FIXED POINTS OF IMPLICIT CONTRACTION MAPPINGS

BY MIHAI TURINICI 1. In this note, the notion of "implicit contraction mapping" of a complete metric space into itself is introduced and some fixed point theorems for such a class of mappings are presented.

Let R be the real axis, R + the positive half-axis, D = R 0 + the strict positive half-axis (i.e. R + = [0, ∞[, D =]0, ∞[), S = ∅ an arbitrary set and ∅ = P ⊂ S an arbitrary fixed subset.

Definition 1.1. A function f : D × D × R + × R + × R + × R + → S will be said to have property (P), if it satisfies A. Global conditions: a.1) t, u > 0, v, w, p, q ≥ 0 =⇒ f (t, u, v, w, p, q) = f (t, u, w, v, p, q) = f (t, u, v, w, q, p) a.2) u, v > 0, 0 ≤ p ≤ u + v, f (u, v, v, u, p, 0) ∈ P =⇒ u ≤ v a.3) w > 0 =⇒ f (w, w, 0, 0, w, w) ∈ S \ P B. Local conditions: ∀r > 0, ∃a(r) ∈]0, r[ such that b.1) u, v ∈ [r, r + a(r)[, u ≤ v, 0 ≤ p ≤ u + v =⇒ f (u, v, v, u, p, 0) ∈ S \ P b.2) t, p, q ∈]r -a(r), r + a(r)[, u ∈ [r, r + a(r)[, v, w ∈]0, a(r)[ =⇒ f (t, u, v, w, p, q) ∈ S \ P b.3) t, p ∈]r -a(r), r + a(r)[, u, v, q ∈]0, a(r)[ =⇒ f (t, u, v, r, p, q) ∈ S \ P . Definition 1.2. Let f : D × D × R + × R + × R + × R + → S
be a given function and let (X, d) be a complete metric space. A mapping T : X → X will be called an implicit contraction mapping (abbreviated: i. c. m.) with respect to f , if (1.1) f (d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ∈ P for all x, y ∈ X, T x = T y.

Our main result can be stated as follows.

Theorem 1.1. Suppose that T : X → X satisfies (1.2) T is an i. c. m. with respect to f (1.3) f has the property (P).

Then, the following conclusions hold:

(1.4) T has a unique fixed point z ∈ X (1.5) T n x → z as n → ∞, ∀x ∈ X.
Proof. First, we prove the uniqueness of the fixed point of

T . Let u, v ∈ X be such that u = T u, v = T v, u = v. From (1.1) and a.3) we obtain (1.6) P f (d(u, v), d(u, v), 0, 0, d(u, v), d(u, v)) ∈ S \ P ,
a contradiction. Therefore, u = v; i.e., the fixed point of T is unique. Now we prove the existence. Take any x ∈ X and consider the sequence {T n x; n ≥ 0}. If T n x = T n+1 x for some n, then the conclusion follows. Assume that T n x = T n+1 x, ∀n ≥ 0. From (1.1) we have, ∀n ≥ 1

(1.7) f (d(T n x, T n+1 x), d(T n-1 x, T n x), d(T n-1 x, T n x), d(T n x, T n+1 x), d(T n-1 x, T n+1 x), 0) ∈ P ;
and, on the other hand

(1.8) d(T n-1 x, T n+1 x) ≤ d(T n-1 x, T n x) + d(T n x, T n+1 x).
From (1.7), (1.8) and a.2) we obtain, ∀n ≥ 1:

(1.9) d(T n x, T n+1 x) ≤ d(T n-1 x, T n x);

i.e., the sequence {d(T n x, T n+1 x); n ≥ 0} decreases.

Let r = lim n→∞ d(T n x, T n+1 x) and assume that r > 0. One can find some rank n(r) ≥ 1, such that

(1.10) n ≥ n(r) =⇒ d(T n-1 x, T n x) ∈ [r, r + a(r)[.
Taking into account (1.8), (1.9), (1.10) and b.1) we have, ∀n ≥ n(r)

(1.11) f (d(T n x, T n+1 x), d(T n-1 x, T n x), d(T n-1 x, T n x), d(T n x, T n+1 x), d(T n-1 x, T n+1 x), 0) ∈ S \ P , which contradicts (1.7) for n ≥ n(r). Therefore r = 0.
Suppose that {T n x; n ≥ 0} is not a Cauchy sequence. Then there exist ε > 0 and two sequences of natural numbers {m(j); j ≥ 1} and {n(j); j ≥ 1}, m(j) < n(j), ∀j ≥ 1, m(j) → ∞ as j → ∞ such that d(T m(j) x, T n(j) x) ≥ ε, while d(T m(j) x, T n(j)-1 x) < ε, ∀j ≥ 1.

For the sake of simplicity, we shall write m, n, instead of m(j), n(j), respectively. Now, since d(T k x, T k+1 x) → 0 as k → ∞, we can find j(ε) ≥ 1, such that (1.12) 0 < d(T n-1 x, T n x) ≤ d(T m x, T m+1 x) < (1/3)a(ε) < a(ε) < ε, ∀j ≥ j(ε).

On the other hand, from the triangle inequality we have, ∀j ≥ 1

(1.13) d(T m x, T n x) -d(T m x, T m+1 x) -d(T n x, T n+1 x) ≤ d(T m+1 x, T n+1 x) ≤ d(T m x, T n x) + d(T m x, T m+1 x) + d(T n x, T n+1 x), (1.14) d(T m x, T n x) ≤ d(T m x, T n-1 x) + d(T n-1 x, T n x), (1.15) d(T m x, T n x) -d(T n x, T n+1 x) ≤ d(T m x, T n+1 x) ≤ d(T m x, T n x) + d(T n x, T n+1 x), (1.16) d(T m x, T n x) -d(T m x, T m+1 x) ≤ d(T n x, T m+1 x) ≤ d(T m x, T n x) + d(T m x, T m+1 x).
From (1.12)-(1.16) it easily follows, ∀j ≥ j(ε)

(1.17) d(T m+1 x, T n+1 x), d(T m x, T n+1 x), d(T n x, T m+1 x) ∈ ]ε -a(ε), ε + a(ε)[, d(T m x, T n x) ∈ [ε, ε + a(ε)[.
Now, (1.1), (1.12), (1.17) and b.2) give us, for j ≥ j(ε)

(1.18) P f (d(T m+1 x, T n+1 x), d(T m x, T n x), d(T m x, T m+1 x), d(T n x, T n+1 x), d(T m x, T n+1 x), d(T n x, T m+1 x)) ∈ S \ P ,
a contradiction. Therefore, {T n x; n ≥ 0} is a Cauchy sequence. Since (X, d) is complete, T n x → z, for some z ∈ X. We have two possibilities:

i) There exists a sequence of natural numbers {k(n

); n ≥ 0}, k(n) → ∞ as n → ∞, such that T k(n) x = z. Then, T k(n)+1 x = T z.
Letting n tends to ∞ and using the fact that {T k(n)+1 x; n ≥ 0} is a subsequence of {T n x; n ≥ 0}, we get z = T z.

ii) There exists n 0 ∈ N such that n ≥ n 0 =⇒ T n x = z. Suppose that z = T z; then r := d(z, T z) > 0. We can find n(r) ∈ N such that, ∀n ≥ n(r)

(1.19) 0 < d(T n x, T n+1 x), d(T n x, z) < (1/3)a(r) < a(r) < r.
On the other hand, from the triangle inequality we have, ∀n ≥ 1

(1.20) r -d(T n x, z) ≤ d(T n x, T z) ≤ r + d(T n x, z).
From (1.19), (1.20) we obtain, ∀n ≥ n(r) Proof. Clearly, the preceding theorem is applicable.

Q. E. D.

Definition 2.3. A function f : D × D → S will be said to have property (P)

, if it satisfies A. Global conditions a.1) u, v > 0, f (u, v) ∈ P =⇒ u ≤ v, a.2) w > 0 =⇒ f (w, w) ∈ S \ P B. Local conditions: ∀r > 0, ∃a(r) ∈]0, r[ such that b.1) u, v ∈ [r, r + a(r)[, u ≤ v =⇒ f (u, v) ∈ S \ P , b.2) t ∈]r -a(r), r + a(r)[, u ∈ [r, r + a(r)[ =⇒ f (t, u) ∈ S \ P , b.3) t ∈]r -a(r), r + a(r)[, u ∈]0, a(r)[ =⇒ f (t, u) ∈ S \ P .
Definition 2.4. Let f : D × D → S be a given function. A mapping T : X → X will be called an i. c. m. with respect to f , if

(2.6) f (d(T x, T y), d(x, y)) ∈ P , ∀x, y ∈ X, T x = T y.
Theorem 2.2. Suppose that T : X → X satisfies (2.7) T is an i. c. m. with respect to f (2.8) f has the property (P).

Then, the following conclusions hold:

(2.9) T has a unique fixed point z ∈ X, (2.10) T n x → z as n → ∞, ∀x ∈ X.

Proof. See the preceding result.

Remark. The main result is a partial extension of a result due to Hardy and Rogers [START_REF] Hardy | A generalization of a fixed point theorem of Reich[END_REF]. Theorem 2.1 extends some results of Reich [START_REF] Reich | Kannan's fixed point theorem[END_REF][START_REF] Reich | Fixed points of contractive functions[END_REF], Rus [START_REF] Rus | Some fixed point theorems in metric spaces[END_REF][START_REF] Rus | O metode posledovatelnych približenij (Russian)[END_REF] and of the author [START_REF] Turinici | A fixed point theorem on metric spaces[END_REF][START_REF] Turinici | Fixed points in complete metric spaces[END_REF]; and Theorem 2.2 represents an extension of a result due to Boyd and Wong [START_REF] Boyd | On nonlinear contractions[END_REF].