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LAMA, UMR-CNRS 8050,

Université Paris Est – Marne-la-Vallée

Abstract
Confident prediction is highly relevant in machine learning; for example, in applications

such as medical diagnoses, wrong prediction can be fatal. For classification, there already
exist procedures that allow to not classify data when the confidence in their prediction is
weak. This approach is known as classification with reject option. In the present paper,
we provide new methodology for this approach. Predicting a new instance via a confidence
set, we ensure an exact control of the probability of classification. Moreover, we show that
this methodology is easily implementable and entails attractive theoretical and numerical
properties.

Keywords : Classification, classification with reject option, conformal predictors,
confidence sets, plug-in confidence sets.

1 Introduction
Binary classification aims at assigning a label Y ∈ {0, 1} to a given example X ∈ X . The goal
is then to build a classification rule s : X → {0, 1} so that s(X), the predicted label for the
observed example X is as close as possible to the label Y . In this framework the question of
confident prediction, which results in wondering how accurate is the prediction s(X), becomes
a central question. Doubts about the confidence of the predicted label s(X) may arise in these
situations: if the conditional probability η∗(x) = P(Y = 1|X = x) is close to 1/2 so that the
feature x might be hard to classify whatever the classification rule is; or, if the classification
rule is inefficient. In such cases, it is worth considering procedures that allow to not classify an
observation when the doubt is too important. We talk about classification with reject option.
This setting is particularly relevant in some applications where wrong classification may lead
to big issues: it is hence better to not assign a label rather than to assign a non confident
one. Procedures for classification with reject option has been studied by several authors [Cho70,
NZH10, GRKC09, VGS99, VGS05, HW06, BW08, WY11, Lei14] and references therein. In this
context, two questions arise: how to determine whether we should classify an example or not;
and how to take into account the reject option? The works on classification with reject option
can be separated according to two approaches.

i) The works which rely on the conformal predictors algorithm [VGS99, VGS05]. The general
idea of conformal prediction is to build for a given feature X a set Γ(X), which takes its value
∗Christophe.Denis@u-pem.fr
†Mohamed.Hebiri@u-pem.fr
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in {∅, {0}, {1}, {0, 1}}, and contains the true label with high probability. The feature X is
not classified if card(Γ(X)) 6= 1. One of the most important ideas behind the construction of
conformal predictors is the notion of conformity. More precisely, the value of Γ(X) depends
on the similarity between the example X and an already collected labeled dataset. Then, the
procedure uses local arguments and can be seen as a transductive method [GKKW02, Vap98].
In terms of performance, the set Γ(X) is built in order to control the overall misclassification
risk: for a given significance level ε ∈ (0, 1), the set Γ(X) satisfies1 P (Y /∈ Γ(X)) ≤ ε. The
major drawback of the conformal prediction approach is that it does not take into account the
reject option in the risk. Moreover, if the significance level ε is too small, the resulting set Γ(X)
belongs to {∅, {0, 1}} for all X. Hence, the use of reject option is irrelevant.

ii) The other works rely on the setting provided in [Cho70, HW06, BW08, WY11]. In this
case, a classification rule with reject option sR takes its values in {0, 1, Re}, where sR(X) = Re
means reject: no label is affected to the instance X. In the above mentioned works, rejecting is
viewed as an error and for a fixed value of some parameter α ∈ [1/2, 1], the cost of the rejection
is 1 − α. Therefore, the risk function associated with a classifier with reject option is given
by Lα(sR) = P ({sR(X) 6= Y } and {X is classified}) + (1 − α)P ({X is rejected}). The results
provided in [Cho70] illustrate that the optimal reject procedure for Lα is given by

s∗Rα(X) =


0 if η∗(X) ≤ 1− α,
1 if η∗(X) ≥ α,
Re otherwise.

Herbei and Wegkamp [HW06] study the asymptotic optimality of procedures based on plug-in
rules or on empirical risk minimization. We address some limits of this approach. First, the choice
of the parameter α is fundamental for the procedure and fixing it is tricky. As an immediate
consequence, if the value of parameter α is either too small or too large, the use of reject option
can be irrelevant. Moreover, this approach does not allow to control any of the two parts of
the risk function, in particular the rejection probability. Hence, comparing two classifiers with
reject option in terms of the risk function Lα remains difficult to interpret: they do not have
necessarily the same rejection probabilities.

Both approaches previously presented bring into play the reject option through rather a set
(conformal predictor) or a classifier with reject option. However, none provides a control on the
probability of classifying a feature. In the present paper we consider a new way to tackle the
problem of classification with reject option. We aim at controlling the rejection probability and
at bounding the misclassification risk restricted to the set of label examples. Both considerations
are new. For a given classifier s and a feature X, our methodology involves a statistical procedure
which provides a set Γs(X) ∈ {{0}, {1}, {0, 1}}, namely a confidence set. We introduce in the
present work oracle confidence sets, says Γ∗, which relies on a score function deduced from η∗ and
also on its cumulative distribution function. The main characteristic of oracle confidence sets
is that they are able to control exactly the rejection probability P(Γ∗(X) = {0, 1}): under mild
assumption, we get level-ε-confidence sets. These sets are called ε-confidence sets. This aspect
makes our procedure prevent irrelevant use of reject option. Hence we do not view the reject
as an error but simply as a parameter that we are able to control; moreover, we evaluate the
quality of a confidence set through the misclassification risk conditionally on the set of classified
examples. That is, for a given classification rule s, we focus on the control of the risk function
R(Γs) = P (Y ∈ Γs(X) | {X is classified}). To the best of our knowledge, none of the earlier

1In the terminology of conformal predictors, both of the outputs ∅ and {0, 1} mean that no label is assigned.
Both are important to be able to guarantee the exact control of the overall misclassification risk regardless of the
classification rule used to build the set Γ(X).
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works provides a control of this risk neither of the rejection probability. According to the risk
functionR, for ε ∈]0, 1], the ε-confidence sets are shown to be optimal over the set of all confidence
sets with rejection probability equal to 1− ε. Another contribution of the paper is to provide an
algorithm which involves a consistent estimator of η∗ and yields a confidence set. For a given level
ε ∈]0, 1], we do not build only a single algorithm of constructing asymptotically level-ε-confidence
sets, but a general device that takes as input a consistent estimator of the regression function and
a unlabeled sample, and produces as output a confidence set which is provably asymptotically of
level ε and consistent (i.e., the excess risk tends to zero). The resulting confidence set is referred
as plug-in ε-confidence set. Furthermore, we establish rates of convergence under the Tsybakov
noise assumption on the data generating distribution. Moreover, these confidence sets have the
advantage of being easily implementable.

The rest of the paper is organized as follows. The definition and the important properties
of the ε-confidence sets are provided in Section 2. We also apply the ε-confidence sets in the
Gaussian mixture model. Section 3 is devoted to the introduction of the plug-in ε-confidence sets
and their asymptotic behavior. We present a numerical illustration of our results in Section 4.
We finally draw some conclusions and present perspectives of our work in Section 5. Proofs of
our results are postponed to the Appendix.

Notation: First, we state general notation. Let (X,Y ) be the generic data-structure taking its
values in X ×{0, 1} with distribution P. Let (X•, Y•) be a random variable independent of (X,Y )
and with the same law as (X,Y ). The goal in classification is to predict the label Y• given an
observation of X•. This is performed based on a classifier (or classification rule) s which is a
function mapping X onto {0, 1}. Let S be the set of all classifiers. The misclassification risk R
associated with s ∈ S is defined as

R(s) = P(s(X) 6= Y ).

Moreover, the minimizer of R over S is the Bayes classifier, denoted by s∗, and is characterized
by

s∗(·) = 1{η∗(·) ≥ 1/2},
where η∗(x) = P(Y = 1|X = x) for x ∈ X . One of the most important quantities in our
methodology is the function f∗ defined by f∗(·) = max{η∗(·), 1− η∗(·)}. It will play the role of
a score function.
Let us now consider more specific notation related to the classification with reject option setting.
Let s ∈ S be a classifier. A confidence set Γs associated with the classifier s is defined as a
measurable function that maps X onto {{0}, {1}, {0, 1}}, such that for an example X•, the set
Γs(X•) can be either {s(X•)} or {0, 1}. We decide to classify the example X•, according to the
label s(X•), if card (Γs(X•)) = 1. In the case where Γs(X•) = {0, 1}, we decide to not classify
(reject) the feature X•. Let Γs be a confidence set. The probability of classifying a feature is
denoted by

P (Γs) := P (card (Γs(X•)) = 1) . (1)
In our approach, the probability of classifying P (Γs) is not viewed as a success or an error but
simply as a parameter that we have to control. Hence, the definition of a confidence set makes
natural the following definition of the risk associated with Γs:

R (Γs) = P (Y• /∈ Γs(X•)|card (Γs(X•)) = 1)
= P (s(X•) 6= Y•|card (Γs(X•)) = 1) . (2)

The riskR (Γs) is the misclassification error risk of s conditional to the event that X• is classified.
Moreover, for some ε ∈]0, 1], we say that, for two confidence sets Γs and Γs′ such that P (Γs) =
P (Γs′ ) = ε, the confidence set Γs is “better” than Γs′ if R (Γs) ≤ R (Γs′ ).
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2 ε-confidence sets
In the present section, we define a class of confidence sets referred as ε-confidence sets which are
optimal according to the definition of risk (2). We always keep in mind that the classification
probability (1) will be under control. In Section 2.1, we define and state the important properties
of the class of ε-confidence sets. We then apply the ε-confidence sets to the Gaussian mixture
case in Section 2.2. We end up this section with a comparison to classifiers with reject option in
Section 2.3.

2.1 Definition and properties
The definition of ε-confidence sets relies on the Bayes classifier s∗ and the cumulative distribution
function of f∗(X).

Definition 1. Let ε ∈]0, 1], the ε-confidence set is defined as follows

Γ•ε(X•) =
{
{s∗(X•)} if F ∗f (f∗(X•)) ≥ 1− ε
{0, 1} otherwise,

where F ∗f is the cumulative distribution function of f∗(X) and f∗(·) = max{η∗(·), 1− η∗(·)}.

According to this definition, the construction of the ε-confidence sets relies on two important
features. First, if a label is assigned to a new feature X• by the ε-confidence set, it is the
one provided by the Bayes classifier s∗. Second, we assign a label to a new data X• if the
corresponding score f∗(X•) is large enough regarding the distribution of f∗(X). This is one of
the key ideas behind conformal predictors introduced in [VGS05].

The following assumption is fundamental to establish theoretical guarantees.

(A1) The cumulative distribution function F ∗f of f∗(X) is continuous.

One of the main motivations of the introduction of the ε-confidence set is that, if Assump-
tion (A1) holds, the procedure ensures an exact control of the probability (1) of assigning a
label

P(Γ•ε) = P(F ∗f (f∗(X•)) ≥ 1− ε) = ε. (3)
This happens since F ∗f (f∗(X•)) is uniformly distributed under Assumption (A1). Moreover,
under this assumption as well, one can rewrite the ε-confidence sets in a different way. Indeed,
for ε ∈]0, 1[, we have

F ∗f (f∗(X•)) ≥ 1− ε⇐⇒ f∗ (X•) ≥ (F ∗f )−1(1− ε),

where (F ∗f )−1 denotes the generalized inverse of the cumulative distribution function F ∗f (see
[vdV98]). Therefore, if we set αε = (F ∗f )−1(1 − ε) for ε ∈]0, 1[ and α1 = 1/2, Definition 1 is
equivalent to

Γ•ε(X•) =
{
{s∗(X•)} if f∗(X•) ≥ αε
{0, 1} otherwise.

(4)

Next, we provide the most important property of the ε-confidence sets:

Proposition 1. Denote by Γε the set Γε = {Γs; P(Γs) = ε}. Let Assumption (A1) be satisfied.

1. For any ε ∈]0, 1], the ε-confidence set satisfies the following property:

R (Γ•ε) = min
Γs∈Γε

R (Γs) .
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2. For ε ∈]0, 1] and for any Γs ∈ Γε, the following holds

0 ≤ R (Γs)−R (Γ•ε) = 1
ε
{E [|2η∗(X•)− 1|1C ] +

E [|η∗(X•)− αε|1A0∪B0 ] + E [|1− η∗(X•)− αε|1A1∪B1 ]}, (5)

where αε = (F ∗f )−1(1− ε) and

Ay = {f∗(X•) ≥ αε, card(Γs(X•)) 6= 1, s∗(X•) 6= y}, y = 0, 1,
By = {f∗(X•) < αε, card(Γs(X•)) = 1, s(X•) 6= y}, y = 0, 1,
C = {f∗(X•) ≥ αε, card (Γs(X•)) = 1, s∗(X•) 6= s(X•)}.

Several remarks can be made from Proposition 1. First, for ε ∈]0, 1], the ε-confidence set is
optimal in the sense that its risk is minimal over Γε, the class of all confidence sets that assign
a label with probability ε. Second, the excess risk of a confidence set is directly linked to the
behavior of the function f∗ around αε. This observation will play a major role in our main result
related to rates of convergence in the next section. Third, note that if we apply (5) with ε = 1,
which implies αε = 1/2, we obtain the classical result in classification

R(s)−R(s∗) = E
[
|2η∗(X•)− 1|1{s∗(X•) 6=s(X•)}

]
.

Let us conclude this section by stating a result that specifies the behavior of the risk associated
with the ε-confidence set w.r.t. the parameter ε:

Proposition 2. The function ε 7→ R(Γ•ε) is non decreasing on ]0, 1].

This result shows an expected fact: the larger the rejecting probability, the smaller the error.
In particular

R(Γ•ε) ≤ R(s∗) ∀ε ∈]0, 1].

2.2 ε-confidence sets for Gaussian mixture
In this section, we apply the ε-confidence set introduced in Definition 1 to the particular case of
Gaussian mixture model. We set X = Rd with d ∈ N \ {0}. Let us assume that the conditional
distribution of X given Y is Gaussian and that, for simplicity, the marginal distribution of Y is
Bernoulli with parameter 1/2. To fix notation, we set

X|Y = 0 ∼ N (µ0,Σ) and X|Y = 1 ∼ N (µ1,Σ),

where µ0 and µ1 are vectors in Rd and Σ is the commun covariance matrix. We assume that Σ is
invertible and denote by ‖·‖Σ−1 the norm under Σ−1: for any µ ∈ Rd we have ‖µ‖2Σ−1 = µ>Σ−1µ
where µ> stands for the transpose of µ. The following theorem establishes the classification error
of the ε-confidence set Γ•ε in this framework.

Proposition 3. For all ε ∈]0, 1], we have

R(Γ•ε) = P (Φ (Z) + Φ (Z + ‖µ1 − µ0‖Σ−1) ≤ ε)
ε

,

where Z is a standard normal random variable and Φ is the standard normal cumulative distri-
bution function.
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The proof of this proposition is postponed to the Appendix. Interestingly, in the Gaussian
mixture case, we get a close formula for the risk of the ε-confidence set. Moreover, this risk
depends on ‖µ1 − µ0‖Σ−1 as in the binary classification framework which corresponds to the
particular case ε = 1, where we do not use the reject option and where we get

R(Γ•1) = R(s∗) = 1− Φ
(
‖µ1 − µ0‖Σ−1

2

)
.

2.3 Relation with classifiers with reject option
The problem of classification with reject option has already been introduced in [Cho70]. More
recently the terminology of classifiers with reject option has been defined in [HW06]: a classifier
with reject option is a measurable function which maps X onto {0, 1, Re} where the output Re
means reject. For a parameter α ∈ [1/2, 1] and for sR a classifier with reject option, the risk
function considered in [HW06] is

Lα(sR) = P (sR(X) 6= Y , sR(X) 6= Re) + (1− α)P (sR(X) = Re) . (6)

This risk has been studied in the context of classification with reject option in the papers [HW06,
WY11] and references therein. We notice that the above risk looks at rejecting as a part of the
error in the same way as wrong classification. The parameter 1−α controls the trade-off between
these two "errors". In other words, the parameter 1−α is the cost of using the reject option. This
is a major difference with our point of view. Indeed, we recall that the probability of rejection
is a parameter in our setting, and then we do not include it in the risk (2). As a consequence,
if we bound the risk (2) while keeping under control the probability of classifying (1), we are
able to bound the risk (6). The reverse is not true. That is, controlling (6) does not provide any
control on the probability of rejection and one cannot avoid irrelevant use of the reject option
is some situations. This difference can be significant in some some practical situations where
the knowledge of P (Γs) is a relevant information. Indeed, when dealing with several examples
to label, controlling this probability ensures the amount of the data we wish label. Hence our
methodology prevents from irrelevant use of the reject option. For the same reason, a second
important feature that differs between both methodologies is that the comparison between two
confidence sets is easier than the comparison between two classifiers with reject option. Indeed,
for some ε ∈]0, 1], we say that, for two confidence sets Γs and Γs′ such that P (Γs) = P (Γs′ ) = ε,
the confidence set Γs is “better” than Γs′ if R (Γs) ≤ R (Γs′ ). As the study of the risk function
Lα viewed in Equation (6) does not provide any control on the probability of classifying, it is
much more difficult to compare the performance of two classifiers with reject option on the set
of labeled data. This point will be made clear in Section 4 with the numerical experiment.

Let us consider the optimality by now: the paper [HW06] also provides the optimal rule for
the risk (6). For each α ∈ [1/2, 1], the Bayes rule with reject option s∗Rα is defined such that

Lα(s∗Rα) = min
sR

Lα(sR),

where the minimum is taken over all classifiers with reject option. It is characterized by

s∗Rα(X•) =
{
s∗(X•) if f∗(X•) ≥ α,
Re otherwise,

(7)

where f∗(·) = max{η∗(·), 1−η∗(·)} as in our setting. Obviously, the Bayes rule with reject option
s∗Rα can be written in term of confidence sets. This leads to an ε-confidence set defined in the
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same way as in Equation (4). However, there is an important difference: the main contribution
of the present paper is to provide a methodology to pick the parameter αε in (4) such that the
probability of classifying an example (1) is exactly ε. The key to be able to do so is the use of
the cumulative distribution function of f∗(X). In Section 3.1, we will see that the data-driven
counterpart of the ε-confidence defined in Definition 1 also controls the probability of classifying.
Notably, this is possible in a semi-supervised way, that is, only using a set of unlabeled data.

3 Plug-in ε-confidence sets
This section is devoted to the study the data driven counterpart of the ε-confidence sets provided
by plug-in rule. We provide the construction of the plug-in methods in Section 3.1. Their
asymptotic consistency as well as rates of convergence are given in Section 3.2.

3.1 Definition of the plug-in ε-confidence sets
For ε ∈]0, 1], the construction of our plug-in ε-confidence set relies on a previous estimator
of the regression function η∗. To this end, we introduce a first dataset, Dn, which consists
of n independent copies of (X,Y ). The dataset Dn is used to estimate the function η and
therefore the functions f∗ and s∗ as well. Let us denote by η̂, f̂(·) = max(η̂(·), 1 − η̂(·)) and
ŝ = 1{η̂(·)≥1/2} the estimators of η∗, f∗ and s∗ respectively. Thanks to these estimations, a data
driven approximation of the ε-confidence set given in Definition 1 can be

Γ̃•ε(X•) =
{
{ŝ(X•)} if Ff̂

(
f̂(X•)

)
≥ 1− ε

{0, 1} otherwise,
(8)

where Ff̂ is the cumulative distribution function of f̂(X). Hence, Γ̃•ε(X•) invokes the cumulative
distribution function Ff̂ , which is unknown and therefore needs to be estimated. We then
consider a second dataset, independent of Dn, denoted by DN = {Xi, i = 1, . . . , N} where
X1, . . . , XN are independent copies of X. Based on DN , we estimate the cumulative function Ff̂
by the empirical cumulative distribution function of f̂(X) denoted by F̂f̂ . Now, we can define
the plug-in ε-confidence set:

Definition 2. Let ε ∈]0, 1] and η̂ be any estimator of η∗, the plug-in ε-confidence set is defined
as follows:

Γ̂•ε(X•) =
{
{ŝ(X•)} if F̂f̂ (f̂(X•)) ≥ 1− ε
{0, 1} otherwise,

where f̂(·) = max{η̂(·), 1− η̂(·)} and F̂f̂ (f̂(X•)) = 1
N

∑N
i=1 1{f̂(Xi)≤f̂(X•)}.

Remark 1. The samples Dn and DN play completely different roles. The sample Dn is used
to estimate η∗ and then must consist of labeled observations. The second dataset DN , used
to estimate the cumulative function Ff̂ , requires only a set of unlabeled observations. Hence,
the construction of the plug-in ε-confidence sets does not require more labeled examples than in
the classical classification setting. This is particularly interesting in some practical situations
where the number of labeled examples is small while a large number of unlabeled observations is
available.
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3.2 Theoretical performance
This section is devoted to assessing the asymptotic performances of the plug-in ε-confidence set.
The symbols P and E stand for generic probability and expectation, respectively. Let ε ∈]0, 1],
and Γ̂•ε be a plug-in ε-confidence set. We define the risk of Γ̂•ε by the natural quantity

R
(

Γ̂•ε
)

= P
(
ŝ(X•) 6= Y•|F̂f̂ (f̂(X•)) ≥ 1− ε

)
. (9)

Note that we use here the notation R rather than the previous one R given by (2) to stress that
the probability P is taken under the law of (Dn,DN , (X•, Y•)) instead of just (X•, Y•). Through-
out this section we assume the following condition on the cumulative distribution function Ff̂ ,
which is analogous to Assumption (A1). However, this assumption relies on the estimator f̂ and
then is not restrictive since it can be chosen by the statistician.

(A2) The cumulative distribution function Ff̂ of f̂(X) is continuous.

We also define the risk of the oracle counterpart Γ̃•ε of Γ̂•ε

R
(

Γ̃•ε
)

= P
(
ŝ(X•) 6= Y•|Ff̂ (f̂(X•)) ≥ 1− ε

)
.

The objective of this section is to prove both that

P
(
F̂f̂ (f̂(X•)) ≥ 1− ε

)
→ ε, and (10)

R
(

Γ̂•ε
)
→ R (Γ•ε) , n,N → +∞,

and to derive rates for these convergences. Since Dn is dedicated to the estimation of η∗ and DN
to the estimation of Ff̂ , we prove that

R
(

Γ̂•ε
)
−R

(
Γ̃•ε
)
→ 0, and (11)

R
(

Γ̃•ε
)
−R (Γ•ε) → 0, (12)

when both n andN go to infinity. The convergences (10) and (11) relies on the Dvoretzky–Kiefer–
Wolfowitz inequality [Mas90] while the convergence (12) relies on the following inequality.

Proposition 4. For all ε ∈]0, 1], the following inequality holds under Assumptions (A1) and
(A2)

0 ≤ R
(

Γ̃•ε
)
−R (Γ•ε) ≤

1
ε
{E
[
|η∗(X•)− αε|1{|η̂(X•)−η∗(X•)|≥|η∗(X•)−αε|}

]
+ E

[
|1− η∗(X•)− αε|1{|η̂(X•)−η∗(X•)|≥|1−η∗(X•)−αε|}

]
+ αε|Ff̂ (αε)− F ∗f (αε)|},

where αε = (F ∗f )−1(1− ε).

The proof of Proposition 4 relies on Proposition 1. For ε ∈]0, 1], Proposition 4 evaluates
the loss of performance using the confidence set Γ̃•ε instead of the ε-confidence set Γ•ε. We can
distinguish two parts in the upper bound. One part is linked to the classification with reject
option setting provided by [HW06] and then depends on the behavior of the function f around
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αε. Note that the same quantity is obtained by [HW06]. The second part αε|Ff̂ (αε)− F ∗f (αε)|
is related to our proposed confidence set and is due to the approximation of F ∗f by Ff̂ .

Observe that when ε = 1 one can recover a classical inequality in the classification setting.
Indeed, in this case, αε = 1/2 and Ff̂ (1/2) = F ∗f (1/2). Hence, we obtain

R
(

Γ̃•1
)
−R (Γ•1) ≤ E

[
|2η∗(X•)− 1|1{|η̂(X•)−η∗(X•)|≥|η∗(X•)−1/2|}

]
.

Finally, we state our main result which describes the asymptotic behavior of our plug-in
ε-confidence sets:

Theorem 1. 1. If η̂(X•)→ η∗(X•) in probability when n→ +∞, then for any ε ∈]0, 1]

P
(
F̂f̂ (f̂(X•)) ≥ 1− ε

)
→ ε,

and
R
(

Γ̂•ε
)
−R (Γ•ε)→ 0,

when both n and N go to infinity.

2. For any ε ∈]0, 1], assume that there exist C1 <∞ and γε > 0 such that

P (|f(X)− αε| ≤ t) ≤ C1t
γε , ∀t > 0. (13)

Assume also that there exist a sequence of positive numbers an → +∞ and some positive
constants C2, C3 such that

P (|η̂(x)− η(x)| ≥ t) ≤ C2 exp
(
−C3ant

2) , ∀t > 0, ∀x ∈ X . (14)

Then we have
P
(
F̂f̂ (f̂(X•)) ≥ 1− ε

)
= ε+O(N−1/2), (15)

and
R
(

Γ̂•ε
)
−R (Γ•ε) = O(a−γε/2n ) +O(N−1/2). (16)

The proof of this result is postponed to the Appendix. Theorem 1 states that if the estimator
of η∗ is consistent, then asymptotically the plug-in ε-confidence set is level-ε-confidence set and
performs as well as the ε-confidence set. Moreover, several observations can be made according
to the second point of the theorem. First of all, we mention the rate of convergence (15) does not
require any of the assumptions (13) and (14). It only needs the consistency of the estimator of η∗.
Second, we mention that the assumption (13) has already been introduced in the classification
with reject option setting in [HW06]. It is analogous to Tsybakov’s margin condition in [Tsy04,
AT07] introduced in the classification framework. We point out here the fact that if η∗(X•)
has a density w.r.t. the Lebesgue measure, the assumption (13) is satisfied with γε ≥ 1 for any
ε ∈]0, 1]. Third, if γε � 1, we can get faster rate of convergence. However, this rate cannot be
better than O(N−1/2) which is the term due to the estimation of the cumulative distribution
function Ff̂ . This term is however not limiting. Indeed, recalling that the sample size N refers
to the dataset DN which can consist only of unlabeled observations, getting large N is not a
big issue. Hence, we can consider the first term O(a−γε/2n ) as the leading term in (16). This
term relies on Proposition 4 and on the assumption (14) which is crucial to establish our rate
of convergence. Note that various estimators satisfy this condition such as kernel estimators
(see [AT07], for more details).
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4 Numerical results
In this section, we evaluate the plug-in ε-confidence sets numerically. Moreover, we indicate the
importance of Assumptions (A1) and (A2).

4.1 Under Assumptions (A1)-(A2)
In this section both of the cumulative distribution functions Ff and Ff̂ are continuous. We
generate (X,Y ) according to the following models.

• Model 1:

1. the feature X L= (U1, . . . , U10), where Ui are i.i.d from a uniform distribution on [0, 1];
2. conditional on X, the label Y is drawn according to a Bernoulli distribution with

parameter η∗(X) defined by logit(η∗(X)) = X1−X2−X3 +X9, where Xj is the jth

component of X.

• Model 2:

1. the feature X L= (N1,N2,N3), where Ni are i.i.d from standard Gaussian distribution;
2. conditional on X, the label Y is drawn according to a Bernoulli distribution with

parameter η∗(X) defined by logit(η∗(X)) = (X1)2 + X2

2 + sin(X1 +X3) + 3X3.

The first model leads to a classification problem which is quite difficult. Indeed, using a
large dataset of features, we evaluate the distribution function of η∗(X), and then obtain that
P(η∗(X) ∈ [0.4, 0.6]) ' 0.5. On the contrary, estimating η∗ is easy since logit(η∗(X)) is a linear
function of X. Model 2 provides a more simple classification problem: the estimation of the
distribution function of η∗(X) leads to P(η∗(X) ∈ [0.4, 0.6]) ' 0.15. On the other side, the
estimation of η∗ is a little more tricky.

In order to illustrate our convergence result, we first provide estimation of the risk R for the
ε-confidence sets. More precisely, for each model and each ε ∈ { k10 , k ∈ {1, . . . , 10}}, we repeat
B = 100 times the following steps:

i) simulate two data sets DN and DK according to the considered model with N = 1000 and
K = 1000;

ii) based on DN , we compute the empirical cumulative distribution of f∗(X) (this step requires
only the features);

iii) finally, we compute, over DK , the empirical counterparts RK of the risk R of the ε-
confidence set using the empirical cumulative distribution of f∗(X) instead of F ∗f . We also
compute the proportion of classified instances PK .

From these experiments, we compute the mean and standard deviation of RK and PK . The
results are reported in Table 1 and illustrated in Figure 1. Next, for each model and each
ε ∈ { k10 , k ∈ {1, . . . , 10}}, we estimate the risk R for the plug-in ε-confidence set. We propose
to use three popular classification methods for the estimation of η∗: random forest, logistic
regression and kernel rule based on the Gaussian kernel and window parameter equal to 1. We
perform the following simulation scheme. We repeat independently B times the following steps:

i) simulate three dataset Dn,DN ,DK according to the considered model;

10



Model 1 Model 2
ε RK PK RK PK
1 0.39 (0.01) 1.00 (0.00) 0.22 (0.01) 1.00 (0.00)
0.9 0.38 (0.02) 0.90 (0.01) 0.19 (0.01) 0.90 (0.01)
0.8 0.37 (0.02) 0.80 (0.02) 0.16 (0.01) 0.80 (0.02)
0.7 0.35 (0.02) 0.70 (0.02) 0.14 (0.01) 0.70 (0.02)
0.6 0.34 (0.02) 0.60 (0.02) 0.12 (0.01) 0.60 (0.02)
0.5 0.33 (0.02) 0.50 (0.02) 0.09 (0.01) 0.50 (0.02)
0.4 0.31 (0.02) 0.40 (0.02) 0.07 (0.01) 0.40 (0.02)
0.3 0.29 (0.03) 0.30 (0.02) 0.05 (0.01) 0.30 (0.02)
0.2 0.27 (0.03) 0.20 (0.02) 0.03 (0.01) 0.20 (0.02)
0.1 0.24 (0.03) 0.10 (0.01) 0.02 (0.01) 0.10 (0.01)

Table 1: For each of the B = 100 repetitions and each model, we derive the estimates RK of
the risk and the estimated proportions of classified instances PK of the ε-confidence sets w.r.t.
ε. We compute the means and standard deviations (between parentheses) over the B = 100
repetitions. Left: the data are generated according to Model 1 – Right: the data are generated
according to Model 2.

ii) based on Dn, we compute an estimate, denoted by f̂ , of f∗ with the random forest, the
logistic regression or kernel rule procedure;

iii) based on DN , we compute the empirical cumulative distribution of f̂(X) (we recall that
this step requires a dataset which contains only the features);

iv) finally, over DK , we compute the empirical counterpart RK of the riskR and the proportion
PK of the data which are not rejected.

From these results, we compute the means and standard deviations of both empirical risks
and proportions of classified instances for n ∈ {100, 1000}. We fix N = 100 and K = 1000. The
results are illustrated in Figure 1 and provided in Table 2 and 3.

From our numerical study, we make several observations. First, as expected, the risk of the
ε-confidence sets is decreasing with ε as observed in Table 1. In both models, the reject option
contributes to improve the overall misclassification risk. As an example, we see that in Model 2
the estimated value of the misclassification risk, that is when ε = 1, equals 0.22 whereas if ε = 0.1
the estimated value of risk is 0.02 which is a significant improvement. Note that in Model 1,
the classification problem is quite difficult and then the decrease of the risk seems to be slower
and a bit less significant. On the other hand, we also observe in Table 1 that the proportions
of classified data match with the theoretical values. Regarding Tables 2-3, the same comments
can be made in both models and whatever the used classification procedure. Moreover, some
features of Table 2 are worth commenting on. For fixed ε and for each scenario, the estimated
risk of the all plug-in ε-confidence sets decreases with n which is the size of the sample used
to estimate the regression function η∗. Furthermore, for n = 1000 and viewing Table 1, we
observe that the estimated risks of the plug-in ε-confidence sets are close to the oracle ones. This
illustrates the convergence result provided in Theorem 1. However, we can see that the random
forest procedure are outperformed by the other procedures (especially when ε is small). Indeed,
the construction of plug-in ε-confidence sets relies on the estimator of η∗: better estimators lead
to better confidence sets. Figure 1 summarizes many aspects of our previous discussion.
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Model 1
n = 100 n = 1000

ε rforest logistic reg kernel rforest logistic reg kernel

1 0.45 (0.02) 0.43 (0.03) 0.47 (0.03) 0.42 (0.02) 0.39 (0.02) 0.42 (0.03)
0.9 0.45 (0.02) 0.42 (0.03) 0.45 (0.03) 0.41 (0.02) 0.38 (0.02) 0.41 (0.03)
0.8 0.44 (0.02) 0.42 (0.03) 0.45 (0.03) 0.40 (0.02) 0.37 (0.02) 0.39 (0.03)
0.7 0.44 (0.03) 0.41 (0.03) 0.44 (0.03) 0.39 (0.02) 0.36 (0.02) 0.38 (0.03)
0.6 0.43 (0.03) 0.40 (0.03) 0.43 (0.03) 0.38 (0.02) 0.35 (0.02) 0.37 (0.03)
0.5 0.42 (0.03) 0.39 (0.03) 0.42 (0.03) 0.37 (0.02) 0.34 (0.02) 0.36 (0.03)
0.4 0.41 (0.03) 0.38 (0.04) 0.40 (0.04) 0.36 (0.03) 0.32 (0.03) 0.34 (0.02)
0.3 0.41 (0.04) 0.37 (0.04) 0.39 (0.04) 0.35 (0.03) 0.30 (0.03) 0.33 (0.04)
0.2 0.40 (0.04) 0.35 (0.05) 0.37 (0.05) 0.34 (0.03) 0.28 (0.04) 0.30 (0.04)
0.1 0.38 (0.06) 0.33 (0.06) 0.35 (0.06) 0.32 (0.05) 0.25 (0.05) 0.27 (0.05)

Model 2
n = 100 n = 1000

ε rforest logistic reg kernel rforest logistic reg kernel

1 0.26 (0.02) 0.24 (0.01) 0.27 (0.05) 0.24 (0.01) 0.22 (0.01) 0.23 (0.02)
0.9 0.24 (0.02) 0.21 (0.02) 0.25 (0.05) 0.22 (0.01) 0.20 (0.01) 0.20 (0.01)
0.8 0.21 (0.02) 0.18 (0.02) 0.22 (0.04) 0.19 (0.02) 0.17 (0.02) 0.18 (0.02)
0.7 0.19 (0.02) 0.16 (0.02) 0.19 (0.04) 0.16 (0.02) 0.14 (0.02) 0.15 (0.02)
0.6 0.18 (0.02) 0.13 (0.02) 0.16 (0.04) 0.15 (0.02) 0.12 (0.02) 0.13 (0.02)
0.5 0.16 (0.03) 0.11 (0.02) 0.14 (0.04) 0.12 (0.02) 0.10 (0.02) 0.11 (0.02)
0.4 0.15 (0.03) 0.09 (0.02) 0.11 (0.03) 0.11 (0.02) 0.08 (0.02) 0.08 (0.02)
0.3 0.13 (0.03) 0.07 (0.02) 0.08 (0.03) 0.09 (0.02) 0.06 (0.02) 0.06 (0.02)
0.2 0.12 (0.03) 0.05 (0.02) 0.06 (0.02) 0.08 (0.02) 0.04 (0.01) 0.04 (0.02)
0.1 0.10 (0.04) 0.03 (0.02) 0.04 (0.02) 0.06 (0.03) 0.02 (0.01) 0.02 (0.02)

Table 2: For each of the B = 100 repetitions and each model, we derive the estimated risks RK

of three different plug-in ε-confidence sets w.r.t. ε and to the sample size n. We compute the
means and standard deviations (between parentheses) over the B = 100 repetitions. For each
ε and each n, the plug-in ε-confidence sets are based on, from left to right, rforest, logistic
reg and kernel, which are respectively the random forest, the logistic regression and the kernel
rule procedures. Top: the data are generated according to Model 1 – Bottom: the data are
generated according to Model 2.
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Figure 1: Visual description of the results reported in Table 1 and 2. For each model and each
n, we plot, as a function of 1 − ε, the mean Rε over the B = 100 repetitions of the estimated
risks RK of the ε-confidence sets (solid line) and RK of the plug-in ε-confidence sets based on
random forest (dashed line), logistic regression (dotted line) and kernel rule (dotted dashed line).
Top: the data are generated according to Model 1 (left: n = 100; right: n = 1000) – Bottom:
the data are generated according to Model 2 (left: n = 100; right: n = 1000).
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Model 1
n = 100 n = 1000

ε rforest logistic reg kernel rforest logistic reg kernel

1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.9 0.90 (0.03) 0.90 (0.03) 0.90 (0.04) 0.91 (0.03) 0.90 (0.03) 0.90 (0.03)
0.8 0.80 (0.04) 0.79 (0.04) 0.80 (0.04) 0.81 (0.04) 0.80 (0.04) 0.80 (0.04)
0.7 0.70 (0.05) 0.69 (0.04) 0.70 (0.04) 0.69 (0.05) 0.69 (0.05) 0.69 (0.04)
0.6 0.61 (0.05) 0.60 (0.05) 0.61 (0.05) 0.60 (0.05) 0.60 (0.05) 0.60 (0.06)
0.5 0.51 (0.05) 0.49 (0.06) 0.50 (0.06) 0.51 (0.05) 0.50 (0.05) 0.51 (0.06)
0.4 0.40 (0.05) 0.40 (0.05) 0.40 (0.05) 0.40 (0.05) 0.40 (0.05) 0.39 (0.05)
0.3 0.30 (0.05) 0.30 (0.05) 0.30 (0.04) 0.30 (0.05) 0.30 (0.05) 0.29 (0.05)
0.2 0.20 (0.04) 0.21 (0.05) 0.21 (0.05) 0.21 (0.04) 0.21 (0.04) 0.20 (0.04)
0.1 0.10 (0.03) 0.10 (0.03) 0.11 (0.03) 0.11 (0.03) 0.10 (0.03) 0.11 (0.03)

Model 2
n = 100 n = 1000

ε rforest logistic reg kernel rforest logistic reg kernel

1 1,00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.9 0.90 (0.04) 0.90 (0.03) 0.90 (0.04) 0.90 (0.03) 0.90 (0.03) 0.90 (0.03)
0.8 0.81 (0.04) 0.81 (0.03) 0.81 (0.04) 0.80 (0.04) 0.80 (0.04) 0.80 (0.05)
0.7 0.70 (0.05) 0.70 (0.04) 0.70 (0.04) 0.69 (0.05) 0.69 (0.05) 0.69 (0.05)
0.6 0.61 (0.05) 0.61 (0.05) 0.60 (0.05) 0.61 (0.05) 0.60 (0.05) 0.60 (0.05)
0.5 0.51 (0.05) 0.50 (0.04) 0.50 (0.04) 0.50 (0.05) 0.51 (0.05) 0.51 (0.05)
0.4 0.39 (0.05) 0.40 (0.05) 0.39 (0.05) 0.40 (0.05) 0.40 (0.05) 0.40 (0.05)
0.3 0.29 (0.05) 0.30 (0.04) 0.30 (0.05) 0.30 (0.04) 0.29 (0.05) 0.29 (0.04)
0.2 0.21 (0.04) 0.20 (0.04) 0.20 (0.04) 0.20 (0.04) 0.21 (0.04) 0.21 (0.04)
0.1 0.11 (0.03) 0.11 (0.03) 0.11 (0.03) 0.12 (0.03) 0.11 (0.03) 0.11 (0.03)

Table 3: For each of the B = 100 repetitions and each model, we derive the estimated proportion
of classified instances PK of three different plug-in ε-confidence sets w.r.t. ε and to the sample
size n. We compute the means and standard deviations (between parentheses) over the B = 100
repetitions. For each ε and each n, the plug-in ε-confidence sets are based on, from left to
right, rforest, logistic reg and kernel, which are respectively the random forest, the logistic
regression and the kernel rule procedures. Top: the data are generated according to Model 1 –
Bottom: the data are generated according to Model 2.
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(A2) fails (CART) (A1) fails (kernel)

ε PK RK PK RK

1 1.00 (0.00) 0.27 (0.03) 1.00 (0.00) 0.32 (0.03)
0.9 0.98 (0.04) 0.27 (0.04) 0.90 (0.03) 0.31 (0.03)
0.8 0.90 (0.07) 0.24 (0.03) 0.80 (0.04) 0.29 (0.03)
0.7 0.84 (0.10) 0.22 (0.03) 0.70 (0.05) 0.27 (0.04)
0.6 0.79 (0.13) 0.21 (0.04) 0.61 (0.05) 0.26 (0.04)
0.5 0.75 (0.16) 0.21 (0.04) 0.50 (0.05) 0.24 (0.04)
0.4 0.60 (0.14) 0.18 (0.05) 0.40 (0.05) 0.23 (0.03)
0.3 0.48 (0.13) 0.18 (0.06) 0.30 (0.04) 0.22 (0.03)
0.2 0.39 (0.13) 0.18 (0.06) 0.20 (0.04) 0.20 (0.03)
0.1 0.31 (0.12) 0.16 (0.06) 0.11 (0.03) 0.20 (0.04)

Table 4: For each of the B = 100 repetitions, we derive the estimated proportions of classified
instances PK and the estimated risks RK of the two plug-in ε-confidence sets w.r.t. ε. We
compute the means and standard deviations (between parentheses) over the B = 100 repetitions.
Left: the data are generated according to Model 2, then Assumption (A1) holds; the procedure
used to build the plug-in ε-confidence set is based on CART method, then Assumption (A2)
fails – Right: the data are generated according to Model 3, then Assumption (A1) fails; the
procedure used to build the plug-in ε-confidence set is based on kernels, then Assumption (A2)
holds.

4.2 Importance of Assumptions (A1) and (A2)
In this section, we shed some light on the importance of Assumptions (A1) and (A2). More
precisely, we study the behavior of plug-in ε-confidence sets when one of these two assumptions
is not satisfied.

We first consider a case where the cumulative distribution Ff is continuous but not Ff̂ . We
consider the simulation scheme described in Section 4.1 with Model 2 and parameters n = 100,
N = 100 andK = 1000. But this time, the plug-in ε-confidence set relies on the CART procedure
which involves that the Assumption (A2) does not hold. The obtained results are reported in
Table 4–Left. Two observations can be made. First, judging by the estimated proportions of
classified instances and by the associated standard deviations, we are not able to control these
proportions. Therefore, one of the important feature of our procedure fails. Second, although
the risk of misclassification is decreasing with ε, this decrease is quite slow and cannot be as
important as observed with plug-in confidence sets studied in Section 4.1 (see Table 2). Indeed,
for CART method and more generally if Assumption (A2) does not hold, the proportion of
rejected data is usually not large enough.

Next, we study the reverse case where the cumulative distribution function Ff̂ is continuous
but not Ff . We consider the following model.

• Model 3:

1. the feature X L= U , where U follows a uniform distribution on [0, 1];
2. conditional on X, the label Y is drawn according a Bernoulli distribution with pa-

rameter

η∗(X) = 1
51{X≤1/4} + 2

51{1/4<X≤1/2} + 3
51{1/2<≤3/4} + 4

51{3/4<X}.

Then, for this model, Ff is not continuous. Moreover, we have that, for ε ∈ [0.5, 1], P(Γ•ε) = 1
and R(Γ•ε) = 3/10, and for ε ∈]0, 0.5[, P(Γ•ε) = 1/2 and R(Γ•ε) = 1/5. For this model, we use
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the simulation scheme described in Section 4.1 with the plug-in ε confidence sets which relies
on the kernel rule and the samples sizes n = 1000, N = 100 and K = 1000. The results are
provided in Table 4–Right. As a remark, we first note that since Assumption (A2) is satisfied
the proportions of classified instances match with the theoretical values. Second, the estimated
risk of misclassification of the plug-in ε-confidence set decreases with ε. However, from our point
of view, it is irrelevant to compare the performances of the ε-confidence sets and those of the
plug-in ε-confidence sets. Indeed, except for ε = 1, the proportions of classified data differ. As
an example, if ε = 0.7, the estimated risk of the plug-in ε-confidence set is equal to 0.27 which
seems better than the risk of the ε-confidence set. But, for ε = 0.7 the proportion of the classified
instances is larger for the ε-confidence set and equals 1.

5 Conclusion
In the classification with reject option framework, we introduce a new procedure that allows
us to control exactly the rejection probability. The construction of the ε-confidence sets and
their plug-in approximations relies on the cumulative distribution function of the score functions
f∗ and f̂ . Theoretical guarantees, especially rates of convergence, involve the continuity of
these cumulative distribution functions. Numerical experiments emphasize the importance of
the continuity assumption. As viewed in Section 3, the plug-in ε-confidence set is defined as a
two steps algorithm whose second step consists in the estimation of the cumulative distribution
function Ff̂ . Interestingly, this step does not require a set of labeled data that is suitable for
semi-supervised learning. In a future work, we intent to generalize our procedure to the multiclass
case and study procedures based on empirical risk minimization.

6 Appendix
This section gathers the proofs of our results.

6.1 Proof of Proposition 1
We first define the following events

Ay = {f∗(X•) ≥ αε, card(Γs(X•)) 6= 1, s∗(X•) 6= y}, y = 0, 1,
By = {f∗(X•) < αε, card(Γs(X•)) = 1, s(X•) 6= y}, y = 0, 1,
C = {f(∗X•) ≥ αε, card (Γs(X•)) = 1, s∗(X•) 6= s(X•)},
D = A0 ∪ A1 ∪ B0 ∪ B1,

and the random variable

U = 1{s(X•) 6=Y•,card(Γs(X•))=1} − 1{s∗(X•)6=Y•,card(Γ•ε(X•))=1}.

Since P(Γs) = P(Γ•ε) = ε, the proof of the proposition relies on the decomposition of the
conditional expectation of U given X• over the sets C and D. We have

E [U1C |X•] = 1C{η∗(X•)1{s∗(X•)=1} − η∗(X•)1{s∗(X•)=0}+
(η∗(X•)− 1)1{s∗(X•)=1} + (1− η∗(X•))1{s∗(X•)=0}}.
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Since, s∗(X•) = 1 and s∗(X•) = 0 imply respectively that η∗(X•) ≥ 1/2 and η∗(X•) ≤ 1/2, we
obtain from the above decomposition

E [U1C ] = E [|2η∗(X•)− 1|1C ] . (17)

Next,

E [U1D|X•] = η∗(X•)1B1 + (1− η∗(X•))1B0 − η∗(X•)1A1 − (1− η∗(X•))1A0 (18)

Since, P(Γs) = P(Γ•ε) = P (f∗(X•) ≥ αε), we deduce

P(card(Γs(X•)) = 1, f∗(X•) < αε) = P (card(Γs(X•)) 6= 1, f∗(X•) ≥ αε) ,

which implies
(1− αε)E [1B0∪B1 ]− (1− αε)E [1A0∪A1 ] = 0.

Therefore, adding this null term to (18), we obtain

E [U1D] = E [(αε − (1− η∗(X•))1B1 + (αε − η∗(X•))1B0 ]
+ E [(η∗(X•)− αε)1A0 + ((1− η∗(X•))− αε)1A1 ] . (19)

Note that,

f∗(X•) < αε ⇒ (αε − (1− η∗(X•)) ≥ 0 and (αε − η∗(X•)) ≥ 0
f∗(X•) ≥ αε and s∗(X•) 6= 1 ⇒ (1− η∗(X•)− αε) ≥ 0
f∗(X•) ≥ αε and s∗(X•) 6= 0 ⇒ (η∗(X•)− αε) ≥ 0.

Hence, from (19), we can write

E [U1D] = E [|η∗(X•)− αε|1A0∪B0 ] + E [|1− η∗(X•)− αε|1A1∪B1 ] .

Combining this result with (17) shows that E [U1C∪D] ≥ 0, and provides in the same time the
desired result.

6.2 Proof of Proposition 2
We first prove the following inequality for α, α̃ ∈ [0, 1/2[, α ≤ α̃

P(s∗(X•) 6= Y•)|f∗(X•) ≥ α̃) ≤ P(s∗(X•) 6= Y•)|f∗(X•) ≥ α), (20)

Since for ε, ε′ ∈]0, 1] one has ε ≤ ε′ ⇔ αε ≥ αε′ , a direct application of (20) yields the proposition.
In order to prove (20), recall that

x

y
− z

t
= 1

2yt ((x− z)(t+ y) + (x+ z)(t− y)) , ∀x, z ∈ R, ∀y, t ∈ R \ {0}. (21)

Thus, if we define

C1 = P(s∗(X•) 6= Y•, f
∗(X•) ≥ α)− P(s∗(X•) 6= Y•, f

∗(X•) ≥ α̃)
C2 = P(f∗(X•) ≥ α) + P(f∗(X•) ≥ α̃)
C3 = P(s∗(X•) 6= Y•, f

∗(X•) ≥ α) + P(s∗(X•) 6= Y•, f
∗(X•) ≥ α̃)

C4 = P(f∗(X•) ≥ α̃)− P(f∗(X•) ≥ α),
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from (21), we have

P(s∗(X•) 6= Y•|f∗(X•) ≥ α̃) ≤ P(s∗(X•) 6= Y•|f∗(X•) ≥ α)⇔ C1C2 + C3C4 ≥ 0.

Since P(s∗(X•) 6= Y•|X•) = 1− f∗(X•), we deduce that

C1C2 + C3C4 = E
[
(1− f∗(X•))1{α≤f∗(X•)≤α̃}

]
E
[
1{f∗(X•)≥α} + 1{f∗(X•)≥α̃}

]
− E

[
(1− f∗(X•))

(
1{f∗(X•)≥α} + 1{f∗(X•)≥α̃}

)]
E
[
1{α≤f∗(X•)≤α̃}

]
.

Note that E
[
1{f∗(X•)≥α}

]
= E

[
1{α≤f∗(X•)≤α̃}

]
+ E

[
1{f∗(X•)≥α̃}

]
.

Hence, from the above decomposition, we obtain

C1C2 + C3C4 = 2E
[
1{α≤f∗(X•)≤α̃}

]
E
[
f∗(X•)1{f∗(X•)≥α̃}

]
− 2E

[
1{f∗(X•)≥α̃}

]
E
[
f∗(X•)1{α≤f∗(X•)≤α̃}

]
.

Since,

E
[
1{α≤f∗(X•)≤α̃}

]
E
[
f∗(X•)1{f∗(X•)≥α̃}

]
≥ α̃P (α ≤ f∗(X•) ≤ α̃)P(f∗(X•) ≥ α̃) and

E
[
1{f∗(X•)≥α̃}

]
E
[
f∗(X•)1{α≤f∗(X•)≤α̃}

]
≤ α̃P(α ≤ f∗(X•) ≤ α̃)P(f∗(X•) ≥ α̃),

we deduce Inequality (20).

6.3 Proof of Proposition 3
This section is devoted to the proof of the result related to the Gaussian mixture model. Before
starting, let us state a few properties that will be often used.
Let us write for short f1 and f0 instead of η∗ and 1− η∗ respectively, so that f = max{f0, f1}.
Hence, we can write:

η∗(x) = f1(x) = P(Y = 1|X = x) = P(X = x|Y = 1)
P(X = x|Y = 1) + P(X = x|Y = 0) := p1(x)

p1(x) + p0(x) ,

for any x ∈ X . Then, for y = 0, 1, using the fact that given Y• = y, the random variable
X>• Σ−1(µ0 − µ1) ∼ N

(
µ>y Σ−1(µ0 − µ1) , ‖µ1 − µ0‖2Σ−1

)
we get, on the event {Y• = y}

s∗(X•) 6= Y• ⇔ f∗(X•) = f1−y(X•) ⇔ fy(X•) ≤
1
2 ⇔ log

(
p1−y(X•)
py(X•)

)
≥ 0

⇔ X>• Σ−1(µ1−y − µy)− 1
2µ
>
1−yΣ−1µ1−y + 1

2µ
>
y Σ−1µy ≥ 0

⇔ (X• − µy)>Σ−1(µ1−y − µy)− 1
2‖µ1 − µ0‖2Σ−1 ≥ 0

⇔ (X• − µy)>Σ−1(µ1−y − µy)
‖µ1 − µ0‖Σ−1

− 1
2‖µ1 − µ0‖Σ−1 ≥ 0. (22)

where ‖ · ‖Σ−1 denotes the norm under Σ−1: ‖µ‖2Σ−1 = µ>Σ−1µ, for any µ ∈ X .
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6.3.1 Intermediate results

The proof of Proposition 3 relies on two intermediate results. Then we state them first and give
their proofs. They bring into play the cumulative distribution F ∗f .

Proposition 5. Let y ∈ {0, 1}. Conditional on the event Y• = y we have

F ∗f (f1−y(X•)) = Φ
(

(X• − µy)>Σ−1(µ1−y − µy)
‖µ1 − µ0‖Σ−1

)
+

Φ
(

(X• − µy)>Σ−1(µ1−y − µy)
‖µ1 − µ0‖Σ−1

− ‖µ1 − µ0‖Σ−1

)
− 1,

where Φ is the standard normal cumulative distribution function.

Proof. To prove this result, we need to investigate the function F ∗f (·) = P(f∗(X) ≤ ·). Let
α ∈ [1/2, 1]. We have

P(f∗(X) ≤ α) = P(f∗(X) ≤ α, f1(X) ≥ f0(X)) + P(f∗(X) ≤ α, f1(X) ≤ f0(X)) =
1
2P(f1(X) ≤ α, f1(X) ≥ f0(X)|Y = 1) + 1

2P(f1(X) ≤ α, f1(X) ≥ f0(X)|Y = 0)+
1
2P(f0(X) ≤ α, f1(X) ≤ f0(X)|Y = 1) + 1

2P(f0(X) ≤ α, f1(X) ≤ f0(X)|Y = 0), (23)

where we used in the last equality the fact that Y is a Bernoulli random variable with parameter
1/2. As already seen, we have for y ∈ {0, 1},

fy(x) = P (Y = y|X = x) = py(x)
p1(x) + p0(x) .

Hence, denoting by u the function from [1/2, 1) into [1,+∞) defined by u(α) = α
1−α and fixing

this notation in the above relation (23), we get

P(f∗(X) ≤ α) = 1
2

[
P
(
p1(X)
p0(X) ∈ [1, u(α)] | Y = 1

)
+ P

(
p1(X)
p0(X) ∈ [1, u(α)] | Y = 0

)
+ P

(
p0(X)
p1(X) ∈ [1, u(α)] | Y = 1

)
+ P

(
p0(X)
p1(X) ∈ [1, u(α)] | Y = 0

)]
:= 1

2(A1 +A2 +A3 +A4). (24)

All of the terms A1, A2, A3, A4 will be treated in the same way. Then let us consider A1 for
instance: using very close reasoning as in (22) with y = 1, we have

A1 = P
(

0 ≤ log
(
p1(X)
p0(X)

)
≤ log (u(α)) | Y = 1

)
= P

(
0 ≤ − (X − µ1)>Σ−1(µ0 − µ1) + 1

2‖µ1 − µ0‖2Σ−1 ≤ log (u(α)) | Y = 1
)

= P
(

0 ≤ Z + 1
2‖µ1 − µ0‖Σ−1 ≤ log (u(α))

‖µ1 − µ0‖Σ−1

)
= P

(
−1

2‖µ1 − µ0‖Σ−1 ≤ Z ≤ log (u(α))
‖µ1 − µ0‖Σ−1

− 1
2‖µ1 − µ0‖Σ−1

)
,
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where Z is normally distributed. In the same way, we get

A1 = A4 = P
(
−‖µ1 − µ0‖Σ−1

2 ≤ Z ≤ log (u(α))
‖µ1 − µ0‖Σ−1

− ‖µ1 − µ0‖Σ−1

2

)
A2 = A3 = P

(
‖µ1 − µ0‖Σ−1

2 ≤ Z ≤ log (u(α))
‖µ1 − µ0‖Σ−1

+ ‖µ1 − µ0‖Σ−1

2

)
.

Coming back to (24) and using twice the following relation Φ(x) + Φ(−x) = 1 for any x ∈ R
which is valid for the normal distribution, we easily get

F ∗f (α) = P(f∗(X) ≤ α)

= P
(
−‖µ1 − µ0‖Σ−1

2 ≤ Z ≤ log (u(α))
‖µ1 − µ0‖Σ−1

− ‖µ1 − µ0‖Σ−1

2

)
+P
(
‖µ1 − µ0‖Σ−1

2 ≤ Z ≤ log (u(α))
‖µ1 − µ0‖Σ−1

+ ‖µ1 − µ0‖Σ−1

2

)
= Φ

(
log (u(α))
‖µ1 − µ0‖Σ−1

− ‖µ1 − µ0‖Σ−1

2

)
+ Φ

(
log (u(α))
‖µ1 − µ0‖Σ−1

+ ‖µ1 − µ0‖Σ−1

2

)
−
(

Φ
(
−‖µ1 − µ0‖Σ−1

2

)
+ Φ

(
‖µ1 − µ0‖Σ−1

2

))
= Φ

(
‖µ1 − µ0‖Σ−1

2 + log (u(α))
‖µ1 − µ0‖Σ−1

)
− Φ

(
‖µ1 − µ0‖Σ−1

2 − log (u(α))
‖µ1 − µ0‖Σ−1

)
= P

(
Z ∈

[
‖µ1 − µ0‖Σ−1

2 − log (u(α))
‖µ1 − µ0‖Σ−1

,
‖µ1 − µ0‖Σ−1

2 + log (u(α))
‖µ1 − µ0‖Σ−1

])
. (25)

At this point, we are ready to evaluate the quantity F ∗f (f1−y(X•)) on the event {Y• = y} with
y ∈ {0, 1}. Indeed, according to (25), we only need to evaluate log(u(α))

‖µ1−µ0‖Σ−1
for α = f1−y(X•).

Thanks to (22) we can write when Y• = y

log(u(f1−y(X•)))
‖µ1 − µ0‖Σ−1

=
log
(
p1−y(X•)
py(X•)

)
‖µ1 − µ0‖Σ−1

= (X• − µy)>Σ−1(µ1−y − µy)
‖µ1 − µ0‖Σ−1

− 1
2‖µ1 − µ0‖Σ−1 .

Finally, using (25), we get when Y• = y,

F ∗f (f1−y(X•)) =

P

(
Z ∈

[
‖µ1 − µ0‖Σ−1 − (X• − µy)>Σ−1(µ1−y − µy)

‖µ1 − µ0‖Σ−1
,

(X• − µy)> Σ−1(µ1−y − µy)
‖µ1 − µ0‖Σ−1

])
=

Φ
(

(X• − µy)>Σ−1(µ1−y − µy)
‖µ1 − µ0‖Σ−1

)
− Φ

(
‖µ1 − µ0‖Σ−1 − (X• − µy)>Σ−1(µ1−y − µy)

‖µ1 − µ0‖Σ−1

)
=

Φ
(

(X• − µy)>Σ−1(µ1−y − µy)
‖µ1 − µ0‖Σ−1

)
+ Φ

(
(X• − µy)>Σ−1(µ1−y − µy)

‖µ1 − µ0‖Σ−1
− ‖µ1 − µ0‖Σ−1

)
− 1,

where we have also used the relation Φ(x) + Φ(−x) = 1, for x ∈ R in the last line, since Φ is the
normal cumulative distribution function. This ends the proof.

The next result is the key tool in the proof of Proposition 3.
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Proposition 6. Let ε ∈]0, 1]. For y ∈ {0, 1}, we have

P(s∗(X•) 6= Y• , F
∗
f (f∗(X•)) ≥ 1− ε | Y• = y)

= P
(
{Φ (Z) + Φ (Z − ‖µ1 − µ0‖Σ−1)} ≥ 2− ε , Z ≥ ‖µ1 − µ0‖Σ−1

2

)
,

where Z ∼ N (0, 1).

Proof. Let ε ∈]0, 1]. For y ∈ {0, 1}, according to the first equivalence stated in (22), we observe
that

P
(
F ∗f (f∗(X•)) ≥ 1− ε , s∗(X•) 6= Y• | Y• = y

)
=

P
(
F ∗f (f1−y(X•)) ≥ 1− ε , f∗(X•) = f1−y(X•) | Y• = y

)
. (26)

Moreover, using the last equivalence in (22), we have, if Y• = y

f∗(X•) = f1−y(X•) ⇔ (X• − µy)>Σ−1(µ1−y − µy)
‖µ1 − µ0‖Σ−1

− 1
2‖µ1 − µ0‖Σ−1 ≥ 0. (27)

Then we just need to rewrite the event
{
F ∗f (f1−y(X•)) ≥ 1− ε

}
, when conditioned on the event

{Y• = y}, in a convenient way. Using Proposition 5, we can write that when Y• = y

F ∗f (f1−y(X•)) = Φ
(

(X• − µy)>Σ−1(µ1−y − µy)
‖µ1 − µ0‖Σ−1

)
+

Φ
(

(X• − µy)>Σ−1(µ1−y − µy)
‖µ1 − µ0‖Σ−1

− ‖µ1 − µ0‖Σ−1

)
− 1. (28)

Plugging (27) and (28) into (26), we finally then get

P
(
F ∗f (f(X•)) ≥ 1− ε , s∗(X•) 6= Y• | Y• = y

)
= P

(
{Φ (Z•) + Φ (Z• − ‖µ1 − µ0‖Σ−1)} ≥ 2− ε , Z• ≥

‖µ1 − µ0‖Σ−1

2

)
,

where Z• ∼ N (0, 1). The last equality is due to the fact that given Y• = 1, the random variable
(X•−µy)>Σ−1(µ1−y−µy)

‖µ1−µ0‖Σ−1
is normally distributed. We then get the desired result and the proof of

the proposition is completed.

6.3.2 Proposition 3

Let ε ∈]0, 1]. Since P(Y• = 1) = P(Y• = 0) = 1/2, we have

P(s∗(X•) 6= Y• , F
∗
f (f∗(X•)) ≥ 1− ε) = 1

2
{
P(s∗(X•) 6= Y• , F

∗
f (f∗(X•)) ≥ 1− ε | Y• = 1)

+P(s∗(X•) 6= Y• , F
∗
f (f∗(X•)) ≥ 1− ε | Y• = 0)

}
.

Next, using Proposition 6, we get

P(s∗(X•) 6= Y• , F
∗
f (f∗(X•)) ≥ 1− ε)

= P
(
{Φ (Z) + Φ (Z − ‖µ1 − µ0‖Σ−1)} ≥ 2− ε , Z ≥ ‖µ1 − µ0‖Σ−1

2

)
= P ({Φ (Z) + Φ (Z − ‖µ1 − µ0‖Σ−1)} ≥ 2− ε) .
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The last equality is due to the following property:

Z <
‖µ1 − µ0‖Σ−1

2 ⇒ Φ (Z − ‖µ1 − µ0‖Σ−1) < Φ
(
−‖µ1 − µ0‖Σ−1

2

)
= 1−Φ

(
‖µ1 − µ0‖Σ−1

2

)
,

which implies that

Z <
‖µ1 − µ0‖Σ−1

2 ⇒ Φ (Z) + Φ (Z − ‖µ1 − µ0‖Σ−1) < 1 ≤ 2− ε.

The end of the proof is straightforward and follows from the relation Φ(x) + Φ(−x) = 1, ∀x ∈ R.
Indeed, we have

P (Φ (Z) + Φ (Z − ‖µ1 − µ0‖Σ−1) ≥ 2− ε) = P (Φ (−Z) + Φ (−Z + ‖µ1 − µ0‖Σ−1) ≤ ε)
= P (Φ (Z) + Φ (Z + ‖µ1 − µ0‖Σ−1) ≤ ε) ,

since Z and −Z equal in law. This ends the proof.

6.4 Proof of Proposition 4
We first define the following events

Ay = {f∗(X•) ≥ αε, f̂(X•) < α̂ε, s
∗(X•) 6= y}, y = 0, 1

By = {f∗(X•) < αε, f̂(X•) ≥ α̂ε, ŝ(X•) 6= y}, y = 0, 1.
Cy = {f∗(X•) ≥ αε, f̂(X•) ≥ α̂ε, s∗(X•) 6= ŝ(X•), s∗(X•) 6= y}, y = 0, 1.

Since P(Γ̃•ε) = ε, we can apply Proposition 2 and then, as

|2η∗(X•)− 1| ≤ |η∗(X•)− αε|+ |1− η∗(X•)− αε|,

we deduce that

R
(

Γ̃•ε
)
−R (Γ•ε) ≤

1
ε
{E [|η∗(X•)− αε|1A0∪B0∪C0∪C1 ] + E [|1− η∗(X•)− αε|1A1∪B1∪C0∪C1 ]}. (29)

Now,

1. on A0, f∗ = η∗, η∗(X•) ≥ αε and f̂(X•) < α̂ε,
hence, we have |η∗(X•)− αε| ≤ |η̂(X•)− η∗(X•)| except if αε ≤ α̂ε and f̂(X•) ∈ (αε, α̂ε);

2. on B0, f̂ = η̂, η̂(X•) ≥ α̂ε and f∗(X•) < αε,
hence, we have |η∗(X•)− αε| ≤ |η̂(X•)− η∗(X•)| except if α̂ε ≤ αε and f̂(X•) ∈ (α̂ε, αε);

3. on C0, f∗ = η∗, f̂ = 1− η̂, η∗(X•) ≥ αε and η̂(X•) ≤ 1/2,
hence, we always have |η∗(X•)− αε| ≤ |η̂(X•)− η∗(X•)|;

4. on C1, f∗ = 1− η∗, f̂ = η̂ and η̂(X•) ≥ α̂ε,
hence, we have |η∗(X•)− αε| ≤ |η̂(X•)− η∗(X•)| except if α̂ε ≤ αε and f̂(X•) ∈ (α̂ε, αε).
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Since A0,B0, C0 and C1 are mutually exclusive events, we deduce

E [|η∗(X•)− αε|1A0∪B0∪C0∪C1 ] ≤ E
[
|η∗(X•)− αε|1{|η̂(X•)−η∗(X•)|≥|η∗(X•)−αε|}

]
+

E
[
|η∗(X•)− αε|

(
1{A0,αε≤α̂ε,f̂(X•)∈(αε,α̂ε)} + 1{B0∪C1,α̂ε≤αε,f̂(X•)∈(α̂ε,αε)}

)]
. (30)

In the same way, we obtain the following decomposition

E [|1− η∗(X•)− αε|1A1∪B1∪C0∪C1 ] ≤ E
[
|1− η∗(X•)− αε|1{|η̂(X•)−η∗(X•)|≥|1−η∗(X•)−αε|}

]
+

E
[
|1− η∗(X•)− αε|

(
1{A1,αε≤α̂ε,f̂(X•)∈(αε,α̂ε)} + 1{B1∪C0,α̂ε≤αε,f̂(X•)∈(α̂ε,αε)}

)]
. (31)

Since (Ay,By, Cy), y = 0, 1 are mutually exclusive events, and that |η∗(X•) − αε| ≤ αε and
|1− η(X•)− αε| ≤ αε, it derives from Inequalities (29), (30) and (31) that

R
(

Γ̃•ε
)
−R (Γ•ε) ≤

1
ε

{E
[
|η∗(X•)− αε|1{|η̂(X•)−η∗(X•)|≥|η∗(X•)−αε|}

]
+

E
[
|1− η∗(X•)− αε|1{|η̂(X•)−η∗(X•)|≥|1−η∗(X•)−αε|}

]
+

αε|Ff̂ (α̂ε)− Ff̂ (αε)|}.

To conclude the proof, it remains to note that 1− ε = Ff̂ (α̂ε) = F ∗f (αε), for all ε ∈]0, 1].

6.5 Proof of Theorem 1
We first set a Lemma that will be used in the proof.

6.5.1 Tool lemma

The following lemma is inspired by Lemma 3.1 in [AT07].

Lemma 1. Let X be a real random variable, (Xn)n≥1 a be sequence of real random variables
and t0 ∈ R. Assume that there exist C1 <∞ and γ0 > 0 such that

PX (|X − t0| ≤ δ) ≤ C1δ
γ0 , ∀δ > 0,

and a sequence of positive numbers an → +∞, C2, C3 some positive constants such that

PXn (|Xn −X| ≥ δ|X) ≤ C2 exp
(
−C3anδ

2) , ∀δ > 0, ∀n ∈ N.

Then, there exists C > 0 depending only on C1, C2 and C3, such that∣∣E [1{Xn≥t0} − 1{X≥t0}
]∣∣ ≤ E

[∣∣1{Xn≥t0} − 1{X≥αε}
∣∣]

≤ P (|Xn −X| ≥ |X − t0|)
≤ Ca−γ0/2

n .

Proof. The following inequality holds∣∣1{Xn≥t0} − 1{X≥t0}
∣∣ ≤ 1{|Xn−X|≥|X−t0|}.

Hence, it remains to prove

P (|Xn −X| ≥ |X − t0|) ≤ Ca−γ0/2
n .
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We define, for δ > 0,

A0 = {|X − t0| ≤ δ}
Aj = {2j−1δ < |X − t0| ≤ 2jδ}, j ≥ 1.

Since the events (Aj)j≥0 are mutually exclusive, we deduce

P (|Xn −X| ≥ |X − t0|) =
∑
j≥0

E
[
1{|Xn−X|≥|X−t0|}

]
1Aj

≤ PX (|X − t0| ≤ δ) +
∑
j≥1

E
[
1{|Xn−X|≥2j−1δ}1Aj

]
≤ C1δ

γ0 +
∑
j≥1

EX
[
PXn

(
|Xn −X| ≥ 2j−1δ |X

)
1Aj

]
≤ C1δ

γ0 + C1C2δ
γ0
∑
j≥1

2jγ0 exp
(
−C2an22j−2δ2) ,

since PX(Aj) ≤ PX(|X − t0| ≤ 2jδ) ≤ (2jδ)γ0 . Therefore, choosing δ = a
−1/2
n , we obtain from

the above inequality,

P (|Xn −X| ≥ |X − t|) ≤ C1a
−γ0/2
n + 2C1C3a

−γ0/2
n

∑
j≥1

2jγ0 exp(−C222j−2)

≤ Ca−γ0/2
n ,

for a constant C > 0.

6.5.2 Theorem 1

Let ε ∈]0, 1[ We first prove that for N large enough∣∣∣P(F̂f̂ (f̂(X•)) ≥ 1− ε
)
−P

(
Ff̂ (f̂(X•)) ≥ 1− ε

)∣∣∣ ≤ C̃√
N
, (32)

and ∣∣∣R (Γ̂•ε
)
−R

(
Γ̃•ε
)∣∣∣ ≤ C√

N
, (33)

where C, C̃ > 0 are constants which do not depend on n. For all x ∈ [1/2, 1],

Ff̂ (x) = EDn
[
P
(
f̂(X) ≤ x|Dn

)]
,

Hence, conditional on Dn, F̂f̂ (x) is the empirical cumulative distribution function of f̂(X),
where f̂ is view as a deterministic function. Therefore, for all γ ≥

√
log(2)/2N , Dvoretsky-

Kiefer-Wolfowitz Inequality yields

PDN
(
|F̂f̂ (f̂(X•))− Ff̂ (f̂(X•))| ≥ γ|Dn, X•

)
≤ PDN

(
sup

x∈[1/2,1]

∣∣∣F̂f̂ (x)− Un(x)
∣∣∣ ≥ γ|Dn)

≤ 2 exp(−2Nγ2),
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where Un(x) = P
(
f̂(X•) ≤ x|Dn

)
.

Applying Lemma 1, we get∣∣∣E(DN ,X•)

[
1{F̂f̂ (f̂(X•))≥1−ε} − 1{Ff̂ (f̂(X•))≥1−ε}|Dn

]∣∣∣ ≤ C̃√
N
,

where C̃ does not depend on n. Hence, we obtain Inequality (32). In the same way, we have∣∣∣P(F̂f̂ (f̂(X•)) ≥ 1− ε, ŝ(X•) 6= Y•

)
−P

(
Ff̂ (f̂(X•)) ≥ 1− ε, ŝ(X•) 6= Y•

)∣∣∣ ≤ C̃√
N
.

Therefore, Inequality (33) holds for some constant C > 0.
Since, by Assumption (A2) P

(
Ff̂ (f̂(X•)) ≥ 1− ε

)
= ε, Inequality (32) yields

P
(
F̂f̂ (f̂(X•)) ≥ 1− ε

)
= ε+O(N−1/2).

Now, we conclude the point 1) of the theorem. Since Inequality (33) ensures that∣∣∣R (Γ̂•ε
)
−R

(
Γ̃•ε
)∣∣∣→ 0, n,N → +∞,

it remains to prove that ∣∣∣R (Γ̃•ε
)
−R (Γ•ε)

∣∣∣→ 0, n→ +∞.

Applying Proposition 3, we obtain for δn > 0, δn → 0∣∣∣R (Γ̃•ε
)
−R (Γ•ε)

∣∣∣ ≤ 2δn + 2P (|η̂(X•)− η∗(X•)| ≥ δn) +
∣∣∣Ff̂ (αε)− F ∗f (αε)

∣∣∣ .
Since, η̂(X•) → η∗(X•) in probability when n → +∞, f̂(X•) → f∗(X•) in distribution and∣∣∣Ff̂ (αε)− F ∗f (αε)

∣∣∣→ 0. Moreover, P (|η̂(X•)− η∗(X•)| ≥ δn)→ 0 which concludes the point 1)
of the proof.

Finally, to prove 2), it remains to show that∣∣∣R (Γ̃•ε
)
−R (Γ•ε)

∣∣∣ = O(a−γε/2n ),

We first note that,∣∣∣Ff̂ (αε)− F ∗f (αε)
∣∣∣ ≤ E

[
|1{f̂(X•)≥αε} − 1{f∗(X•)≥αε}|

]
≤ E

[
|1{f̂(X•)≥αε} − 1{f∗(X•)≥αε}|1{|η̂(X•)−η∗(X•)|≥|η∗(X•)−1/2|}

]
+E

[
|1{f̂(X•)≥αε} − 1{f∗(X•)≥αε}|1{|η̂(X•)−η∗(X•)|<|η∗(X•)−1/2|}

]
≤ P (|η̂(X•)− η∗(X•)| ≥ |η∗(X•)− αε|)

+P (|η̂(X•)− η∗(X•)| ≥ |η∗(X•)− (1− αε)|)
+E

[
|1{η̂(X•)≥αε} − 1{η∗(X•)≥αε}|

]
.

Therefore, applying both Proposition 3, Lemma 1 and the above inequality, we get the desired
result.
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