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Abstract

Specific kinematic assumptions are often adopted in structural analysis of civil engineering structures in order
to simplify the global equilibrium equations and reduce the required number of degrees of freedom. The classical
Timoshenko beam hypothesis, considering that plane sections remain plane after deformation but not necessary
normal to the beam axis, is often chosen because it can (approximately) take into account the influence of shear
strains. On the contrary, the Euler-Bernoulli assumption (sections remain plane and perpendicular the beam
axis) neglects their influence and provides therefore accurate results only for the case of slender beam structures.
This work is focused on the Timoshenko beam theory in the context of a multi-fiber approach: The section is
considered as multi-fiber, it can have an arbitrary shape and each fiber has a local constitutive law representing
a specific material. Various formulations of displacement based multi-fiber straight Timoshenko beam finite
elements are re-visited. After a presentation of the shape functions leading to the stiffness matrices and the
consistent nodal forces relative to each formulation, comparisons are made using elastic or elastic perfectly
plastic constitutive laws. The advantages and disadvantages of each formulation are highlighted and general
conclusions on the use of displacement based Timoshenko multi-fiber beams in engineering are drown.

Keywords: Timoshenko; Multi-fiber; beam.

Introduction

Different kinematic assumptions are used in structural analysis in order to simplify the global equilibrium
equations and to reduce the required number of degree of freedom. The Timoshenko beam hypothesis, considers
that plane sections remain plane after deformation but not necessary normal to the beam axis. The advantage of

this theory is that it can take into account the influence of shear strains contrary to Euler-Bernoulli assumption
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which announces that sections remains plane and perpendicular to the beam axis after deformation and which
neglects the influence of shear strains and provides accurate results only for the case of slender beam structures.

One of the first manuscripts introducing the idea of dividing a beam section in ”fibers”, where a specific
stress/strain relation is defined, is the book of Owen and Hilton [1]. This type of finite element has been proven
very efficient for various applications in civil engineering: the nonlinear analysis of beam type or bearing wall
structures with non homogeneous sections (eg. reinforced concrete) [2],[3],[4],[5], arbitrarily geometrical plane
or hollow shape sections [6],[7] submitted to flexion, shear or torsion [8], Soil Structure Interaction problems
[6], vulnerability assessment cases [7] and Fiber-Reinforced Polymer retrofitting [9]. ..

In this article we review the performance of three (3) displacement based straight Timoshenko beam finite
elements under the small rotations assumption (force based beam elements - see for example Spacone & al.
[10] - are out of the scope of this article). The formulations differ on the shape functions interpolating the
displacements and rotations fields inside each element. The first formulation, called hereafter FLI (Full-Linear-
Independent), adopts linear polynomials while the transverse displacement and rotation fields are interpolated
independently, see Pegon [11] and Guedes & al. [12]. Because of the low degree of the adopted polynomials,
this formulation is prone to shear locking problems (see Stolarski and Belytschko [13], De Ville de Goyet [14],
Crisfield [15], Ibrahimbegovic and Frey [16]) if specific measures are not considered. A way to avoid this is to
calculate shear strains approximately, as proposed by Donea and Lamain [17] and adopted in [11] and [12] and
commented hereafter. In the second formulation, referred hereafter as FCQM (Full-Cubic-Quadratic-Material)
and proposed by Friedman and Kosmatka [18], the degree of the shape functions is of order three (3) for the
transverse displacements and two (2) for the rotations. Displacements and rotations are now interdependent
and the shear locking problem is avoided. The particularity of this formulation is that the shape functions
depend on the properties of the materials, and thus its use for non linear problems can be problematic. The
third formulation, called hereafter FCQ (Full-Cubic-Quadratic) and proposed by Caillerie & al. [19] uses shape
functions of order three (3) for the transverse displacements and two (2) for the rotations and an additional
internal node. This results to a finite element free of shear locking and to shape functions independent on the
properties of the materials. Further bibliography on different Timoshenko beam finite elements can be found
in [20],[21] and [22]. For more details about the comparison between these Finite Element formulations, we

refer the reader to Bitar and al. [23].

The organization of the article is as follows: in the first section, the general form of the stiffness matrices
within a multi-fiber beam is presented. In the second section, the specific equations for the FLI, FCQM and
FCQ formulations are provided. The performance of each formulation is studied in the following section for the
case of an elastic or elasto-plastic behavior under monotonic loading. The article ends with general conclusions

and guidelines.
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2 FLI, FCQM AND FCQ FORMULATIONS

1. Timoshenko multi-fiber beams

Consider a beam of length L discretized into n elements e = [z;; ;] of length L = 2; — x; and external
nodes i and j. The generalized displacement vector is approximated by an equation of the form U = NU.,,
where U, is a vector containing the external nodal displacements of the element e and N is the matrix of the

shape functions depending on =x.

The theoretical formulation, based on equilibrium equations an kinematic assumption and passing by the
virtual work principle, provides the beam element stiffness matrix and the internal nodal forces expressions as
the following

Katement = Jy BTKsBdz  Finp,etement = Jo BT Fsda (1)

where B is a matrix containing the derivatives with respect to x of the shape functions, Kg is the multi-fiber

section stiffness matrix and Fls is the generalized force vector of the section.

F, [y EdS 0 — [y EpydS| |UL

F,| = 0 [4kGydS 0 By | (2)
M, — [s ErydS 0 Js Ery?dS | €.

Fs Ks

where Uy (z) being the longitudinal displacement, U, (x) the transverse displacement and ©.(z) the rotation of
the section. ¢y and Gy the Young and Shear modulus respectively and % the shear correction factor.
2. FLI, FCQM and FCQ formulations

We present hereafter the shape functions for the FLI, FCQM and FCQ formulations.

2.1. FLI formulation

Linear independent shape functions are adopted for the generalized displacement fields [11],[12]:

The adopted generalized strain field has the following form:

Ua:i

Uy
U, -+ 0 0 £ 0 0

@zi
=0 =+ -5 0 ¢ 4|7 ®)
e’ o 0 -1 o0 0o L|[7

Uyj

0,

where, following the proposal of Donea and Lamain [17], the expression of 3, is modified by eliminating the

linear terms in the shape functions in order to avoid the shear locking problem.
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2 FLI, FCQM AND FCQ FORMULATIONS

2.2. FCQM formulation

Cubic and quadratic interdependent polynomials, functions of the material properties, are used for the
transverse and rotational displacements and the formulation is free of shear locking [18]. The generalized strain

field is:

Umi

Uy
U’ N] 0 0 N 0 0 o
Byl =10 N,—Nuy N,—Nis 0 Nj—Niz Nj,—Nig o (4)
CH 0 N, Nis 0 N Ny Y

ij

_®Zj_

and the shape functions:

N = —15(5)° = 3(£)* — o(F)] Niz = 755(£)° = (1= §)(£)* - $(3)] (5)
Nus = izl(£)? = (2)] Nis = 15 B(£)" - 4+ 9)(§) + 1+ 4]
Nir =~z l(8)? — (3) Nis = 15 B3(5)° = 2= 0)(£)]

with ¢ the ratio of the beam bending to shear stiffness provided by (v the Poisson’s ratio):

12 EI . 24 1

¢ = ﬁ(@) = ﬁ(m)(l +v). (6)

2.3. FCQ formulation

Cubic functions are used to interpolate the transverse displacements and quadratic for the rotations. The
element is free of shear locking and uses an additional internal node [19]. Caillerie & al. [19] proved also
that the FCQM formulation can be derived from the present formulation and that one FCQ element is able
to predict the exact tip displacements for any complex loading (shear/flexion) submitted to an homogeneous
elastic beam.

The nodal displacement field takes the following form:
1 2 ’
Ue = Uu Uyl @zz AUyz A@l AUyl UL] Uy] @zJ ) (7)

where AUg}i, AO; and AU;Z- are the degrees of freedom of the internal node (with no specific physical meaning).
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The generalized strain field is:

Umi

Uy:

ezi

Ul N, 0 0 0 0 0 N, 0 0 AU},
ﬁy = 0 N{I —N21 N{g —N23 N{S 0 N{7 —N27 A@z . (8)

e, 0 0 Ny 0 Nj 0 0 0 N ||AUZ

Uq?j

Uy,

0.;

Ny=1-7¢ N7 =% Nip=(1-2)2(1+2%)

where ¢ Nz =2(1- £)%(f)  Nis=-2(§)°(1- %) Nir=(§)°3-2%) (%)

Nop=(1-£)(1=3%) Naz=1-(1-27)> Nyr=—(£)(2-3%)

See [19] for more details and the analytical expressions of the condensed matrices and vectors).

3. Comparison of the FLI, FCQM and FCQ formulations

The different numerical examples chosen to illustrate the performance of the FLI, FCQM and FCQ beam
formulations are 3.1 and 3.2. For more applications, we refer the reader to [23].

80

3.1. A cantilever elastic Timoshenko beam subjected to a transverse tip displacement

The geometrical characteristics of the beam and the material parameters are given in figure (1) and table

(1).

Figure 1: Cantilever beam

A displacement vy, is applied at x = L. The resulting analytical shear force and moment at z = 0 is given

as [14]):
Fana — UL Mgna — L X F;na (10)

y I T
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3 COMPARISON OF THE FLI, FCQM AND FCQ FORMULATIONS

Geometry Material properties

L 1.53m Young modulus E  210GPa
b 0.25m Poisson’s ratio v 0.3

d 0.25m | Shear correction factor k %

Table 1: Cantilever beam - Geometrical characteristics and material properties

Comparison of the performances of the three formulations is provided in tables (2) and (3) where n is the number
of the multi-fiber Timoshenko beam elements used for the spatial discretization and Rg(F),) the relative error

on shear forces defined as:

ana __ fnum
Fy Fy

RE(Fy) = ‘ Fana
y

with Fpem the result of the numerical calculations.

n op(m) Fy(KN) M,(KNm) Rg(Fy,)

Analytical 1 0.1 5609.1 8581.9 —

FLI 1 0.1 7428.3 11365.3 32%
FCQM 1 0.1 5609.1 8581.9 0%
FCQ 1 0.1 5609.1 8581.9 0%

Table 2: A cantilever elastic Timoshenko beam subjected to a transverse tip displacement - Results of the 3 formulations considering

one (1) multi-fiber Timoshenko beam element

n  F,(KN) M.,KNm) Rg(F,) | n F,(KN) M.(KNm) Rg (F,)

5696.3 8715.3 15% |20 56122 8587.2 0.053%
8  5630.6 8614.9 0.37% | 31  5610.5 8584.1 0.025%
16 5614.5 8590.1  0.087% | 51 5609.6  8582.73  0.009%

Table 3: A cantilever elastic Timoshenko beam subjected to a transverse tip displacement - Results of the FLI formulation

considering n multi-fiber Timoshenko beam elements

One FCQM or FCQ element provides the exact solution in terms of forces and moments whereas the FLI
formulation presents a relative error Ry (F,) of 32%, see table (2). This is due to the fact that its shape functions
corresponding to the transverse displacements and rotations are linear whereas the analytical solutions of O,
and U, are a second and a third order polynomial respectively. By increasing the number of elements, the

accuracy of the FLI formulation however quickly improves (see table (3)).
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3 COMPARISON OF THE FLI, FCQM AND FCQ FORMULATIONS

3.2. A cantilever elastic perfectly plastic Timoshenko beam subjected to a transverse tip displacement.

We consider hereafter an elastic perfectly plastic material [24] assuming that only the normal component
of the axial stress o, can enter to plasticity. No interaction between the shear stresses and the normal stresses
at the material constitutive law level is considered. The stress elastic limit f, is taken equal to 450M Pa while
the other parameters are provided in table 1. The plastic moment and the plastic shear force are (Eurocode 2

[25]):

2 M
Mpy =Wy fy = %fy v Fyp = Lpl (12)

These two values are obtained considering that all the fibers in the section are plastified. This is an asymptotic
section behavior state that cannot be reached with the adopted kinematic assumption of plane sections, since
the axial strain at the neutral axis equals zero and thus the corresponding fibers cannot plastified.

The cantilever beam is submitted to an imposed displacement vy, at its free end (z = L). Comparison of
the performances of the three formulations for different discretizations are shown in tables 4 and 5. As before,
one FLI element does not provide good results. However, increasing the number of elements greatly improves
its performance. Results are better for the FCQ formulation that always provides the smallest error among

the three formulations.

n ovp(m) Fy(KN) M.,(KNm) Rg(Fy)
Analytical 1 0.1 1148.9 1757.8 —
FLI 1 0.1 2263 3462 97%
FCQM 1 0.1 1609 2462 40%
FCQ 1 0.1 1581 2417 37.6 %

Table 4: A cantilever elastic perfectly plastic Timoshenko beam subjected to a transverse tip displacement - Results of the 3

formulations considering one (1) multi-fiber Timoshenko beam

FLI FCQM FCQ
n | Fy(KN) M. (KNm) Rg(F,) | Fy(KN) M. (KNm) Rg(F,) | F,(KN) M.(KNm) Rg(Fy)
1312 2006 14% 1311 2005 17.4% 1236 1889 7.7%
8 1225 1872 % 1225 1872 6.6 % 1191 1819 4.1%
16 1186 1811 3.2% 1186 1811 3.2% 1169 1785 1.7%

110

Table 5: A cantilever elastic perfectly plastic Timoshenko beam subjected to a transverse tip displacement - Results of the 3

formulations considering n multi-fiber Timoshenko beam elements

Figure (2) presents the moment diagrams along the beam for the three formulations and for different number

of elements. The moment nodal values are plotted and linked with straight lines. By increasing the number of
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multi-fiber beam elements, the moment diagrams of the three formulations coincide. Conclusions are similar

in figure (3) showing the evolution of the shear force F, with respect to the vertical tip displacement vy,.

3500 3500 3500 3500
—FLI —FLI —FLI —FLI
3000 FCQM| 3000 FCQM| 3000 FCQM| 3000 FCQMm
FCQ FCQ FCQ FCQ
2500 2500 2500 2500
z z z z
£ 2000 £ 2000 £ 2000 £ 2000
= = = =
1 1500 1 1500 1 1500 1 1500
o o o o
= 1000 = 1000 = 1000 = 1000
500) 500 500) 500)
% 05 1 15 % 05 1 15 % 05 1 15 % 05 1 15
LENGTH (m) LENGTH (m) LENGTH (m) LENGTH (m)
(a)n=1 (b)yn=4 (c)n=28 (d)yn=16

Figure 2: A cantilever elastic perfectly plastic Timoshenko beam subjected to a transverse tip displacement - Moment diagrams

along the beams for the 3 formulations considering n multi-fiber Timoshenko beam elements

2500, 2500, 2500, 2500,
//_J
2000) 2000) 2000) 2000)
z z z z
< < < <
z z z z
% 1500 % 1500 % 1500 3 1500
= = e — N > =
9] 9] T 9] 9]
& 1000 & 1000 & 1000 o & 1000
4 4 4 4 /
5 5 5 / 5 /
'S w w / w //
500 —FLI 500 / —FLI 500F / —FLI 500F / —FLI
FCQM / FCQM / FCQM / FCQM
FCQ / FCQ / FCQ / FCQ
% 20 40 60 80 100 % 20 40 60 80 100 K 20 40 60 80 100 K 20 40 60 80
VL: DISPLACEMENT (mm) VL: DISPLACEMENT (mm) VL: DISPLACEMENT (mm) VL: DISPLACEMENT (mm)
(ayn=1 b)yn=4 (c)n=28 (d)n=16

Figure 3: A cantilever elastic perfectly plastic Timoshenko beam subjected to a transverse tip displacement - Shear forces Vs.

vertical displacements considering n multi-fiber Timoshenko beam elements

Remark: In the FCQM formulation the shape functions depend on the material properties (5),(6). These
shape functions were considered constant in this example (using the elastic material parameters) even when
in the plasticity regime. Although this approach provides sometimes good results (see tables 4 and 5), the

performance of the multi-fiber Timoshenko beam for non linear calculations can be undpredictable [19].

4. Conclusion

Three different Timoshenko multi-fiber beam formulations have been presented in this paper: the FLI
formulation with linear shape functions, the FCQM formulation with higher order shape functions dependent
on the material properties and the FCQ formulation with higher order shape functions and additional internal
degrees of freedom. A comparison between the three formulations through numerical examples showed that
the FLI formulation does not provide accurate results when only one element is adopted. Results are however
improved using a finer discretization. The FCQM formulation is not suitable for non linear calculations as

its performance can be unpredictable. This is because of the dependency on the material properties. Finally,

100
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4 CONCLUSION

the FCQ formulation provides the best results with the smaller number of finite elements. Nevertheless, an

increased number of finite elements is needed in order to reproduce correctly the axial force bending moment

interaction.
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