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Specific kinematic assumptions are often adopted in structural analysis of civil engineering structures in order to simplify the global equilibrium equations and reduce the required number of degrees of freedom. The classical Timoshenko beam hypothesis, considering that plane sections remain plane after deformation but not necessary normal to the beam axis, is often chosen because it can (approximately) take into account the influence of shear strains. On the contrary, the Euler-Bernoulli assumption (sections remain plane and perpendicular the beam axis) neglects their influence and provides therefore accurate results only for the case of slender beam structures. This work is focused on the Timoshenko beam theory in the context of a multi-fiber approach: The section is considered as multi-fiber, it can have an arbitrary shape and each fiber has a local constitutive law representing a specific material. Various formulations of displacement based multi-fiber straight Timoshenko beam finite elements are re-visited. After a presentation of the shape functions leading to the stiffness matrices and the consistent nodal forces relative to each formulation, comparisons are made using elastic or elastic perfectly plastic constitutive laws. The advantages and disadvantages of each formulation are highlighted and general conclusions on the use of displacement based Timoshenko multi-fiber beams in engineering are drown.

Introduction

Different kinematic assumptions are used in structural analysis in order to simplify the global equilibrium equations and to reduce the required number of degree of freedom. The Timoshenko beam hypothesis, considers that plane sections remain plane after deformation but not necessary normal to the beam axis. The advantage of this theory is that it can take into account the influence of shear strains contrary to Euler-Bernoulli assumption which announces that sections remains plane and perpendicular to the beam axis after deformation and which neglects the influence of shear strains and provides accurate results only for the case of slender beam structures.

One of the first manuscripts introducing the idea of dividing a beam section in "fibers", where a specific stress/strain relation is defined, is the book of Owen and Hilton [START_REF] Owen | Finite elements in plasticity[END_REF]. This type of finite element has been proven very efficient for various applications in civil engineering: the nonlinear analysis of beam type or bearing wall structures with non homogeneous sections (eg. reinforced concrete) [START_REF] Kotronis | Simplified modelling strategies to simulate the dynamic behaviour of R/C walls[END_REF], [START_REF] Kotronis | A simplified modelling strategy for R/C walls satisfying PS92 and EC8 design[END_REF], [START_REF] Ile | Shaking table tests of lightly RC walls: Numerical simulations[END_REF], [START_REF] Grange | Numerical modelling of the seismic behaviour of a 7-story building: NEES benchmark[END_REF], arbitrarily geometrical plane or hollow shape sections [START_REF] Grange | The effects of soil -structure interaction on a reinforced concrete viaduct[END_REF], [START_REF] Desprez | Seismic vulnerability assessment of a RC structure before and after FRP retrofitting[END_REF] submitted to flexion, shear or torsion [START_REF] Mazars | Using multifiber beams to account for shear and torsion: Applications to concrete structural elements[END_REF], Soil Structure Interaction problems [START_REF] Grange | The effects of soil -structure interaction on a reinforced concrete viaduct[END_REF], vulnerability assessment cases [START_REF] Desprez | Seismic vulnerability assessment of a RC structure before and after FRP retrofitting[END_REF] and Fiber-Reinforced Polymer retrofitting [START_REF] Desprez | Damage model for FRP-confined concrete columns under cyclic loading[END_REF]. . . In this article we review the performance of three (3) displacement based straight Timoshenko beam finite elements under the small rotations assumption (force based beam elements -see for example Spacone & al.

[10] -are out of the scope of this article). The formulations differ on the shape functions interpolating the displacements and rotations fields inside each element. The first formulation, called hereafter FLI (Full-Linear-Independent), adopts linear polynomials while the transverse displacement and rotation fields are interpolated independently, see Pegon [START_REF] Pegon | A Timoshenko simple beam element in Castem[END_REF] and Guedes & al. [START_REF] Guedes | A fibre/Timoshenko beam element in Castem[END_REF]. Because of the low degree of the adopted polynomials, this formulation is prone to shear locking problems (see Stolarski and Belytschko [START_REF] Stolarski | Membrane locking and reduced integration for curved elements[END_REF], De Ville de Goyet [START_REF] Ville De Goyet | L'analyse statique non linéaire par la méthode des éléments finis des structures spatiales formées de poutres à section non symétrique[END_REF],

Crisfield [START_REF] Crisfield | Nonlinear finite element analysis of solids and structures[END_REF], Ibrahimbegovic and Frey [START_REF] Ibrahimbegović | Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams[END_REF]) if specific measures are not considered. A way to avoid this is to calculate shear strains approximately, as proposed by Donea and Lamain [START_REF] Donea | A modified representation of transverse shear in C 0 quadrilateral plate elements[END_REF] and adopted in [START_REF] Pegon | A Timoshenko simple beam element in Castem[END_REF] and [START_REF] Guedes | A fibre/Timoshenko beam element in Castem[END_REF] and commented hereafter. In the second formulation, referred hereafter as FCQM (Full-Cubic-Quadratic-Material) and proposed by Friedman and Kosmatka [START_REF] Friedman | An improved two-node Timoshenko beam finite element[END_REF], the degree of the shape functions is of order three (3) for the transverse displacements and two (2) for the rotations. Displacements and rotations are now interdependent and the shear locking problem is avoided. The particularity of this formulation is that the shape functions depend on the properties of the materials, and thus its use for non linear problems can be problematic. The third formulation, called hereafter FCQ (Full-Cubic-Quadratic) and proposed by Caillerie & al. [19] uses shape functions of order three (3) for the transverse displacements and two (2) for the rotations and an additional internal node. This results to a finite element free of shear locking and to shape functions independent on the properties of the materials. Further bibliography on different Timoshenko beam finite elements can be found in [START_REF] Nickel | Convergence of consistently derived Timoshenko beam finite elements[END_REF], [START_REF] Thomas | Finite element model for dynamic analysis of Timoshenko beam[END_REF] and [START_REF] Tessler | On a hierarchy of conforming Timoshenko beam elements[END_REF]. For more details about the comparison between these Finite Element formulations, we refer the reader to Bitar and al. [START_REF] Bitar | A review on Timoshenko multi-fiber beams Finite Element formulations and elasto-plastic applications[END_REF].

The organization of the article is as follows: in the first section, the general form of the stiffness matrices within a multi-fiber beam is presented. In the second section, the specific equations for the FLI, FCQM and FCQ formulations are provided. The performance of each formulation is studied in the following section for the case of an elastic or elasto-plastic behavior under monotonic loading. The article ends with general conclusions and guidelines.

Timoshenko multi-fiber beams

Consider a beam of length L discretized into n elements e = [x i ; x j ] of length L = x j -x i and external nodes i and j. The generalized displacement vector is approximated by an equation of the form

U = N U e ,
where U e is a vector containing the external nodal displacements of the element e and N is the matrix of the shape functions depending on x.

The theoretical formulation, based on equilibrium equations an kinematic assumption and passing by the virtual work principle, provides the beam element stiffness matrix and the internal nodal forces expressions as the following

K element = L 0 B T K S Bdx F int,element = L 0 B T F S dx (1) 
where B is a matrix containing the derivatives with respect to x of the shape functions, K S is the multi-fiber section stiffness matrix and F S is the generalized force vector of the section.
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where U x (x) being the longitudinal displacement, U y (x) the transverse displacement and Θ z (x) the rotation of the section. E f and G f the Young and Shear modulus respectively and k the shear correction factor.

FLI, FCQM and FCQ formulations

We present hereafter the shape functions for the FLI, FCQM and FCQ formulations.

FLI formulation

Linear independent shape functions are adopted for the generalized displacement fields [START_REF] Pegon | A Timoshenko simple beam element in Castem[END_REF], [START_REF] Guedes | A fibre/Timoshenko beam element in Castem[END_REF]:

The adopted generalized strain field has the following form:

     U x β y Θ z      =      -1 L 0 0 1 L 0 0 0 -1 L -1 2 0 1 L -1 2 0 0 -1 L 0 0 1 L                    U xi U yi Θ zi U xj U yj Θ zj               , (3) 
where, following the proposal of Donea and Lamain [START_REF] Donea | A modified representation of transverse shear in C 0 quadrilateral plate elements[END_REF], the expression of β y is modified by eliminating the linear terms in the shape functions in order to avoid the shear locking problem.

FCQM formulation 60

Cubic and quadratic interdependent polynomials, functions of the material properties, are used for the transverse and rotational displacements and the formulation is free of shear locking [START_REF] Friedman | An improved two-node Timoshenko beam finite element[END_REF]. The generalized strain field is:

     U x β y Θ z      =      N 1 0 0 N 4 0 0 0 N 8 -N 14 N 9 -N 15 0 N 11 -N 17 N 12 -N 18 0 N 14 N 15 0 N 17 N 18                    U xi U yi Θ zi U xj U yj Θ zj               . ( 4 
)
and the shape functions:

                           N 1 = 1 -x L N 4 = x L N 8 = 1 1+φ [2( x L ) 3 -3( x L ) 2 -φ( x L ) + 1 + φ] N 9 = L 1+φ [( x L ) 3 -(2 + φ 2 )( x L ) 2 + (1 + φ 2 )( x L )] N 11 = -1 1+φ [2( x L ) 3 -3( x L ) 2 -φ( x L )] N 12 = L 1+φ [( x L ) 3 -(1 -φ 2 )( x L ) 2 -φ 2 ( x L )] N 14 = 6 (1+φ)L [( x L ) 2 -( x L )] N 15 = 1 1+φ [3( x L ) 2 -(4 + φ)( x L ) + 1 + φ] N 17 = -6 (1+φ)L [( x L ) 2 -( x L )] N 18 = 1 1+φ [3( x L ) 2 -(2 -φ)( x L )] (5) 
with φ the ratio of the beam bending to shear stiffness provided by (ν the Poisson's ratio):

φ = 12 L 2 ( EI kGA ) = 24 L 2 ( I kA )(1 + ν). (6) 

FCQ formulation

Cubic functions are used to interpolate the transverse displacements and quadratic for the rotations. The element is free of shear locking and uses an additional internal node [START_REF] Caillerie | A new Timoshenko finite element beam with internal degrees of freedom[END_REF]. Caillerie & al. [START_REF] Caillerie | A new Timoshenko finite element beam with internal degrees of freedom[END_REF] proved also that the FCQM formulation can be derived from the present formulation and that one FCQ element is able to predict the exact tip displacements for any complex loading (shear/flexion) submitted to an homogeneous 70 elastic beam.

The nodal displacement field takes the following form:

U e = U xi U yi Θ zi ∆U 1 yi ∆Θ i ∆U 2 yi U xj U yj Θ zj T , (7) 
where ∆U 1 yi , ∆Θ i and ∆U 2 yi are the degrees of freedom of the internal node (with no specific physical meaning).

The generalized strain field is:

     U x β y Θ z      =      N 1 0 0 0 0 0 N 7 0 0 0 N 11 -N 21 N 13 -N 23 N 15 0 N 17 -N 27 0 0 N 21 0 N 23 0 0 0 N 27                             U xi U yi Θ zi ∆U 1 yi ∆Θ i ∆U 2 yi U xj U yj Θ zj                        . ( 8 
)
where

             N 1 = 1 -x L N 7 = x L N 11 = (1 -x L ) 2 (1 + 2 x L ) N 13 = 2(1 -x L ) 2 ( x L ) N 15 = -2( x L ) 2 (1 -x L ) N 17 = ( x L ) 2 (3 -2 x L ) N 21 = (1 -x L )(1 -3 x L ) N 23 = 1 -(1 -2 x L ) 2 N 27 = -( x L )(2 -3 x L ) (9) 
See [START_REF] Caillerie | A new Timoshenko finite element beam with internal degrees of freedom[END_REF] for more details and the analytical expressions of the condensed matrices and vectors).

Comparison of the FLI, FCQM and FCQ formulations

The different numerical examples chosen to illustrate the performance of the FLI, FCQM and FCQ beam formulations are 3.1 and 3.2. For more applications, we refer the reader to [START_REF] Bitar | A review on Timoshenko multi-fiber beams Finite Element formulations and elasto-plastic applications[END_REF]. Table 1: Cantilever beam -Geometrical characteristics and material properties

Comparison of the performances of the three formulations is provided in tables ( 2) and ( 3) where n is the number of the multi-fiber Timoshenko beam elements used for the spatial discretization and R E (F y ) the relative error on shear forces defined as:

R E (F y ) = F ana y -F num y F ana y ( 11 
)
with F num y the result of the numerical calculations. One FCQM or FCQ element provides the exact solution in terms of forces and moments whereas the FLI 90 formulation presents a relative error R E (F y ) of 32%, see table [START_REF] Kotronis | Simplified modelling strategies to simulate the dynamic behaviour of R/C walls[END_REF]. This is due to the fact that its shape functions corresponding to the transverse displacements and rotations are linear whereas the analytical solutions of Θ z and U y are a second and a third order polynomial respectively. By increasing the number of elements, the accuracy of the FLI formulation however quickly improves (see table (3)).

n v L (m) F y (KN ) M z (KN m) R E (F y ) Analytical 1 0.

3.2.

A cantilever elastic perfectly plastic Timoshenko beam subjected to a transverse tip displacement.

We consider hereafter an elastic perfectly plastic material [START_REF] Simo | Computational inelasticity[END_REF] assuming that only the normal component of the axial stress σ x can enter to plasticity. No interaction between the shear stresses and the normal stresses at the material constitutive law level is considered. The stress elastic limit f y is taken equal to 450M P a while the other parameters are provided in table 1. The plastic moment and the plastic shear force are (Eurocode 2 [START_REF] De Normalisation | Eurocode 2: design of concrete structures[END_REF]):
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M pl = W pl f y = bd 2 4 f y , F yp = M pl L (12) 
These two values are obtained considering that all the fibers in the section are plastified. This is an asymptotic section behavior state that cannot be reached with the adopted kinematic assumption of plane sections, since the axial strain at the neutral axis equals zero and thus the corresponding fibers cannot plastified.

The cantilever beam is submitted to an imposed displacement v L at its free end (x = L). Comparison of the performances of the three formulations for different discretizations are shown in tables 4 and 5. As before, one FLI element does not provide good results. However, increasing the number of elements greatly improves its performance. Results are better for the FCQ formulation that always provides the smallest error among the three formulations. Remark: In the FCQM formulation the shape functions depend on the material properties (5), [START_REF] Grange | The effects of soil -structure interaction on a reinforced concrete viaduct[END_REF]. These shape functions were considered constant in this example (using the elastic material parameters) even when in the plasticity regime. Although this approach provides sometimes good results (see tables 4 and 5), the performance of the multi-fiber Timoshenko beam for non linear calculations can be undpredictable [START_REF] Caillerie | A new Timoshenko finite element beam with internal degrees of freedom[END_REF].

n v L (m) F y (KN ) M z (KN m) R E (F y )
FLI FCQM FCQ n F y (KN ) M z (KN m) R E (F y ) F y (KN ) M z (KN m) R E (F y ) F y (KN ) M z (KN m) R E (F y ) 4 

Conclusion

Three different Timoshenko multi-fiber beam formulations have been presented in this paper: the FLI formulation with linear shape functions, the FCQM formulation with higher order shape functions dependent on the material properties and the FCQ formulation with higher order shape functions and additional internal 120 degrees of freedom. A comparison between the three formulations through numerical examples showed that the FLI formulation does not provide accurate results when only one element is adopted. Results are however improved using a finer discretization. The FCQM formulation is not suitable for non linear calculations as its performance can be unpredictable. This is because of the dependency on the material properties. Finally, the FCQ formulation provides the best results with the smaller number of finite elements. Nevertheless, an increased number of finite elements is needed in order to reproduce correctly the axial force bending moment interaction.
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 2162163 Figure (2) presents the moment diagrams along the beam for the three formulations and for different number of elements. The moment nodal values are plotted and linked with straight lines. By increasing the number of

Table 2 :

 2 

				1	5609.1	8581.9	-	
		FLI	1	0.1	7428.3	11365.3	32%	
		FCQM	1	0.1	5609.1	8581.9	0%	
		FCQ	1	0.1	5609.1	8581.9	0%	
	4	5696.3	8715.3	1.5%	20	5612.2	8587.2	0.053%
	8	5630.6	8614.9	0.37%	31	5610.5	8584.1	0.025%
	16	5614.5	8590.1	0.087% 51	5609.6	8582.73	0.009%

A cantilever elastic Timoshenko beam subjected to a transverse tip displacement -Results of the 3 formulations considering one (1) multi-fiber Timoshenko beam element

n F y (KN ) M z (KN m) R E (F y ) n F y (KN ) M z (KN m) R E (F y )

Table 3 :

 3 A cantilever elastic Timoshenko beam subjected to a transverse tip displacement -Results of the FLI formulation considering n multi-fiber Timoshenko beam elements

Table 4 :

 4 A cantilever elastic perfectly plastic Timoshenko beam subjected to a transverse tip displacement -Results of the 3

	Analytical 1	0.1	1148.9	1757.8	-
	FLI	1	0.1	2263	3462	97%
	FCQM	1	0.1	1609	2462	40%
	FCQ	1	0.1	1581	2417	37.6 %
	formulations considering one (1) multi-fiber Timoshenko beam		

Table 5 :

 5 A cantilever elastic perfectly plastic Timoshenko beam subjected to a transverse tip displacement -Results of the 3 formulations considering n multi-fiber Timoshenko beam elements
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