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Abstract

We exploit the methodological similarity between ancestral genome
reconstruction and extant genome scaffolding. We present a method, called
ARt-DeCo that constructs neighborhood relationships between genes or
contigs, in both ancestral and extant genomes, in a phylogenetic context. It is
able to handle dozens of complete genomes, including genes with complex
histories, by using gene phylogenies reconciled with a species tree, that is,
annotated with speciation, duplication and loss events. Reconstructed ancestral
or extant synteny comes with a support computed from an exhaustive exploration
of the solution space. We compare our method with a previously published one
that follows the same goal on a small number of genomes with universal unicopy
genes. Then we test it on the whole Ensembl database, by proposing partial
ancestral genome structures, as well as a more complete scaffolding for many
partially assembled genomes on 69 eukaryote species. We carefully analyze a
couple of extant adjacencies proposed by our method, and show that they are
indeed real links in the extant genomes, that were missing in the current
assembly. On a reduced data set of 39 eutherian mammals, we estimate the
precision and sensitivity of ARt-DeCo by simulating a fragmentation in some
well assembled genomes, and measure how many adjacencies are recovered. We
find a very high precision, while the sensitivity depends on the quality of the data
and on the proximity of closely related genomes.

Keywords: ancestral genome reconstruction; genome scaffolding; parsimony;
gene duplication/loss; gene tree/species tree reconciliation

Introduction
Knowledge of genome organization (gene content and order) and of its dynamics is

an important question in several fields such as cancer genomics [1, 2, 3], to under-

stand gene interactions involved in a common molecular pathway [4], or evolutionary

biology, for example to establish a species phylogeny by comparative analysis of gene

orders [5].

On one side, studying genome organization evolution, and in particular proposing

gene orders for ancestral genomes, requires well assembled extant genomes, while,

on the other side, the assembly of extant genomes can in return benefit from evolu-

tionary studies. This calls for integrative methods for the joint scaffolding of extant

genomes and reconstruction of ancestral genomes.

The reconstruction of ancestral genome organization is a classical computational

biology problem [6], for which various methods have been developed [7, 8, 9, 10, 11,

12, 13]. The rapid accumulation of new genome sequences provides the opportunity
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to integrate a large number of genomes to reconstruct their structural evolution.

However, a significant proportion of these genomes is incompletely assembled and

remains at the state of contigs (permanent draft) as illustrated by statistics on

GOLD [14]. To improve assemblies, methods known as scaffolding were developed to

order contigs into scaffolds. Most scaffolding methods use either a reference genome,

or the information provided by paired-end reads, or both [15, 16, 17, 18, 19, 20,

21, 22]. We refer to Hunt et al. [23] for a detailed comparative analysis of recent

scaffolding methods.

In recent developments, scaffolding methods taking into account multiple refer-

ence genomes and their phylogeny have been proposed [24, 25, 26, 27]. It suggests

a methodological link with ancestral genome reconstructions: if ancestral genes are

considered as contigs, scaffolding extant or ancestral contigs in a phylogenetic con-

text differs only in the location of the considered genome within the phylogeny (leaf

or internal node). This link has been observed [28] and exploited to develop a method

for combining scaffolding and ancestral genomes reconstruction [29]. However, the

latter, due to the computational complexity of the ancestral genome reconstruction

problem, is currently limited to a few genomes and to single-copy universal genes.

We propose to overcome this computational complexity by considering indepen-

dent ancestral gene neighborhood reconstructions [12] instead of whole genomes,

which allows to scale up to dozens of whole genomes and to use as input data

genes with complex histories. We develop a method that scaffolds ancestral and

extant genomes at the same time. The algorithm improves over previous methods

of scaffolding by the full integration of the inference of evolutionary events within

a phylogenetic context.

The principle of our method is imported from DeCo [12]. So we call it ARt-

DeCo for Assembly Recovery through DeCo. DeCo is an algorithm for ancestral

synteny reconstruction. It is a dynamic programming scheme on pairs of reconciled

gene tree, generalizing the classic dynamic programming scheme for parsimonious

ancestral character reconstructions along a tree. It computes a parsimonious set

of ancestral gene neighborhoods, the cost being computed as the weighted sum of

gains and losses of such neighborhoods, due to genome rearrangements. In addition

to DeCo, ARt-DeCo considers a linkage probability for each couple of genes in

extant genomes, that is included in the cost function in order to be able to propose

gene neighborhoods in extant as well as in ancestral genomes.

We implemented ARt-DeCo and tested it on several data sets. First we re-

produced the experiment of [29] on 7 tetrapod genomes limited to universal uni-

copy genes, with comparable accuracy. Then we used all genes from 69 eukaryotic

genomes from the Ensembl database [30]. The program runs in about 18h and

is able to propose ancestral genome structures and thousands of extant scaffold-

ing linkages. We examine in details one of them, chosen randomly on the panda

genome, and show why it seems reasonable to propose it as an actual scaffolding

adjacency. Then on a reduced data set of 39 whole mammalian genomes, we tested

the precision and sensitivity of the scaffolding performed by ARt-DeCo by simu-

lating artificial fragmentation of the human or horse genomes, removing up to 75%

of the known gene neighborhoods of these well assembled genomes, and comparing

the removed adjacencies with the ones proposed by ARt-DeCo. We measure a
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> 95% precision, while sensitivity, as expected, depends on the quality of the data

and on the presence of closely related extant genomes. This denotes the domain of

efficiency of our method: a vast majority of proposed adjacencies can be considered

with confidence, but the final resulting scaffolding is still incomplete.

Ancestral and extant adjacencies
We describe the ARt-DeCo algorithm for the joint reconstruction of ancestral

genomes and scaffolding of extant genomes. An overview is depicted in Figure 1.
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Figure 1 Input and output of the ARt-DeCo method. The left box shows the input of
ARt-DeCo: a species tree (here on extant species X, Y and Z), the adjacencies in the genome
of extant species (each colored block represents a contig, that is, a linear arrangement of genes,
linked by adjacencies) and the reconciled genes trees for their genes. The output of ARt-DeCo is
shown on the right-hand side in magenta color: the method computes both new adjacencies for
extant species and contigs for the ancestral species.

Input

The input of the method is

• A species tree with all considered genomes and their descent pattern; We

suppose the number of chromosomes of each extant genome is known.

• A set of genes for all considered genomes, clustered into homologous families;

for each family a rooted gene tree depicts the descent pattern of the genes.

• A set of adjacencies, i.e., pairwise relations between neighboring genes AB

on extant chromosomes. Genes A and B are called the extremities of the

adjacency AB. We consider as neighbors two genes that are not separated by

another gene present in the dataset, but a relaxed definition can be used with

no impact on the method itself.

Internal nodes of the species tree are labeled with ancestral species (we always

consider ancestral species at the moment of a speciation) and leaves are labeled with

extant species. Gene trees are reconciled with the species tree: all ancestral genes are

labeled by the ancestral species they belong to, so the input yields a gene content

for all ancestral species. Genes and species are partially ordered by the descent

relation, so we may speak of a last, or lowest, or most recent common ancestor.

Here, as in [12], we use a reconciliation minimizing the number of duplications and

losses of genes.

A module of ARt-DeCo is able to produce a suitable input from the raw Ensembl

Compara [30] gene tree files and a species tree if needed. Once the input is given,
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two preliminaries are necessary: partitioning extant adjacencies and computing an

a priori adjacency probability for each extant species. They are detailed in the two

following subsections.

A partition of extant adjacencies

The goal of this step is, without loss of generality, to reduce the analysis of the

whole data set to the independent analysis of pairs of gene trees and adjacencies,

each having an extremity in each of the gene trees. Moreover, we want that the roots

of the two gene trees correspond to ancestral genes mapping to the same ancestral

species.

The partition is realized thanks to a necessary condition for two adjacen-

cies to share a common ancestor. Two adjacencies A1B1 and A2B2, for genes

A1, A2, B1, B2, may have a common ancestor AB only if A1 and A2 (respectively

B1 and B2) are in the same gene family, so have a common ancestor A (respectively

B), and such that A and B belong to the same species. In other words, the ances-

tral adjacency has the possibility to exist only when the genes of this adjacency are

present in a same ancestral species.

It is easy to check that this relation is an equivalence relation, which then par-

titions adjacencies into equivalence classes. Each equivalence class C can be repre-

sented by two ancestral genes: they are the most ancient distinct A and B genes

involved in the two-by-two comparisons of adjacencies A1B1 and A2B2 in this class.

Necessarily every adjacency in this class has a gene which is a descendant of A, and

another which is a descendant of B. A and B are in the same species (ancestral or

extant), and cannot be the descendant one of another.

For a node N of a gene tree T , T (N) is the subtree of T rooted at N . Consider

the two disjoint subtrees T (A) and T (B). All adjacencies in the equivalence class C

have one extremity which is a leaf of T (A) and the other which is a leaf of T (B). So

each equivalence class may be treated independently from the other, and the input

can be restricted, without loss of generality, to T (A) and T (B).

An a priori probability for all adjacencies

Given two extant genes v1 and v2 from the same extant genome G, we give an a

priori probability that there is an adjacency between v1 and v2. If the genome G

is perfectly assembled, then this probability is given by the input, that is, it is 1

if there is an adjacency in the input and 0 otherwise. But if the genome G is not

perfectly assembled, then this probability depends on the quality of the assembly.

It will allow the program to propose more adjacencies in extant genomes that are

more fragmented.

We note n the number of contigs in an extant genome (which is the number of

genes minus the number of adjacencies if all contigs are linear arrangements of

genes), and p the number of chromosomes. We always have n ≥ p > 0. All contigs

are assumed to have two distinct extremities.

We call a solution of the scaffolding problem a set of n−p adjacencies between the

extremities of contigs, which forms p chromosomes from the n contigs. The number

of different solutions for given n and p is denoted by f(n, p).
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Let v1 and v2 be extremities of two different contigs; the a priori probability

P (v1 ∼ v2) of v1 and v2 to be adjacent if they are not seen adjacent in the data

and n > p is:

P (v1 ∼ v2) = ρ(v1, v2)× f(n− 1, p)

f(n, p)

where ρ is a correction function which is equal to 4 if v1 and v2 are the only genes

in their contigs, 2 if one of v1 v2 is the only gene in its contig but not the other,

and 1 otherwise. If n = p, we have P (v1 ∼ v2) = 0 if the adjacency v1v2 is not in

the data, and P (v1 ∼ v2) = 1 otherwise.

For the computation of P (v1 ∼ v2) we use the following formula for f(n, p).

Lemma 1 For each n ≥ 1 and p ∈ N∗, we have:

f(n, p) =
n!

p!
2n−p

(
n− 1

p− 1

)
.

Proof First remark that the formula f(n, p) can be extended to the case where

p > n and to the case where n ≥ 1 and p = 0, by setting its value to 0 in those cases

(there is no possible way to transform n contigs into p chromosomes). In those cases,

the equality is still true, since
(
n−1
p−1
)

is then equal to 0. Thus, in all what follows,

we use this extension of definition when needed.

We proceed now by induction on n ≥ 1.

Base case: n = 1, it is straightforward since f(1, 1) = 1 = 1!
1!2

0
(
0
0

)
, and for p > 1,

we have f(1, p) = 0 = 1!
p!2

1−p(n−1
p−1
)
, since the binomial coefficient is equal to 0 in

this case.

Induction: we suppose that for each k ≤ n, for each p ∈ N∗, we have:

f(k, p) =
k!

p!
2k−p

(
k − 1

p− 1

)
.

We consider f(n + 1, p), for a fixed p ∈ N∗. We sum over all possibilities for one

specific chromosome to be composed of x contigs. This gives the recurrence formula

f(n+ 1, p) =
1

p

n+1−(p−1)∑
x=1

(
2x−1

(n+ 1)!

(n+ 1− x)!
f(n+ 1− x, p− 1)

)
.

Where 1
p is used to avoid couting the same solution several times. 2x−1 (n+1)!

(n+1−x)!
can be written 2x−1x!

(
n+1
x

)
. x! representing the number of possibilities to sort x

contigs, 2x−1 allows to take into account contig orientations and
(
n+1
x

)
represents

the number of possibilities to pull x contigs of n+ 1.

By induction hypothesis, we have:

f(n+1, p) =
1

p

n+1−(p−1)∑
x=1

(
2x−1

(n+ 1)!

(n+ 1− x)!
× (n+ 1− x)!

(p− 1)!
2n+1−x−(p−1)

(
n+ 1− x− 1

p− 2

))
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which simplifies into:

f(n+ 1, p) =
(n+ 1)!

p!
2n+1−p

n+2−p∑
x=1

(
n− x
p− 2

)
.

We change the variable in the sum, let h = n− x. Then, we have:

f(n+ 1, p) =
(n+ 1)!

p!
2n+1−p

n−1∑
h=p−2

(
h

p− 2

)
.

By the Hockey-stick’s identity, namely for all n, r ∈ N, n > r,
∑n

i=r

(
i
r

)
=
(
n+1
r+1

)
, we

finally obtain:

f(n+ 1, p) =
(n+ 1)!

p!
2n+1−p

(
n

p− 1

)
,

which concludes the proof.

The expression of f(n, p) leads to the following simple expression for P :

P (v1 ∼ v2) = ρ(v1, v2)× n− p
2n(n− 1)

.

We define p(S) = n−p
2n(n−1) the part of this formula that does not depend on v1

and v2, as an assembly fragmentation measure for genome S.

A Dynamic programming scheme

We largely refer to DeCo [12] for a full description of the dynamic programming

scheme, and only describe the overall principle and the differences we introduce.

Adjacencies are constructed between ancestral genes (equivalently internal gene

tree nodes), and propagate along gene trees. For two nodes v1 and v2 defining genes

belonging to the same (ancestral or extant) species, we define a solution as a descent

pattern of ancestral and extant adjacencies explaining the input extant adjacencies

that have an extremity in T (v1) and another in T (v2). So a solution is a set of

ancestral adjacencies and descent relations linking ancestral and extant adjacencies.

The cost of a solution is the cumulative cost of gains and breakages of adjacencies

(due to rearrangements) in the descent pattern, according to an individual cost for

gains (Gain) and breakages (Br).

More precisely we define two costs c0(v1, v2) (respectively c1(v1, v2)), which are

the minimum cost previously mentioned, given that there is an (respectively there

is no) adjacency between v1 and v2 in a solution. All c0 and c1, for every couple v1

and v2, can be computed by the dynamic programming scheme described in [12].

ARt-DeCo and DeCo have the same time complexity, that is O(g2× k2) where g

is the number of gene trees in the input and k be the maximum size of a tree.

The main difference is that in [12] extant genomes were supposed to be perfectly

assembled and in particular, if v1 and v2 are extant genes (or equivalently gene tree

leaves, which corresponds to Case 1 in [12]), then DeCo would use the following

scoring rules:
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c0(v1, v2) = ∞ and c1(v1, v2) = 0 if v1v2 is an adjacency in the data, otherwise

c0(v1, v2) = 0 and c1(v1, v2) =∞.

Here we modify these rules (it is the only case different from the dynamic pro-

gramming equations given in [12] and Additional file 1) and propose instead that

c1(v1, v2) = − logb(P (v1 ∼ v2)) & c0(v1, v2) = − logb(1− P (v1 ∼ v2))

These formulas define a cost system which is consistent with the previous one:

when n = p (perfectly assembled genomes) it gives the same result. When it is not

the case, the costs are between 0 and ∞ as the probabilities go from 0 to 1.

We left the basis of the logarithm as a variable b. Giving a value to b determines

a sensitivity for finding new adjacencies. It can be dependent on the genome S

hosting v1 and v2. We choose the basis so that c1(v1, v2) < c0(v1, v2)+Br where Br

is the cost of an adjacency breakage. Thus an adjacency is systematically proposed

when it is inferred in the closest ancestor of S. The adjacency is obviously not

always true in that case, because a rearrangement can have broken it in S. But

it is a necessary condition to be able to propose any adjacency. If a genome is

highly fragmented, proposing such an adjacency is more likely to lead to a true

scaffolding adjacency than to cancel an evolutionary rearrangement. The relation

c1(v1, v2) < c0(v1, v2) +Br yields

b >

(
1− p(S)

p(S)

)1/Br

where p(S) represents the fragmentation of the genomes hosting v1 and v2, defined

in the previous section. Preliminary experiments show that there is indeed a phase

change in the number of inferred adjacencies when b reaches the right hand side of

the above equation (Figure 2). Above this value, the number of inferred adjacencies

is mainly constant, while it changes radically for smaller values. In following exper-

iments we then fixed b to 1.05 times the right hand side of the above equation, in

order to be sure to be on the plateau following the phase change.

Exploration of the solution space

The dynamic programming scheme of DeCo allows the quantitative exploration of

the whole solution space. This has been developed, in the DeCo model, in [31],

where it was shown how to explore all solutions (i.e. evolutionary histories for adja-

cencies) under a Boltzmann probability distribution defined as follows: for a given

instance (pair of gene trees and set of extant adjacencies) with solution space S, the

parsimony score of an adjacency history h is denoted by s(h), and the Boltzmann

probability of h is defined as e−s(h)/kT /
∑

g∈S e
−s(g)/kT . Here kT is a constant that

can be used to skew the probability distribution: when kT is small, parsimonious

histories dominate the distribution, while a large kT leads to a more uniform dis-

tribution over the whole solution space.

This allows to associate to a feature of a solution (here an ancestral adjacency) a

support defined as the ratio between the sum of the probabilities of the solutions
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Figure 2 Determination of a good value for base log b. We simulated 550 fissions on a data set
of 7 tetrapod species (see Section Results) and evaluate the ability of ARt-DeCo to recover
broken adjacencies by the simulated fissions for different values for the base log b. On the x axis is

the multiplicative factor of d( 1−p(S)
p(S)

)
1

Br e, where Br = 1. As we can see on the graph, there is a

phase change at 1.0, meaning that from this value a good number of adjacencies can be
proposed. Increasing the multiplicative factor does not qualitatively change the results. This
experiment was repeated for different numbers of simulated fissions (see Additional file 2) and
different species trees, and in all cases results exhibited the same profile.

that contain this feature and the sum of the probabilities of all solutions. This

approach has been implemented in the DeClone software [31]. We integrated this

possibility to ARt-DeCo and thus associate a support to both extant and ancestral

adjacencies. Computations were run with a value of the kT constant equal to 0.1 to

ensure that the Boltzmann distribution is highly dominated by optimal and slightly

sub-optimal solutions. This value was chosen after preliminary tests on a subset of

instances that showed that scenarios sampled with this value of kT were in very

large majority optimal scenarios.

Results
We tested ARt-DeCo on three data sets. The first one is composed of 7 tetra-

pod species with only universal unicopy genes, and aims at comparing our method

with the method of Aganezov et al. [29]; on this data set, we obtain comparable

results. Then we ran ARt-DeCo on the complete Ensembl Compara [30] database,

including 69 eukaryotic species and 20,279 gene families with arbitrary numbers

of duplications and losses. This shows that ARt-DeCo scales up and can process

large data sets of whole genomes; for this data set we examine carefully one scaf-

folding adjacency proposed by ARt-DeCo in the poorly assembled panda genome

and provide evidence it is likely a true scaffolding adjacency. The third data set
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we consider is the restriction to the 39 eutherian mammals genomes of the pre-

vious data set. The computational efficiency of ARt-DeCo allows to reproduce

the computation many times with simulated missing adjacencies, and replicates to

obtain empirical error bars on the measures. We performed all experiments with

fixed costs for adjacency gains (Gain) and breakages (Br), respectively set to 3

and 1. There are several reasons for this discrepancy: first the actual number of

adjacencies is very low compared to the space of possible adjacencies, which makes

more probable to break a particular one (p = 1
#adj ) than to gain a particular one

(p = 2
#genes×(#genes−1) ): there is a huge unobserved space of possible solutions

that should affect the costs; second it has been remarked that good statistical es-

timates of genomic distances when genomes are coded by the presence or absence

of adjacencies are obtained with a state of possible adjacencies 3 times larger than

the number of adjacencies (see paper ”Moments of genomes evolution by Double

Cut-and-Join”, BMC bioinformatics, to appear).

Seven tetrapods - comparison with the method of Aganezov et al. [29]

By querying Biomart [32], we produced a data set similar to the one described in

Aganezov et al. [29]: it consists in 8,818 universal unicopy gene families from Hu-

man, Chimp, Macaque, Mouse, Rat, Dog and Chicken. The latter was not present in

the data set of Aganezov et al. [29], and we included it here because of a fundamen-

tal difference between the two methods: our method works with rooted phylogenies

whereas Aganezov et al. [29] is not sensitive to the position of the root. This means

that our method cannot scaffold an outgroup species, simply because, for any ad-

jacency absent from the outgroup, it is more parsimonious to assume it is gained

in all ingroup species. So we just added a distant outgroup to scaffold the 6 species

used in [29].

We produced different sets of randomly fragmented genomes by considering n = 50

to n = 1050 random artificial breaks (or “fissions”) in genomes, sticking to the

described experiments in [29]. This means we simply removed n random adjacencies

per genome from the data set. For each n, we replicated the experiment 30 times.

For each replicate with n random artificial adjacency breaks, let TP be the number

of removed adjacencies that ARt-DeCo retrieves and FP be the number adjacen-

cies not in the removed ones but proposed by ARt-DeCo.

We measured, following [29], approximations of the sensitivity and precision:

”True positive” =
TP

n+ FP

”False positive” =
FP

n+ FP

Aganezov et al. report that ”True positive” takes values between 75% and 87%,

and ”False positive” takes values from 0.5% to 9%, varying in function of n. We

report similar values for all our experiments (see Table 1).

Thus, on small data sets and discarding gene families with complex histories, we

obtain similar performance. The next experiments illustrate that the contribution
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Table 1 Statistics on adjacencies recover by ARt-DeCo on 7 tetrapods dataset with different
number of simulated breaks.

#Breaks (n) 50 150 250 350 450 550
TP 283 829 1364 1895 2418 2922
FP 14 16.5 21 24.5 32 40

True positive 88.64% 89.98% 89.38% 89.00% 88.32% 87.35%
False positive 4.40% 1.78% 1.39% 1.15% 1.18% 1.19%

#Breaks (n) 650 750 850 950 1050
TP 3431 3917 4398 4875 5338
FP 46 57 63 73.566 83

True positive 86.84% 85.87% 85.12% 84.38% 83.58%
False positive 1.17% 1.25% 1.22% 1.27% 1.30%

of our method is then to be able to process much larger and much more complex

data sets.

69 eukaryotes - a proof of scaling up

We ran ARt-DeCo on the full Ensembl Compara database (1,222,543 protein cod-

ing extant genes in 69 extant species) in about 18h. The input contains 1,023,492 ad-

jacencies in the extant genomes, showing that many genomes assemblies are highly

fragmented, from 11 chromosomes for the perfectly assembled opossum genome to

12,704 contigs for the wallaby genome, an order of magnitude comparable to the

number of genes. In Figure 3, the black bars show the proportion of genes with 0,

1 or 2 syntenic neighbors in the extant input genomes. Around 30% of genes have

at most one neighbor, while we would expect less than 1% for perfectly assembled

genomes.
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Figure 3 Number of syntenic neighbors of extant and ancestral genes. Distribution of the
proportion of genes with a given number of neighbors in extant and ancestral genomes before and
after adjacency prediction for the data set on 69 eukaryotes.
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ARt-DeCo predicts 36,445 new extant adjacencies. As shown in Figure 3 (red

bars) there is a significant increase in extant genes with 2 syntenic neighbors, as in

a bona fide scaffolding, at the expense of a very small number of genes with more

than two neighbors, corresponding to syntenic conflicts. Complementary compu-

tations show that more than 99.6% contigs in extant species remain linear (two

genes having degree 1 and others degree 2), in spite of the large number of contig

connections inferred in some species (e.g., the number of contigs goes from 2,599

down to 1,864 for Ailuropoda melanoleuca or from 11,528 down to 7,930 for Tarsius

syrichta). Figure 4 shows the percentage of improvement given by the method rela-

tively to the initial data. Precisely, this percentage is obtained by computing CI−CN

CI−p
on extant species which are not completely assembled, where CI , resp. CN and p

are the number of contigs in the initial genome, resp. the number of contigs after

adjacency inference by ARt-DeCo and the expected number of chromosomes. The

figure shows that the more fragmented is the initial genome, the better ARt-DeCo

improves it.
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Figure 4 Percentage of improvement of genome assemblies, according to their initial
fragmentation. Statistics are obtained for the 69 eukaryotes dataset, excluding genomes that are
already well assembled (bold figures between parenthesis indicate cardinalities of classes).
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Figure 5 shows the average degree of non-linearity of extant species with at least

one non-linear contig, representing 43 of 69 species, computed only on non-linear

contigs. Degree of non-linearity (Dnl) correspond to supplementary degree of genes

that are not consistent with a linear conformation and computed as follow:

Dnl =

n∑
x=1

(dx − 2) + (m− 2)

n = Number of genes with degree > 2

dx = Number of degree of gene x

m = Number of genes with degree = 1

On 43 species with non-linear contigs, 23 have non-linear contigs with only one

extra branch. For the 20 remaining species, contigs are more branchy and few are

circular.

We also reconstruct 1,547,546 ancestral adjacencies on 3,245,572 ancestral genes.

As previously noted [33], errors in gene trees artificially inflate the number of ances-

tral genes computed with gene tree/species tree reconciliations. Nevertheless, the

pattern of ancestral gene neighborhood shows mainly ancestral genes with 0, 1 or

2 neighbors, and some conflicts rapidly decreasing (Figure 3, blue bars). More than

92% inferred contigs in ancestral genomes are linear. Figure 6 presents the density

histogram of average degree of non-linearity for ancestral species on inferred contigs

that are not linear. As we can see most of the species have an average of degree

non-linearity less than 20 meaning that in average non-linear ancestral contigs have

a degree of non-linearity less than 20 .Moreover, more than 50% of ancestral species

have a degree of non-linearity less than 6 indicating that most of non-linear ances-

tral contigs are weakly branchy. However a large number of ancestral species have

contigs strongly branchy and circular and need additional processes to obtain lin-

ear contigs. It is likely that better ancestral and extant genomes would result from

better input gene trees.

We analyze in details one predicted extant adjacency, in order to understand why

it is present in the output of ARt-DeCo and not in the input. The adjacency we

chose is randomly taken from the predicted ones between a contig and a chromosome

in the panda genome (Ailuropoda melanoleuca). For this adjacency between genes

RCSD1 and CREG1, we analyze gene neighborhoods around homologous adjacen-

cies in others species. On Figure 7, we represent the species tree with information

on evolutionary events that occurred along species tree (adjacency loss, duplication

and gain, and gene loss and duplication) and adjacency status with color code on

species name (red for species without RCSD1-CREG1 adjacency, blue for species

with RCSD1-CREG1 adjacency in Ensembl database and green for species for which

ARt-DeCo infers an adjacency between RCSD1 and CREG1 while not present in

Ensembl). To illustrate the validity of new adjacencies inferred by ARt-DeCo we

analyze the gene neighborhood around RCSD1-CREG1 adjacency. As, we can see

on Figure 7, we observe that gene order and content is the same between cat (Fe-

lis catus), human (Homo sapiens) and panda except for ADCY10 gene (in black)
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Figure 5 Distribution of average degree of non-linearity on non-linear contigs by extant
species. On this graph, only species with at least one non-linear contig are shown, representing 43
of the 69 species. 23 of these species have an average degree of non-linearity of 2, meaning that
their non-linear contigs contain an extra branch (one gene of degree 3 and one extra gene with
degree 1).

that is not present in panda genome. The RCSD1-CREG1 adjacency is confirmed

by adjacency support of > 99.96%, according to the exploration of the solution

space. Due to the high fragmentation of panda genome and previous information it

is reasonable to think that this adjacency is true. We observe the same results for

the kangaroo rat (Dipodomys ordii) genome with gene content similarity with close

species, high adjacency support (> 99.99%) and high genome fragmentation (9,720

contigs).

This analysis also allowed to see a possible lack of data in Ensembl. As can be seen

on the mouse lemur (Microcebus murinus) genome, there is no adjacency between

CREG1 and RCSD1 because no RCSD1 gene has been annotated in Ensembl for

this species. However, the gene content and order around CREG1 is very similar

to that of close genomes (e.g., human). Moreover, Ensembl contains an incomplete

DNA sequence for the equivalent position of CD247 and RCSD1 genes in mouse

lemur. This implies that the genes CD247 and RCSD1 could be present in mouse

lemur but are not annotated.
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Histogram of non-linearity degree for ancient species
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Figure 6 Density histogram of average degree of non-linearity for ancestral species on
non-linear contigs. Most of the ancestral species have an average degree of non-linearity of 20
meaning that in average contigs of ancestral species reconstructed by ARt-DeCo have a degree
of non-linearity less than 20. This figure shows that a large number are non-linear and additional
operations are necessary to obtain linear contigs.

39 mammals - validity

We switched to a smaller dataset to measure the validity of the method, because the

computing time don’t allow too many replicates in the entire database.We selected

all protein coding gene families from the 39 eutherian mammal genomes stored in

the Ensembl database [30].

ARt-DeCo proposes 1,056,418 ancestral adjacencies and 22,675 new adjacen-

cies in extant genomes. A proportion of 95% of these adjacencies have a > 0.9

support,meaning that they are present in over 90% of parsimonious solutions, com-

puted as described in [31] for a kT value equal to 0.1 (chosen to ensure that the

probability distribution over the solution space is highly dominated by optimal

solutions).

Figure 8A shows the shape of extant genomes through the number or cumulative

support of adjacencies incident to one gene. The distribution for all genes is plotted

for extant genomes in the input and in the output, taking support into account

or not. The figure shows that the genomes scaffolded with ARt-DeCo host more
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Figure 7 Evolutionary history of the adjacency between RCSD1 (turquoise) and CREG1 (light
green). ARt-DeCo infers the creation of this adjacency at the root of Amniots. We integrated
the different evolutionary events concerning the RCSD1-CREG1 adjacency along the species tree.
Empty red crosses represents an adjacency losses (i.e., cases where both adjacent genes are lost at
the same time); each full red cross represents a gene loss (only one of the genes is lost); each
empty green square indicates an adjacency duplication (places where the two adjacent genes are
duplicated together); a full green square indicates a gene duplication and an orange triangle
represents an adjacency gain. Color code for species name gives information on adjacency status.
In red species, RCSD1 and CREG1 genes are not adjacent, while blue species host the
RCSD1-CREG1 adjacency as described by Ensembl, and green species have the RCSD1-CREG1
adjacency inferred by ARt-DeCo (though it is absent from Ensembl). For green species, the
adjacency support is indicated. For some species, representing most of the clades in Ensembl, we
illustrate the gene content around the RCSD1-CREG1 adjacency, which illustrates strong
similarities in the genomes of blue and green species.
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Figure 8 Weighted neighborhoods of extant (A) and ancestral genes (B). Distribution of the
proportion of extant and ancestral genes with a given neighborhood weight in extant genomes
before and after adjacency prediction, with or without support, for the data set on 39 mammals.
The neighborhood weight of a gene is the sum of the supports of all adjacencies involving this
gene. Continuous values are binned by intervals.

genes having exactly two neighbors (highest peak in the figure, the input is in black

and output is in red). Peaks are integer numbers: unweighted measures have all their

values integer while weighted measures still have peaks at integers. Complementary

computations show that more than 99.7% contigs in extant species are indeed linear.

Figure 8B is the analog of Figure 8A but for ancestral genomes: blue for the num-

ber of neighbors in the version of ARt-DeCo without support (only one solution

is given), and pink for the version of ARt-DeCo with support. The several peaks

of the graph illustrate that ancestral genomes are not in the shape of disjoint paths,

as we would expect it from linear genomes. This was already remarked in [12], and

is likely due to errors in gene trees in the Ensembl database [34, 35]. Additional

computations show that ancestral species indeed contain a larger proportion of non-

linear contigs: only 91.2% contigs are linear for those species, among which contigs

hosting only one gene are more represented than in extant genomes. Thus, a small

part of the inferred adjacencies are incorrect, leading to some artificially tree-like

or cyclic contigs.

The bars with supports are more dispersed, as expected, because they take their

values from non integer numbers. It puts the conflicts into perspective: when a gene

has more than two neighbors, usually one adjacency is less supported.

We also performed experiments with artificial adjacency breaks as in the 7

tetrapods experiment. We removed from 1 to 75% input adjacencies from the human

genome, and then from the horse genome. We chose the human and horse genome

because of their phylogenetic position: one has many closely related genomes, while

the other is rather distant from its closest neighbor inside the placentals. This al-

lows us to measure the effect of the presence of closely related genomes in the given

phylogeny. The two situations are very different because of the bias in taxonomic
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sampling around human. The presence of very close relatives in the data set makes

the problem much easier for the human genome.

Indeed, as shown on Figure 9, the sensitivity (measured by the ”True positive”

rate as in the previous section, to keep a coherence and comparability with [29]) of

the method is around 40% for the human genome, and 5% for the horse genome.

The precision is high in all cases, decreasing with the number of broken adjacencies

but the number of ”False positives” stays quite low.
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Figure 9 Capacity of ARt-DeCo to recover adjacencies after simulated breaks on human and
horse genome

The complexity of the data is a real issue here. While in a prepared, filtered data

set of 7 tetrapods the sensitivity was above 80% in all cases, here with all genes

from 39 genomes including duplications and losses, it is much lower in all cases.

From all data sets, we observe that the precision of ARt-DeCo is always high,

while the sensitivity varies according to the conditions. So we can see the method

as a rather sure predictor of a small number of scaffolding linkages, without the

pretension to reconstruct fully assembled genomes.

Discussion and Conclusion
Ancestral gene order reconstruction, when ancestral genes are given, can be seen as

a scaffolding problem. Indeed ancestral genes may be seen as contigs, and finding an

order between contigs is a similar problem in both extant and ancestral genomes. If

this similarity had already been remarked and exploited in some way [24, 26, 36], a

fully integrated approach has only recently been achieved by Aganezov et al. [29],

with a method which was limited to universal unicopy genes and a small number

of genomes. Extending DeCo [12], a software aimed at reconstructing ancestral

genomes and scaling up to dozens of genomes with possibly complex histories, we

implement the additional possibility of scaffolding extant genomes in the same pro-

cess, by handling equally ancestral and ancient genomes, with known and unknown

parts in genome structures.

We demonstrate the efficiency of this approach on several eukaryote genomes data

sets. It runs fast enough, proposes many additional supported adjacencies in extant

genomes, and from several investigations we think we can state that such links are

very likely to exist in reality. We are able to detect the less likely ones by assigning

a support on ancestral and extant adjacencies by the same principle.
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The main computational difference with the approach of Aganezov et al. [29]

is that adjacencies are supposed to evolve independently. It has several notable

consequences. The first one is the running time, because we switch from an NP-

complete to a polynomial problem, and we are able to handle a large number of

whole genomes. The second one is the shape of ancestral genomes. While methods

modeling rearrangements [29] end up with bona fide genome structures, as linear

arrangement of genes, our adjacency sets can be conflictual, both in ancestral and

extant genomes. This means a gene can have more than two neighbors, unlike in real

genomes. Whereas this can be seen as a serious drawback because genomes are not

realistic, we would like to argue that it has several advantages, in addition to the

running time. Indeed, the amount of conflicts can be a measure of uncertainty of the

methods and data. It has been remarked many times that data sets, and in particular

gene trees, are far from perfect. But better gene trees produce ancestral genomes

with less conflicts [33]. Conflicts can point at problems that don’t necessarily concern

the method itself, but give an overview of the quality of the data. This overview

is lost if we force the data to fit in a linear structure. But if a linear ancestral

genome is really needed, linearization techniques exist [37], even if we would argue

for linearization techniques that also put into question the input data.

Some limitations would be still to overcome. For example we don’t handle the

orientation of the genes. This would be desirable to have a finer account of ancestral

and extant genomes, and to have a better fit between the a priori probability of

an adjacency (computed in an oriented mode) and the reconstructed adjacencies. It

would not be conceptually much complicated because adjacencies can be considered

between gene extremities instead of between genes. But it would result in a loss of

sensitivity because inversions of a single gene, which seem to be frequent, would

fall into a rearrangement signal, increasing the probability to lose the traces of

neighborhoods. We leave this open for a future work.

Another perspective is to be able to question extant adjacencies given in the input.

In our framework they have probability 1, but a scaffolding is not necessarily only

giving an order to the contigs. It can be inserting a contig inside another, or cutting

a chimeric contig because a better arrangement can be proposed. Assembly errors

are often numerous, not only because of a lack of information, but also because of

false information [38]. It could be done by re-assigning an a priori probability to each

extant adjacency, and not only to the ones outside the contigs. Finally, following

the idea introduced in RACA [26], it could be interesting to pair the predictions

of ARt-DeCo with sequence information such as mate-pairs or even physical or

optical maps in order to integrate both evolutionary signal and sequencing data.
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12. Bérard, S., Gallien, C., Boussau, B., Szöllősi, G.J., Daubin, V., Tannier, E.: Evolution of gene neighborhoods

within reconciled phylogenies. Bioinformatics 28(18), 382–388 (2012)

13. Hu, F., Lin, Y., Tang, J.: MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC

Bioinformatics 15, 354–359 (2014)

14. Reddy, T.B.K., Thomas, A.D., Stamatis, D., Bertsch, J., Isbandi, M., Jansson, J., Mallajosyula, J., Pagani, I.,

Lobos, E.A., Kyrpides, N.C.: The Genomes OnLine Database (GOLD) v.5: a metadata management system

based on a four level (meta)genome project classification. Nucleic Acids Research 43(D1), 1099–1106 (2014).

https://gold.jgi-psf.org/distribution

15. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, I.: ABySS: A parallel assembler for

short read sequence data. Genome Research 19(6), 1117–1123 (2009)

16. Koren, S., Treangen, T.J., Pop, M.: Bambus 2: Scaffolding metagenomes. Bioinformatics 27(21), 2964–2971

(2011)
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Additional Files

1. E(v1) = Extant and E(v2) = Extant:

c1(v1, v2) = − logb(P (v1 ∼ v2))
c0(v1, v2) = − logb(1− P (v1 ∼ v2))

2. E(v1) = GLoss and E(v2) ∈ {Extant, Spec,GDup}:
c1(v1, v2) = c0(v1, v2) = 0

3. E(v1) ∈ {Extant, Spec,GDup} and E(v2) = GLoss:

c1(v1, v2) = c0(v1, v2) = 0

4. E(v1) = GLoss and E(v2) = GLoss:

c1(v1, v2) = c0(v1, v2) = 0

5. E(v1) ∈ {Extant, Spec} and E(v2) = GDup:

c1(v1, v2) = min

{
c1(v1, bv2 ) + c0(v1, av2 ), c0(v1, bv2 ) + c1(v1, av2 ),

c1(v1, bv2 ) + c1(v1, av2 ) + Gain, c0(v1, bv2 ) + c0(v1, av2 ) + Br

c0(v1, v2) = min

{
c0(v1, bv2 ) + c0(v1, av2 ), c0(v1, bv2 ) + c1(v1, av2 ) + Gain,

c1(v1, bv2 ) + c0(v1, av2 ) + Gain, c1(v1, bv2 ) + c1(v1, av2 ) + 2Gain

6. E(v1) = GDup and E(v2) ∈ {Extant, Spec}:

c1(v1, v2) = min

{
c1(av1 , v2) + c0(bv1 , v2), c0(av1 , v2) + c1(bv1 , v2),

c1(av1 , v2) + c1(bv1 , v2) + Gain, c0(av1 , v2) + c0(bv1 , v2) + Br

c0(v1, v2) = min

{
c0(av1 , v2) + c0(bv1 , v2), c0(av1 , v2) + c1(bv1 , v2) + Gain,

c1(av1 , v2) + c0(bv1 , v2) + Gain, c1(av1 , v2) + c1(bv1 , v2) + 2Gain,

7. E(v1) = Spec and E(v2) = Spec:

c1(v1, v2) = min





c1(av1 , bv2 ) + c1(bv1 , av2 ), c1(av1 , bv2 ) + c0(bv1 , av2 ) + Br,

c0(av1 , bv2 ) + c1(bv1 , av2 ) + Br, c0(av1 , bv2 ) + c0(bv1 , av2 ) + 2Br,

c1(av1 , av2 ) + c1(bv1 , bv2 ), c1(av1 , av2 ) + c0(bv1 , bv2 ) + Br,

c0(av1 , av2 ) + c1(bv1 , bv2 ) + Br, c0(av1 , av2 ) + c0(bv1 , bv2 ) + 2Br

c0(v1, v2) = min





c0(av1 , bv2 ) + c0(bv1 , av2 ), c1(av1 , bv2 ) + c0(bv1 , av2 ) + Gain,

c0(av1 , bv2 ) + c1(bv1 , av2 ) + Gain, c1(av1 , bv2 ) + c1(bv1 , av2 ) + 2Gain,

c0(av1 , av2 ) + c0(bv1 , bv2 ), c1(av1 , av2 ) + c0(bv1 , bv2 ) + Gain,

c0(av1 , av2 ) + c1(bv1 , bv2 ) + Gain, c1(av1 , av2 ) + c1(bv1 , bv2 ) + 2Gain,

8. E(v1) = GDup and E(v2) = GDup:

c1(v1, v2) = min





c1(av1 , v2) + c0(bv1 , v2), c0(av1 , v2) + c1(bv1 , v2),

c1(av1 , v2) + c1(bv1 , v2) + Gain, c0(av1 , v2) + c0(bv1 , v2) + Br,

c1(v1, av2 ) + c0(v1, bv2 ), c0(v1, av2 ) + c1(v1, bv2 ),

c1(v1, av2 ) + c1(v1, bv2 ) + Gain, c0(v1, av2 ) + c0(v1, bv2 ) + Br,

c1(av1 , av2 ) + c1(bv1 , bv2 ) + c0(av1 , bv2 ) + c0(bv1 , av2 ),

c1(av1 , av2 ) + c1(bv1 , bv2 ) + c0(av1 , bv2 ) + c1(bv1 , av2 ) + Gain,

c1(av1 , av2 ) + c1(bv1 , bv2 ) + c1(av1 , bv2 ) + c0(bv1 , av2 ) + Gain,

c1(av1 , av2 ) + c1(bv1 , bv2 ) + c1(av1 , bv2 ) + c1(bv1 , av2 ) + 2Gain,

c1(av1 , av2 ) + c0(bv1 , bv2 ) + c0(av1 , bv2 ) + c0(bv1 , av2 ) + Br,

c1(av1 , av2 ) + c0(bv1 , bv2 ) + c0(av1 , bv2 ) + c1(bv1 , av2 ) + Gain+ Br,

c1(av1 , av2 ) + c0(bv1 , bv2 ) + c1(av1 , bv2 ) + c0(bv1 , av2 ) + Gain+ Br,

c0(av1 , av2 ) + c1(bv1 , bv2 ) + c0(av1 , bv2 ) + c0(bv1 , av2 ) + Br,

c0(av1 , av2 ) + c1(bv1 , bv2 ) + c0(av1 , bv2 ) + c1(bv1 , av2 ) + Gain+ Br,

c0(av1 , av2 ) + c1(bv1 , bv2 ) + c1(av1 , bv2 ) + c0(bv1 , av2 ) + Gain+ Br,

c0(av1 , av2 ) + c0(bv1 , bv2 ) + c1(av1 , bv2 ) + c1(bv1 , av2 ),

c0(av1 , av2 ) + c1(bv1 , bv2 ) + c1(av1 , bv2 ) + c1(bv1 , av2 ) + Gain,

c1(av1 , av2 ) + c0(bv1 , bv2 ) + c1(av1 , bv2 ) + c1(bv1 , av2 ) + Gain,

c0(av1 , av2 ) + c0(bv1 , bv2 ) + c1(av1 , bv2 ) + c0(bv1 , av2 ) + Br,

c0(av1 , av2 ) + c0(bv1 , bv2 ) + c0(av1 , bv2 ) + c1(bv1 , av2 ) + Br,

c0(av1 , av2 ) + c0(bv1 , bv2 ) + c0(av1 , bv2 ) + c0(bv1 , av2 ) + 2Br,

c0(v1, v2) = min





c0(av1 , v2) + c0(bv1 , v2), c0(av1 , v2) + c1(bv1 , v2) + Gain,

c1(av1 , v2) + c0(bv1 , v2) + Gain, c1(av1 , v2) + c1(bv1 , v2) + 2Gain,

c0(v1, av2 ) + c0(v1, bv2 ), c0(v1, av2 ) + c1(v1, bv2 ) + Gain,

c1(v1, av2 ) + c0(v1, bv2 ) + Gain, c1(v1, av2 ) + c1(v1, bv2 ) + 2Gain.

1

Figure 10 - Additional file 1 ARt-DeCo dynamic programming scheme. Recurrence formulas
used in ARt-DeCo to reconstruct adjacencies in ancestral and extant genomes.
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Figure 11 - Additional file 2 Effect of number of adjacencies breaks on adjacencies recover in
function of base log value. On the left, graph represents the number of adjacencies recovery in
function of multiplicative factor for the log base for 50 simulated breaks in each species of 7
tetrapods dataset. On the right, the same graph but with 1050 simulated breaks for each species.
As we can see the histogram profile is quietly similar between these two experiments and the one
with 550 simulated breaks (see Figure 2). In conclusion, Number of adjacencies breaks didn’t
impact the optimal value for the log base. (Values are available in Table 1).


