . On the other hand the produt of two density matries

has to be positive-de�nite, thus Tr
{

ρ
(m)
k ρ

(m)
l

}

is larger then zero. We onlude that eah term

under the sum (6) has to be non-positive, so is the whole sum.

Finally, if the state has positive purity hange, PC > 0, this state has to be non-separable.

B. PC in χŜ2
z model

As an example, here we ompute PC as a funtion of time for an initial oherent spin state

(CSS):

|ψ(t = 0)〉 = 1

2N/2

N
∑

n=0

√

(

N

n

)

|n,N − n〉F (7)

where |n,N − n〉F is a bosoni Fok state, with n atoms in state |1〉 and the rest of them oupying

state |0〉, evolving aording to the Hamiltonian H/~ = χŜ2
z . Notably, the unitary part of the

evolution studied in the main part of the paper, in some regimes redues to this model. We remind,

that the initial state CSS, in the ase without any dissipation, would evolve �rst to the squeezed

states, then after time π/(2χ
√
N) to highly entangled states inluding marosopi superpositions

of few entangled states, eventually at time π/(2χ) it will reah the at state (see the same e�ets

for photons [1℄)

At the time t the evolved state reads

|ψ(t)〉 = 1

2N/2

N
∑

n=0

√

(

N

n

)

e−iχ(n−N/2)2t |n,N − n〉F . (8)

As the state is pure, its purity is onstant in time and equal to 1, Tr
{

ρ2
}

= 1. In order to

ompute PC one has to �nd the redued density matrix Tr1 {|ψ(t)〉 〈ψ(t)|}. This fores us to

alulate 〈0|n,N − n〉F and 〈1|n,N − n〉F (where 〈0| and 〈1| represents the internal state of the
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"�rst" atom). To aomplish this task, we ome bak from the Fok basis to the more general one:

〈1|n,N − n〉F = 〈1| 1
√

(N
n

)

∑

a1+a2+...+aN=n

|a1, a2, . . . aN 〉

=
1

√

(

N
n

)

∑

a2+...+aN=n−1

|a2, . . . aN 〉

=

√

n

N
|n− 1, N − n〉F . (9)

Similarly 〈0|n,N − n〉F =
√

N−n
N |n,N − n− 1〉F. The redued density matrix reads:

ρ1 =
1

2
|ψ0〉 〈ψ0|+

1

2
|ψ1〉 〈ψ1| , (10)

where

|ψ0(t)〉 =
√
2 〈0|ψ(t)〉 =

N−1
∑

n=0

√

(N−1
n

)

2N−1
e−iχ(n−N/2)2t |n,N − 1− n〉F (11)

and

|ψ1(t)〉 =
√
2 〈1|ψ(t)〉 =

N−1
∑

n=0

√

(N−1
n

)

2N−1
e−iχ(n+1−N/2)2t |n,N − 1− n〉F (12)

The purity of the state (10) is

Tr
{

ρ21
}

=
1

2

(

1 + |〈ψ0|ψ1〉|2
)

=
1

2

(

1 + (cosχt)2(N−1)
)

, (13)

whih leads us to the following PC

PC =
1

2
[1− (cosχt)2(N−1)] (14)

The formula manifests di�erent entangles states appearing in the evolution, mentioned before. Note

that although PC reahes its maximal value 1/2 exatly at �at� time, it stays lose to 1/2 in a

muh wider range of times deteting entanglement [2℄.

C. Properties and omparison with other riteria and entanglement measures

Essentially PC is used to qualify the bipartition entanglement, where one part is just a single

atom (qbit), and the seond part onsists of the other N − 1 atoms. Up to prefators, PC oinides

in speial ases with quantities sensitive to quantum orrelations already disussed in the literature.

In ase of two quits, the onurrene is de�ned as

Concurrence ≡
√

2
(

1− Trρ2red
)

. (15)
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FIG. 1: Purity hange PC as a funtion of time. The initial oherent spin state is evolving under the

Hamiltonian H = χŜ2
z .

so that in this ase

PC =
(Concurrence)2

2
. (16)

PC is also a partiular form of the onditional entropy I that is the di�erene between the entropy

of the total density matrix and of the redued density matrix [3℄:

I ≡ S (ρAB)− S (TrB {ρAB}) . (17)

When evaluated for the linear entropy Slin = 1−Tr
{

ρ2
}

the onditional entropy I gives bak PC

Ilin = −PC (18)

The onditional entropy with linearized entropy was already used, and benhmarked against di�er-

ent versions of onditional entropy in [4℄.

II. ENTANGLED STATES IN THE STRONG COUPLING REGIME

The entangled states that we �nd in the strong oupling regime are due to the joint e�et

of avity losses and atom-photon entanglement. To understand their nature, it is onvenient to

projet the system density matrix onto the symmetri subspae spanned by Fok states |m〉 ≡
∣

∣

N
2 +m, N2 −m

〉

F
, eigenstates of Sz with eigenvalue m ∈ [−N/2, N/2].

ρsym =
∑

m,m′

〈m|ρ|m′〉|m〉〈m′| (19)

〈m|ρ|m′〉 =
∑

ǫ1,ǫ2

〈m|ǫ1〉〈ǫ1|ρ|ǫ2〉〈ǫ2|m′〉 (20)
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�Werner-like� state
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b) SU(2) Wigner funtion
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d) SU(2) Husimi funtion
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FIG. 2: Left olumn: �Werner-like� state (23), Right olumn: state obtained in our system at 2κt = 2.5t0,

where we restrited to symmetrized subspae. The weight of the symmetrized subspae given by the trae

of ρsym (19) is 0.91 at this time. From top to bottom, we show the Wigner funtion, the Husimi funtion,

and the modulus of the density matrix elements in the Fok basis

.

The trae of ρsym tells us about the importane of the symmetri subspae in our state.

Let us onsider for simpliity the ase without spontaneous emission: Γ = 0. From ombinatory



6

arguments and using Eq (5) of the main text, one derive

〈m|ρ|m′〉Γ=0 = pmpm′〈α(m)|α(m′))〉1+2κt

×eiκt[|α(m)|2(δ/κ+φ0m)−|α(m′)|2(δ/κ+φ0m′)]
(21)

where pm =
√

1
2N

( N
m+N

2

)

is the probability of �nding the Fok state |m〉 in the initial superposition

and Tr[ρsym] = 1, as the system remains in the symmetri state. We now evaluate the overlap

〈α(m)|α(m′)〉1+2κt
m6=m′ (�rst line in (21)) for large φ0. Using the formula | 〈α|β〉 |2 = e−|α−β|2

, and the

dependene of the avity oherent state α(m) upon the atomi state with δ = κ ≃ κeff

α(m) =
η/κ

1 + i(1 + φ0m)
(22)

that we expand for φ0m≫ 1 ifm 6= 0, one sees that 〈α(m)|α(m′)〉1+2κt
m6=m′ tends to zero ifmm′ = 0 on a

timesale t0 = 2κ/η2 while ifmm′ 6= 0 it stays lose to one for a long time sale (κ/η2)φ20(mm
′/(m′−

m))2 ≥ t1 = (κ/η2)φ20/4.

In a timesale t0, the initial oherent state |ψ(t = 0)〉 =
√
p0 |m = 0〉 + √

1− p0
∣

∣ψ⊥〉
is thus

mapped to the mixture of a twin Fok state |m = 0〉 and the state

∣

∣ψ⊥〉
:

|ψ(t = 0)〉 7→ p0 |m = 0〉 〈m = 0|+ (1− p0)
∣

∣

∣
ψ⊥

〉〈

ψ⊥
∣

∣

∣
(23)

that survives for a time t1 ≫ t0. We will refer here to the state (23) as to the �Werner-like"

state. A omparison between the �Werner-like" state and the state that we atually produe in

our system, with spontaneous emission is shown in Fig.2 and we note that the main features are

indeed the same. Furthermore, the purity of the state obtained in the simulation (with spontaneous

emission) niely mathes the analytial value p20 + (1 − p0)
2
obtained for the state (23). It is also

straightforward to trae out a single atom from the "Werner-like" state and to ompute purity of

the resulting redued density matrix

Tr2,...,N [(Tr1ρWerner−like)
2] =

1

2
p20 + p0 q0 +

1

2
(1− q0)

2 +
1

2
(1− 2q0)

2 , (24)

where q0 =
1

2N−1

(N−1
N/2

)

. Finally the purity hange of "Werner-like" state is:

PC = −1

2
p20 + p0 q0 +

1

2
(1− q0)

2 +
1

2
(1− 2q0)

2 − (1− p0)
2. (25)

We heked for N = 50 that the state appearing in evolution at the time t has approximately this

purity hange. An example of suh omparison is given also for N = 10 in Fig. 3 of the main text.
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A. Fisher Information of "Werner-like"state

The Fisher Information of any mixed state is de�ned via the ovariane matrix:

γij [ρ] =
1

2

∑

l 6=m

Cij [|m〉 , |l〉] , (26)

where

Cij[|m〉 , |l〉] = (λl − λm)2

λl + λm
ℜ{〈l|Si|m〉〈m|Sj |l〉} (27)

and |l〉, |m〉 are eigenvetors of the density matrix ρ with eigenvalues λl and λm, respetively. Si

with i = x, y, z are angular momentum operators. The optimal Fisher information IF of a mixed

state is equal to the largest eigenvalue of the matrix γ, multiplied by 4:

IF = 4max {λ ∈ R+ : γ |λ〉 = λ |λ〉} . (28)

To �nd the expliit form of the matrix (26) one has to �nd the eigenvetors and eigenvalues of

the "Werner-like" state. Two eigenvetors an be read diretly from Eq. (23):

• the twin Fok state |m = 0〉 with eigenvalue p0

•
∣

∣ψ⊥〉
with eigenvalue (1− p0).

The other eigenstates span the N −1 dimensional spae, orthogonal to both

∣

∣ψ⊥〉
and |N/2〉. Eah

of these eigenvetors have the eigenvalue equal to 0.

We heked that the matrix γ is diagonal. These diagonal terms are equal to

γxx = N2p0

(

3

4
− p0 −

1

4 (1− p0)

)

+
1

4
p0 (N + 1) , (29)

γyy =
1

8
N2p0 −

3

8
Np0 +

1

2
N, (30)

γzz =
N

4
. (31)

In the main text we ompute the Fisher information of the Werner-like state diretly from (28)

and from the formulas giving the diagonal terms of the ovariane matrix (29)-(31).

In the limit N ≫ 1, we approximate p0 with

1√
2πN

. It turns out that in this limit the largest

eigenvalue of the ovariane matrix Cij is γxx. This leads to the following saling of the Fisher

Information

IF
N≫1
= 2

√

2

π
N3/2. (32)
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B. Role of spontaneous emission
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FIG. 3: Fisher information IsymF of the density matrix projeted onto symmetri subspae ρsym. The olored

Z axis is log(IF)/ logN (whih is equal to 2 for a at state and equal to 1 for a oherent state). All values

smaller than 1 are projeted to 1.

Top: 50 atoms, bottom: 200 atoms. The �rst olumn : no spontaneous emission emission (Γ = 0), the

seond olumn : Rubidium like spontaneous emission (∆/Γ = 500).

In the presene of spontaneous emission, the state leaves the spae spanned by the Fok basis (

so the "symmetri subspae"), where the "Werner-like" states lives. It is not easy to verify to whih

extent the state produed during evolution mathes the "Werner-like" state in ase of spontaneous

emission and large number of atoms.

To understand better the role of spontaneous emission at least for mesosopi systems, we

ompared the Fisher Information of the symmetri part of the density matrix, denoted as IsymF in

two ases: evolution with and without spontaneous emission. In ase without spontaneous emission

the Fisher Information of the symmetri subspae, IsymF is equal to the total Fisher Information

IF . However if the spontaneous emission is present, then we have IsymF < IF . In Figure 3 we show

landsape of the Fisher Information (a ounterpart of Fig. (2) from the main text) for these two

ases and for two number of atoms: N = 50 and N = 200. The Fisher Information in the strong

oupling regime orresponding to large values of φ0
√
N is a�eted, but not ompletely hanged.
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This suggests that in this regime the state will remain in the symmetri subspae and it will remain

entangled. We see also the typial feature of entangled states: the more atoms in the sample, the

more sensitive is the state to deoherene. On the other hand, the Fisher Information in the region

φ0
√
N ≪ 1 is ompletely damped by the spontaneous emission. The reason is that the state leaves

the symmetri subspae, and in this region one has to analyze the whole density matrix, as it is

done in the main part of the paper.

III. QUANTUM AVERAGES FOR A GENERALIZED Ŝ2
z MODEL WITH

DECOHERENCE

We onsider an e�etive Hamiltonian of the form

Heff/~ = χŜ2
z −

i

2

∑

α∈jumps

d†αdα (33)

with the jump operators

dc =
√

ΛCŜz (34)

diel =
√

ΛRay/2|σ〉〈σ|i; σ = 0, 1 (35)

diRam =
√

ΛRam|σ〉〈σ′|i; σ 6= σ′; σ, σ′ = 0, 1 (36)

diX =
√

ΛX|X〉〈σ|i; σ = 0, 1; X 6= 0, 1 (37)

The quantum averages an be obtained analytially :

〈Sx〉 =
N

2
e−ΛCt/2e−(ΛX+ΛRam+ΛRay)t (H1(t))

N−1

〈

S2
z

〉

=
N

4
e−ΛXt

〈n̂0 n̂1〉 =
N(N − 1)

4
e−2ΛXt

〈

S2
y

〉

=
N

4
e−ΛXt +

(N − 1)N

8
e−2(ΛX+ΛRay+ΛRam)t

(

1− e−2ΛCt (H2(t))
N−2

)

2Re 〈SzSy〉 =
N(N − 1)

2
e−ΛCt/2e−(2ΛX+ΛRay+2ΛRam)tG(t) (H1(t))

N−2

where, by introduing β = 1, 2 we have:

Hβ(t) =
β2χ2e−(ΛRam+ΛX)t

(

cosh(uβt) +
ΛRam+ΛX

uβ
sinh(uβt)

)

+ ΛX (ΛX + 2ΛRam)

β2χ2 + ΛX (ΛX + 2ΛRam)
(38)

G(t) =
χ sinh(u1t)

u1
(39)

uβ =
√

Λ2
Ram − β2χ2

(40)
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Starting from these exat formulas for quantum averages, in the limit of large number of atoms and

short evolution times and in the ase of Rayleigh and Raman satterings only (namely if ΛX = 0),

we reover the approximate results given in Eqns. (20) - (24) in the paper [6℄.

A. Reovering an e�etive Ŝ2
z

Adiabati elimination of the avity �eld. The �eld within the avity falls onto a stationary

state on a timesale 1/κeff . As a onsequene, for longer times, at whih squeezing arises, we an

treat the avity �eld as a onstant, but with the value depending on the state of atoms. Hene, it

is reasonable to eliminate the avity �eld from the desription by performing adiabati elimination.

In pratie it amounts to replae in the initial master equation the operators ĉ and ĉ† by α(Ŝz) and

α∗(Ŝz) where α(Ŝz) is the amplitude of the stationary oherent state in the avity for a given Ŝz

α(Ŝz) =
η

κeff + i(δ + κφ0Ŝz )
with κeff = κ



1 +
(N0 +N1)φ0Γ

4∆

∑

L=Ray,Ram,X

aL





N≪ ∆
Γφ0≃ κ,

(41)

where we have introdued aRay = 2aσ,σ, aRam = |aσ′,σ|2/aσ,σ and aX =
∑

X 6=0,1 |aXσ |2/aσσ and

aσσ′
are de�ned in the last setion of this supplementary material. Here Nσ is the number of atoms

in the state |σ〉. Then the Hamiltonian, Eq. (1) of the main text, takes the form:

H/~ = −
∣

∣

∣
α(Ŝz)

∣

∣

∣

2 (

δ + κφ0Ŝz

)

(42)

whereas the jumps, Eq. (2) of the main text, are transformed into

di,el =

√

ΓRay

2
(|1〉 〈1| − |0〉 〈0|)i α(Ŝz) (43)

di,σσ′ =
√

ΓRam |σ〉
〈

σ′
∣

∣ α(Ŝz) (44)

di,Xσ =
√

ΓX |X〉
〈

σ′
∣

∣ α(Ŝz) (45)

dc =
√
2κ α(Ŝz) (46)

where rates ΓRay, ΓRam,ΓX are de�ned in the main text.

This elimination is valid as long as the entanglement between internal degrees of freedom of

atoms and photons is relatively small. More preisely, in the alulation of atomi observables

for squeezing, that involve only one or two body oherenes, the adiabati elimination amounts to

replaing by one the overlaps 〈α(m)|α(m± 1)〉 and 〈α(m)|α(m± 2)〉, whih is orret as long as

φ0 ≪ 1.
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Expansions with respet to small parameter. The main idea for further simplifying the

master equation relies on the Taylor expansion of α in powers of ǫŜz, one we identify a small

parameter ǫ. To this aim we introdue the ritial atom number, Eq. (12) in the main text

Nc ≡
(

4∆/Γ

aRay + aRam + aX

)2

. (47)

1. Case : N ≪ Nc and φ0
√
N ≪ 1

Both onditions N ≪ Nc and φ0
√
N ≪ 1 together guaranties that the broadening of the avity

line width due to spontaneous emission is negligible, namely

κeff
κ

− 1 ≈ N
φ0
4

Γ

∆
<

1

4

√

N

Nc
≪ 1 (48)

The dispersion of Ŝz operator is equal to
√
N/2, hene if φ0

√
N ≪ 1 ( whih is the seond ondition

haraterizing this regime) then the quantity φ0Ŝz is small and an be used as the small parameter

in the expansion.

The Taylor expansion of the master equation lead us to

Heff/~ = v Ŝz + χŜ2
z −

i

2

∑

α∈jumps

d†αdα (49)

whih has the form of the general Hamiltonian (33) of setion III, plus a drift term, with the jump

operators (37) where now the rates are given by

v =
|η|2φ0κ
δ2 + κ2

χ = − |η|2φ20 δκ2
(δ2 + κ2)2

(50)

ΛC =
2κ

δ
|χ| ΛRam/aRam = ΛRay/aRay = ΛX/aX =

κφ0
4

Γ

∆

|η|2
δ2 + κ2

∝ χ

φ0
(51)

For δ = κ we �nally obtain

χ = −1

4
η2φ20; ΛC = 2|χ|; (52)

ΛRam/aRam = ΛRay/aRay = ΛX/aX =
|χ|
2φ0

Γ

∆
≡ |χ|

4C
, (53)

where we introdued the ooperativity C = g2/κΓ = φ0∆/(2Γ) ≈ φ0
√
N
√

Nc/N . From (53) the

ratio Γ/χ between the spontaneous emission and squeezing rates sales as 1/C. This explains the

fat that spontaneous emission deteriorate the squeezing in the weak oupling regime as one an

see in Fig. 4 of the main text. On the other hand one an show that if N−1/10 ≪ φ0
√
N ≪ 1 then
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the squeezing is limited mostly by avity losses, whih plays here larger role than sattering into

free spae. The best squeezing and the time at whih this squeezing is reahed are given by:

ξ2min =
5

6
(3)4/5N−2/5; (54)

tmin =
2

η2φ20
(3)1/5N−3/5. (55)

2. Case N ≫ Nc , φ0
√
N ≫ 1

Due to the assumption N ≫ Nc the rate of photon losses in the empty avity, κ, is muh smaller

than the rate of sattering a single photons on some of atoms.

κeff
κ

= 1 +N
φ0
4

Γ

∆
>

√

N

Nc
> 1 (56)

We again expand the oherent state amplitude in a Taylor expansion,

∆
NΓ

√
N =

√

Nc

N being the

small parameter. When repeating the steps from the previous part we fall bak again into the

Hamiltonian (33) of setion III, plus a drift term. In ase of Rayleigh jumps, the resulting quantum

averages are well desribed by the model (33) with rates:

χ =
η2

2

(

κφ0
κeff

)3

; ΛC = 2χ; ΛRay =
χ

4

(

Γ

∆
aRay

)2

N (57)

In the limit N → ∞ the squeezing onverges to a small onstant

ξ2opt = e

(

Γ aRay

∆

)2

χtbest = 2

(

∆

ΓaRay

)2 1

N
(58)

In the more general ase, assuming laser-avity detuning equal to δ = λκeff one obtains:

ξ2 =
1 + λ2

2λ2

(

Γ

∆
aRay

)2

e χtbest =
4λ

1 + λ2

(

∆

ΓaRay

)2 1

N
(59)

IV. CALCULATION OF THE EFFECTIVE JUMPS RATES

The aσ′σ oe�ients entering the expressions of the jump operators modeling the e�et of spon-

taneous emission are alulated for the

87
Rb D2 line as follows [5℄:

aσ′σ = ∆

∣

∣

∣

∣

∣

∣

∑

e,q′

〈σ′|dq′ |e〉〈e|dq |σ〉
ωp − ωσ,e

∣

∣

∣

∣

∣

∣

. (60)
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FIG. 4: Spin squeezing optimized over time and φ0 as a funtion of total number of atoms, for ∆/Γ = 10

and (η/κ)2 = 10−2
. Solid line: full model, Eq. (5) of the main part of the paper, with avity losses and

Rayleigh sattering with aRay = 0.702. Dot-dashed blue line: analytial results (55) in the regime of small

number of atoms N ≪ Nc and small φ0
√
N ≪ 1 desribed in the subsetion IIIA 1. Horizontal dot-dashed

green line: analytial results (58) in the regime with large number of atoms N ≫ Nc and large φ0
√
N ≫ 1

desribed in the subsetion IIIA 2.

The eletri dipole moment matrix element 〈σ|dq |e〉 is normalized to one for the losed transition

|F = 2,mF = 2〉 → |Fe = 3,me = 3〉, q is the laser polarization, ωp the laser frequeny and ωσ,e the

atomi transition frequeny from |σ〉 to |e〉. The sum goes over all exited states |e〉 of the 5P3/2

manyfold and all polarizations q′ = −1, 0, 1.

The lightshifts for the |σ〉 and |σ′〉 states are equal and opposite when

∣

∣

∣

∣

∣

∑

e

|〈e|dq|σ〉|2
ωp − ωσ,e

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

e

|〈e|dq |σ′〉|2
ωp − ωσ′,e

∣

∣

∣

∣

∣

. (61)

We �nd the laser frequeny that ful�lls this ondition for |σ〉 = |F = 1,mF = 0〉 and |σ′〉 = |F =

2,mF = 0〉 and q = 0. We then alulate the aσ′σ from (60).
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