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Introduction

The Abel-Jacobi theorem is an important result of algebraic geometry. The theory of divisors and the Riemann bilinear relations are fundamental to the developement of this result: if a point O is fixed in a Riemann compact surface X of genus g, the Abel-Jaobi map identifies the Picard group P ic O (X) the quotient of divisors of a group of degree zero on the sub-group of divisors associated to meromorphic functions. The Riemann surface of genus g ≥ 1 can be embedded in the Jacobian variety Jac (X) via the Abel-Jacobi. In fact we generally have a map:

X (g) = X g /S g -→ Jac (X)
such that X (g) may be provided with an analytical structure. Indeed the two sets X (g) = X g /S g , Jac (X) are algebraic varieties and the map

X (g) -→ Jac (X)
is surjective. For reasons of dimension we can verify that is finite fibers. In fact this is a birational map.

Riemann bilinear relations

Let X be a compact Riemannian surface. Recalling that,

H 1 (X, Z) ≅ Z 2g and H 1 dR (X, R) ≅ R 2g
where g is the genus of S. The following map

H 1 (X, Z) × H 1 dR (X, R) -→ R (γ, ω) -→ γ ω
makes these two spaces in duality: for a basis γ 1 ..., γ 2g in H 1 (X, Z) there exist a dual basis (ω 1 ..., ω 2g ) inH 1 dR (X, R) such that for i,j = 1, ..., 2g

γ i ω j = δ ij 1
The intersection product

H 1 (X, Z) × H 1 (X, Z) -→ Z (γ 1 , γ 2 ) -→ γ 1 #γ 2
defines an antisymetric bilinear form on H 1 (X, Z), which has a corresponding symplectic bases Proposition 1 For any symplectic basis (a 1 , ..., a g , b 1 , ..., b g ) of H 1 (X, Z) and for any closed 1-formes η and η ′ on the surface X we have

X η ∧ η ′ = g k=1 a i η b i η ′ - a i η ′ b i η
Preuve. Let (a 1 , ..., a g , b 1 , ..., b g ) be a symplectic basis of H 1 (X, Z) associated with a cuuting S into a 4g-Gones quotes ∆:

A 1 B 1 A ′ 1 B ′ 1 , ....., A g B g A ′ g B ′ g
, where A i and A ′ i are identified by the map ϕ i and B i , B ′ i are identified by the map ψ i as in the following figure . Differential formes can be seen as differential formes on ∆. Since this last is simply connected, so there exist a function f such that df = η. So for each x ∈ A and for each y ∈ B we have:

(1) :

b i (x) df = b i η = f • ϕ i (x) -f (x) (2) : a i (x) df = a i η = f (x) -f • ψ i (x) Stokes formula implies S η ∧ η ′ = ∆ η ∧ η ′ = D d f η ′ = ∆ f η ′ = g k=1 A i +B i -A ′ i -B ′ i f η ′
And it follows from the formulas (1) and ( 2):

A i -A ′ i f η ′ = A i (f -f • ϕ i (x)) η ′ = - b i η a i η ′ B i -B ′ i f η ′ = B i (f -f • ψ i (x)) η ′ = a i η b i η ′
which proves equality

Remarque 2 If the surface X is provided with a riemann structure, and if η η ′ are holomorphic 1-forms, then X η ∧ η ′ = 0

Proposition 3 Let X be a compact Riemannian of which is fixed 2g simple closed curves (a 1 , ..., a g , b 1 , ..., b g ), forming a symplectic basis of the space H 1 (X, Z) and let ω 1 be a holomorphic 1-form on X and ω 2 non-sigular 1meromorphic form along all the curves a i b i . Given a point

z 0 ∈ X -{a i b i } such that, u (z) = z z 0 ω 1 , then 2iπ Res (u.ω 2 ) = g i=1 a i ω 1 b i ω 2 - a i ω 2 b i ω 1
Preuve. The proposal follows from the Residue formula and equations

(1) and ( 2

) : 2iπ Res(u.ω 2 ) = ∂∆ u.ω 2
Whether now (a 1 , ..., a g , b 1 , ..., b g ) is a 2g simple closed curves on a compact Riemann surface X which form basis of the space H 1 (X, Z) and (ω 1 , ..., ω g ) is a fixed basis of the space of 1-holomorphic forms on X.

Dfinition 4 Let's call the period matrices A, B ∈ M g (C) defined by

A ij = a i ω j B ij = b i ω j
Thorme 5 (Riemann bilinear relations)

1. The matrix A is invertible 2. The matrix Ω = A -1 B is symetrical and its imaginary part Im Ω = (Im Ω ij ) i,j≤g is positive definite Preuve. Whether λ = (λ 1 , .., λ g ) ∈ C g such that g i=1 λ i A ij : j = 1, ..., g. Consider the holomorphic 1-form ω = g i=1 λ i ω i
By definition of the matrix A, we have:

a i ω = 0 = g i=1 λ i A ij so is a i ω = 0
Then it follows from the Proposition1,

a i ω ∧ ω = 0 : ω = 0 so λ i = 0, i = 1, ...., g.
For the other one, we easily verify that Ω is independent of the basis (ω 1 , .., ω g ). Since the matrix A is invertible, so a base change we can consider A = I: A ij = δ ij . Hence Ω ij = B ij , and it still follows from the Proposition1:

0 = X ω i ∧ ω j = g k=1 a k ω i b k ω j - a k ω j b k ω i = b i ω j - b j ω i Finally, if v = (v 1 , .., v g ) ∈ R g -{0}
, then we have:

t v. Im Ω.v = i 2 X η ∧ η > 0, when η = g k=1 v k ω k 3 Lattice of periods
Let X be a compact Riemannian surface with two 2g fixed simply closed curves which form a basis of the space H 1 (X, Z), (ω 1 , .., ω g ) a basis of the space Ω 1 (X) of holomorphic 1-forms is fixed. The image of the folloing map

p : H 1 (X, Z) -→ Ω 1 (X) * γ -→ p (γ) is a lattice Λ in Ω 1 (X) * , where p (γ) (ω) = γ ω.
Dfinition 6 We call Λ the lattice of periods. The dual basis (ω 1 , .., ω g ) identifies the space Ω 1 (X) * to C g . As a lattic in the space C g , Λ = AZ+BZ Remarque 7 Note that the set Λ is a lattice since it comes from the Riemann bilinear relations and the real range of (A, B) is equal 2g. The Riemann bilinear relations even show that Λ is a particular lattice.

Dfinition 8 A divisor on a Riemannian surface is the data of a finite set the points (P i , n i ), wheited by nonzero inegers. The set of divisors is naturally equipped with a commutative group structure. It is a Z-module generated by X. A diviser is called effective if its degree i n i = 0, and the divisor D is principal if D = div (f ) is given by the pôles and zeros of a meromorphic function f .

Notation 9 D = i n i P i , deg D = i n i 4 Abel-Jacobi map
Wether O and P are two points of a Riemann compact surface X. Two paths γ and γ ′ link O to P in X differ only by a factor of H 1 (X, Z). In another word: p (γ) = p (γ ′ ) (mod Λ) . For any path γ the following map where f is a méromorphic function and we set

u O : X -→ C g /Λ P -→ γ ω 1 , ...,
ω = df 2iπf We note F k (z) = z O ω k for k = 1, ...., g. So Proposition3 implies Res F k df f = g j=1 a j ω b j ω k - a j ω k b j ω
The right side is a linear combination in integers of periods a j ω k , b j ω k as integer, because the periods of the 1-form ω are integers (Resudue formula). The left side is equal to Thorme 13 (Abel) The Abel-Jacobi map is injective Preuve. Whether D = P n P P is a divisor of degree zero such that u (D) = 0, we will finde a meromorphic function f such that D = div (f ). Indeed we will construct a 1-form

ω = df 2iπf
Let ω be a 1-meromorphic form on the surface S with simples pôles in the points P of divisor D with residues n P . Hence once again by Proposition1:

u (D) = P n P u O (P ) = Res (u O ω) = g j=1 a j ω b j ω k - a j ω k b j ω k=1,...,g
We will modify ω so that all its periods will become integers:

Lemme 14 Whether x 1 , .., x g , y 1 , .., y g are complexe numbers, then there exists a holomorphic 1-form η such that

a i η = x i and b i η = y i if and only if g k=1 y k a k ω i -x k b k ω i = 0 i = 1, ..., g
Preuve. As the matrix A is invertible, then the vectors a 1 ω 1 , ..., ag ω g i = 1, ..., g are linearly independent. Now the following linear map is surjective

Φ : C 2g -→ C g (x 1 , .., x g , y 1 , .., y g ) -→ g k=1 y k a k ω k -x k b k ω i i=1,...,g
So dim ker Φ = g. But if η is a holomorphic 1-form, η ∧ ω i = 0 : i = 1, ..., g, and then Proposition1 implies

a 1 η, ..., ag η, b 1 η, ..., bg η ∈ ker Φ
The lemma follows from that the dimension of the space of the holomorphic 1-forms is equal to the geneus g. Since u (D) = 0 in the quotient C g /Λ, then there exists integers (A 1 , .., A g , B 1 , .., B g ) such that

g k=1 a k ω -B k a k ω i -a k ω -A k a k ω i i = 1, ..., g
So by the lemma above, there exists a holomorphic 1-form η such that all the periods of the 1-form η -ω are integers. Hence we can consider that ω has ineger periods. A primitive of the form between O and z gives the meromorphic function

f (z) = exp 2iπ z O ω which is well defined, satisfying div (f ) = D
Thorme 15 (Jacobi) The Abel-Jacobi map is injective Preuve. The map u is a group morphism. So it suffices to show that the image of the map u contains a neighborhood of the point O. This will follow from the inverse function theorem:

Lemme 16 There exists g distincts points P 1 , .., P g ∈ X such that any holomorphic 1-form which vanishes in each P k is identically zero Preuve. For any point P ∈ X the sub-space

H P = ω ∈ Ω 1 (X) * : ω (P ) = 0 is of codimension ≤ 1 in Ω 1 (X). But the intersection ∩ P ∈S H P
is trivial and dim Ω 1 (X) = g. Then there exists points P 1 , .., P g ∈ S such that H P 1 ∩ ... ∩ H P 2 ∩ H Pg = 0

Let P 1 , .., P g ∈ X be fixed points as in the lemma with simply connected disjoint local coordonates (U i , z i ) around these points and z i (P i ) = 0 i ≤ g. In fact each 1-form ω i is written as:

ω i = ϕ ij dz j on U j
The matrix ϕ ij 1≤i,j≤g is invertible by lemma above. Consider now the following map

F : U 1 × ... × U g -→ C g z = (z 1 , .., z g ) -→ (F 1 (z) , .., F g (z))
such that

F i (z) = g j=1 z j P j ω i : i = 1, ..., g
The integral

z j P j ω i
is well defined since each U i is simply connected. Hence the map F is differentiable in complexe coordonates z 1 , .., z g and the expression of the jacobian matrix is

∂F i ∂x j 1≤i,j≤g (P ) = ϕ ij (P ) 1≤i,j≤g
This matrix is invertible in the point P = (P 1 , .., P g ). So by the local inverse theorem we have a neighborhood of F (P ) = 0:

W = F (U 1 × ... × U g ) ⊂ C g Finally if ξ ∈ W then there exists points Q 1 , .., Q g ∈ C g such that   g j=1 Q j P j ω 1 , ..., g j=1 Q j P j ω g   = ξ In another wordrs u   g j=1 (Q j -P j )   = ξ
Summarizing the theorem of Abel-Jacobi:

Thorme 17 (Abel-Jacobi) The Abel-Jacobi map u : P ic (X) -→ Jac (X) = C g /Λ is bijective Furthermore whether a point O ∈ X is fixed, we have the following map

u O : X -→ Jac (X) P -→ u (P -O)
When g = 1 this map is an isomorphisme. In general it is still:

Proposition 18 If the genus g ≥ 1, the map u O : X -→ Jac (X) is an embedding

Preuve. Since S is compact, it suffices to show that u O is an injective immersion map. Let's prove firstable u O is injective. Suppose by contradiction that u O (P ) = u O (P ′ ) . So the map u concels on the divisor of degree zero, P -P ′ . This last is the divisor of a meromorphic function f . This one has a single pole and a single zero; so it is a map: X -→ CP 1 of degree one. Thus is absurde since g ≥ 1. Let's prove that u O is an immersion map. As in the proof the Abel-Jacobi theorem: d P u O (ξ) = (ω 1 (P ) (ξ) , ..., ω g (P ) (ξ))

The proposition follows again from the local inverse theorem and the next lemma

Lemme 19

The holomorphic 1-forms (ω 1 , .., ω g ) have no common zero Preuve. Once again by contradiction: if a point P is a common zero. According to Riemann-Roch theorem: the dimension of the space of holomorphic functions having more then one simple pole in P equals: deg u O -g + 1 + dim ω ∈ Ω 1 (X) : ω (P ) = 0 = 1 -g + 1 + dim ω ∈ Ω 1 (X) : ω (P ) = 0 = 2 Then there exists a function f ∈ X, which has a unique simple pole in P . So it is a map f : X -→ CP 1 of one degree, when even an absurdity since g ≥ 1 http://arxiv.org/ps/1507.05345v1

Pn

  P F k (P ) Finally the k th coordonate of the image u O (P ) equals F k (P ). Whether we change the point O in another one O ′ ∈ X in another one, then u But the sum of the right hand is zero, because the degree P n P = 0 Dfinition 12 The map u defined as above is called the Abel-Jacobi map

  γ ω g is well defined, but depending on the point O. Moreover, for each point P ∈ X we can associate the divisor P -O of degree zero. A divisior div (f ) associated to a meromophic function f is also of degree zero.Dfinition 10 The set of divisors of degree zero is naturally an Abelian group. We call group of Picard P ic O (X) the quotient of divisor group of degree zero by the sub-group of divisors associated to meromorphic functions Proposition 11 The map u O extends naturally into a group morphism:

	u : P ic O (X) -→	C g /Λ
	n P P	-→
	P	

P n P u O (P ) which does not depend on the point O Preuve. Let's show first the map u is well defined.Wether div (f ) = P n P

Remarque 20 Once a point O ∈ X is fixed we have more generally a map

and X (g) can be provided with an analytical structure. We showed that the map X (g) -→ Jac (X) is surjective. For reasons of dimensions we can verify that is finite fibers. We can show:

-X (g) and Jac (X) are algebraic variety -The map X (g) -→ Jac (X) is birationnal