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ORBIT EQUIVALENCE AND KAKUTANI EQUIVALENCE
WITH STURMIAN SUBSHIFTS

P. DARTNELL, F. DURAND, AND A. MAASS

ABsTRACT. Using dimension group tools and Bratteli-Vershik representations of minimal Cantor
systems we prove that a minimal Cantor system and a Sturmian subshift are topologically conjugate
if and only if they are orbit equivalent and Kakutani equivalent.

1. PRELIMINARIES.

In the last decade concepts and techniques coming from the theory of C*-algebras have been ex-
haustively used in topological dynamics in order to explain different phenomena appearing mainly
in Cantor dynamical systems. In particular, those concepts together with the description of min-
imal Cantor systems by means of Bratteli-Vershik transformations [HPS|[V1|[V2], gave rise to a
complete invariant of orbit and strong orbit equivalence for this class of maps [GPS|[HPS]. In the
same vein the authors of [BH| obtained new results about flow equivalence and orbit equivalence for
non-minimal Cantor systems. In particular they obtained new conjugacy invariants for subshifts of
finite type. The study of substitution systems and Toeplitz systems in this scope was undertaken in
[F][DHS| and [GJ] respectively.

If we consider two (strong) orbit equivalent Cantor systems, their Bratteli-Vershik representation
without considering the order is in some sense the same [GPS|[HPS]. Therefore, we can ask which
additional property could imply topological conjugacy, in other words how we recover the order. In
this direction it is proved in [BT]| that with a continuity condition over the cocycles involved in the
orbit equivalence we get flip conjugacy. In general, (strong) orbit equivalence is not enough. It is
known [O][Su] that in the same class of orbit equivalence we can have all possible entropies. In the
case of odometers it is easy to show that orbit equivalence implies topological conjugacy.

Among the different conditions we can consider, Kakutani equivalence appears as a natural one
which is intimately related to the order. In that case the systems can be represented by diagrams
that are the same up to a finite number of edges and vertices.

In this paper we solve this question when one of the systems is a Sturmian subshift.

Theorem 1. Let 0 < @ < 1 be an irrational number and (X,T) a minimal Cantor system. The
Sturmian subshift (g, o) and the system (X,T) are Kakutani and orbit equivalent if and only if
they are topologically conjugate.

The proof is based upon a detailed study of a Bratteli-Vershik representation of Sturmian systems. In
that case we only need orbit equivalence and Kakutani equivalence because there are no infinitesimals
in their dimension group. We remark that for two Sturmian systems only orbit equivalence is needed.

The paper is organized in three sections and one appendix. In the present section we give the back-
ground for what we will need later. The construction of a particular Bratteli—-Vershik representation
for Sturmian subshifts is done in Section 2. In Section 3 we prove Theorem 1. In the appendix we
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2 P. DARTNELL, F. DURAND, AND A. MAASS

prove a matrix proposition needed for the proof of the main theorem and we compute the dimension
group of a Sturmian subshift.

In what follows, we give some definitions and notation that will be used in the paper.

1.0.1. Topological dynamical systems and subshifts. A topological dynamical system, or just dynami-
cal system, is a compact Hausdorff space X together with a homeomorphism 7" : X — X. We use the
notation (X, T). If X is a Cantor set we say that the system is Cantor. That is, X has a countable
basis of closed and open sets and it has not isolated points. A dynamical system is minimal if all
orbits are dense in X, or equivalently the only non trivial closed invariant set is X.

A particular class of Cantor systems is the class of subshifts. These systems are defined as follows.
Take a finite set or alphabet A. The set AZ consists of infinite sequences (%) ;g With coordinates
z; € A. With the product topology A? is a compact Hausdorff Cantor space. We define the shift
transformation o : AZ — A” by (o (2)); = @i41 for any x € A%, i € Z. The pair (A%, 0) is called
fullshift. A subshift is a pair (X,0) where X is any o-invariant closed subset of AZ. A classical
procedure to construct subshifts is by considering the closure of the orbit under the shift of a single

sequence x € A%, Q(z) ={o'(z) | i €Z }.

Let (2);cy be an element of AN. Another classical procedure is to consider the set Q (z) of infinite
sequences (¥;);c7, such that for all i < j there exists & > 0 such that y;yi11---yj = TpTpy1 - Thyj -
In both cases we say that (Q(z), o) is the subshift generated by z.

In a minimal subshift any finite sequence of symbols appears with bounded gaps in any sequence of
the system.

In this paper we consider two kinds of minimal subshifts: substitution subshifts and Sturmian
subshifts. Let us first describe Sturmian subshifts.

Let 0 < a < 1 be an irrational number. We define the map R, : [0,1] — [0,1] by Ry (t) =t + «
(mod 1) and the map I : [0,1] — {0,1} by I, (t) =0if ¢t € [0,1 — o and I, (t) = 1 otherwise. Let
Qo = {Ia (RE®)))pez | tel0,1] } C {0,1}%. The subshift (Qq,0) is called Sturmian subshift
(generated by «) and its elements are called Sturmian sequences. There exists a factor map (see
[HM]) 7 : (Qq,0) — ([0,1[, Ry) such that

1) |y *({BY)|=2ifpe{na| neZ} and
(2) |y ({B})| =1 otherwise.

Let 8 € [0,1]. It is well-known that €, = Qg if and only if o = 5 and also that (Q,,0) is a non-
periodic uniquely ergodic minimal subshift. Sometimes we will write (2,0, 1) instead of (24, 0)
where p is the unique ergodic measure of (Q,,0). We give later a useful characterization of Sturmian
subshifts to obtain Bratteli- Vershik representations of these systems. For more details and properties
of Sturmian sequences and subshifts the reader can refer to [BS| and [HM].

A substitution is a map 7 : A — AT, where AT is the set of finite sequences with values in A. We
associate to 7 a A X A square matrix M, = (ma,b)a,be 4 such that m,; is the number of times that
letter b appears in 7 (a). We say that 7 is primitive if M, is primitive, i.e. if some power of M, has
strictly positive entries only. A substitution 7 can be naturally extended by concatenation to AT,
AN and A%, We say that a subshift of A% is generated by the substitution 7 if it is generated by a
fixed point for 7 in AN (see [Q] for more details).

In this paper we are concerned with three notions of equivalence between dynamical systems. Let
(X,T) and (Y, S) be dynamical systems. We say that they are topologically conjugate if there is a
homeomorphism ¢ : X — Y such that ¢ o T = S o ¢. We say that they are orbit equivalent (OE) if
there is a homeomorphism ¢ : X — Y and integer functions n : X — Z and m : X — Z such that
for any z € X, ¢ o T™®) (z) = So ¢(x) and ¢ o T (z) = S™% o ¢ (). Now assume the systems
are minimal, then the maps n,m are uniquely determined. Under this hypothesis we say that the
systems are strong orbit equivalent (SOE) if the maps n, m have at most one point of discontinuity.
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Finally, for Cantor systems, we say they are Kakutani equivalent (KE) if both have subsets that are
closed and open (clopen) such that the corresponding induced systems are topologically conjugate.

1.0.2. Bratteli- Vershik representations. A Bratteli Diagram is an infinite graph (V, E) which consists
of a vertex set V' and an edge set E, both of which are divided into levels V= VU Vi U -,
E =FE;UE>U--- and all levels are pairwise disjoint. The set V} is a singleton {vg}, and for £ > 1,
E}, is the set of edges joining vertices in Vi1 to vertices in V. It is also required that every vertex
in Vj is the “end-point” of some edge in E;_; for £ > 1, and an “initial-point” of some edge in Fj
for £ > 0. We will say that the level k is the subgraph consisting of the vertices in Vj U Vi1 and
the edges Ej11 between these vertices. Level 0 will be called hat of the Bratteli diagram and it is
u1

uniquely determined by an integer vector u = : € N1l where each component represents

Upva |
the number of edges joining vg and a vertex of V7.

We describe the edge set Ej using a Vi x Vj_; incidence matrix for which its (7, j)—entry is the
number of edges in E}, joining vertex j € Vi_1 with vertex ¢ € V.

An ordered Bratteli diagram B = (V, E, <) is a Bratteli diagram (V| F) together with a partial
ordering < on F. Edges e and ¢’ are comparable if and only if they have the same end-point.

Let ¥ <l in N\ {0} and let Ej; be the set of all paths in the graph joining vertices of Vj,_; with
vertices of V. The partial ordering of E induces another in Ej; given by (ex,...,e;) < (f,---, f1)
if and only if there is k < ¢ <[ such that e; = f; for i < j <l and ¢; < f;.

Given a strictly increasing sequence of integers (my,),~, with my = 0 we define the contraction of

B = (V, E, <) (with respect to (my),~,) as ((an)n>0 , (Emn+1,mn+1)n>0 , j), where < is the order
induced in each set of edges Epm,, +1,m, ;- -

We say that an ordered Bratteli diagram is stationary if for any k£ > 1 the incidence matrix and
order are the same (after labeling the vertices appropriately).

Given an ordered Bratteli diagram (B = (V,FE),=<) we define Xp as the set of infinite paths
(e1,e2,-+) starting in vy such that for all ¢ > 1 the end-point of e; € E; is the initial-point of
ei+1 € E;41. We topologize Xp by postulating a basis of open sets, namely the family of cylinder
sets

U(el,eg,...,ek) = {(fl,fg,...) € XB | fz = €4, for 1 S’L < k }
Each U (eq,e9,...,ex) is also closed, as is easily seen, and so we observe that Xpg is a Cantor set.

When there is a unique x = (1, z2,...) € Xp such that z; is maximal for any ¢ > 1 and a unique
y = (y1,92,...) € Xp such that y; is minimal for any ¢ > 1, we say that (B=(V,E),<x) is a
properly ordered Bratteli diagram. Call these particular points Tmax and Tmin respectively. In this
case we can define a dynamic Vg over Xp called Vershik map. The map Vp is defined as follows: let
(e1,€2,...) € XB \ {Zmax} and let & > 1 be the smallest integer so that ey is not a maximal edge.
Let fi be the successor of e; and (fi,..., fr—1) be the unique minimal path in E})j_; connecting
vo with the initial point of fx. We set Vg (z) = (f1,.-., fx—1, fks €k+1,s---) and VB (Tmax) = Tmin-
The dynamical system (Xpg,Vp) is called Bratteli- Vershik system generated by B = (V, E, <). The
dynamical system induced by any contraction of B is topologically conjugate to (Xp, V). In [HPS]
it is proved that any minimal Cantor system (X, T) is topologically conjugate to a Bratteli-Vershik
system (Xp,Vp). We say that (Xp, Vg) is a Bratteli- Vershik representation of (X,T).

1.0.3. The notion of a Dimension Group. Let (X,T) be a minimal Cantor system. Its dimension
group is defined as K°(X,T) = C(X,Z) /0rC (X,Z), where C (X,Z) is the countable additive
Abelian group of continuous functions on X with values in Z and 0r : C (X,Z) — C (X, Z) is the
coboundary operator dr (f) = f o T — f. The positive cone of K° (X, T) is the set of equivalence
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classes of positive functions. We also distinguish an order unit [1] which is the equivalence class of
the constant function equal to 1.
Let (V, E) be a Bratteli diagram and (;),-, be the corresponding incidence matrix of levels. We
define Ky (V, E) as the inductive limit of the system of ordered groups

z % gl My gl Ma
that is, Ko (V, E) = h_n)1 (M;, ZIVil). This group carries a natural order given by a cone Ko (V, E)*.

We also distinguish an order unit 1 which is the element of K (V, E)+ corresponding to 1 € Z = ZIVol,
For more details we refer the reader to [GPS].

In [HPS, Th. 5.4, Cor. 6.3] it is proved that if (X,T) is a Cantor minimal system and (Xpg,Vp) a
Bratteli-Vershik representation of it, then the ordered groups with distinguished order units K% =
(K°(X,T),K°(X,T)",[1]) and Ko = (Ko (V,E), Ko (V,E)",1) are isomorphic. In [GPS, Th.
2.1] it is proved that K is a complete SOE invariant. They proved also that the quotient group
K°/Inf(K?) is a complete invariant of OE, where Inf(K?) is the subgroup of K°(X,T) consisting
of elements a € K°(X,T) such that —eu < a < eu for all 0 < € € Q.

In this paper we are particularly concerned with computations of dimension groups that are direct
limits of a sequence of integer matrices in GL (2,Z). That is

M M:
7 7% =572 35

where M; € GL (2,Z) for ¢ > 1. In this case and under some other conditions (see [ES]), the ordered
group lim (Mi, 72, Zi) is isomorphic to (Z?, P,) where
H

T
Paz{(y)€Z2
for some o € RT.

We will say that a matrix M € GL (2,Z) is an automorphism of (Z2, P) if M - Py = P,

m-a+y20}

When an automorphism of (ZQ,Pa) is induced by an automorphism of the dimension group of a
Bratteli-Vershik system that possibly modifies its order unit from a positive vector < Zl > >0
2

(see the notation below) to some other such vector, we say that such a matrix is a unit keeping
automorphism of (Z2, P,).

Finally, let us agree on some notation. The 2 x 2 identity matrix will be denoted by Iy = [ é (1) ] .

If M is a matrix with real entries, the notation M > 0 (respectively M < 0, M > 0, M < 0) will
mean that all entries of M are > 0 (respectively < 0, > 0, < 0).

2. BRATTELI-VERSHIK REPRESENTATIONS OF STURMIAN SUBSHIFTS

A morphism f : {0,1} — {0,1}* = {0,1}" U{e}, where € is the empty word, is called Sturmian if the
image by f of each Sturmian sequence is a Sturmian sequence. In [MS] it is proved that a morphism
is Sturmian if and only if it is an element of the free monoid St generated by the morphisms E, ¢
and ¢ from {0, 1} to {0,1}", where

E()=1 ¢(0)=01
E(1)=0" ¢(1

$(0)

=0 > ™ g

In the sequel the morphisms p, and v,, n € N\ {0}, from {0,1} to {0,1}" defined by

pn(0) = 01" g m (0) =10
pn (1) = 017 7 (1) = 107

10
0
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(a) Ordering for M=) (b) Ordering for M ()

FiGuRE 1.

~ n—1 .
will play a very important role. Forn > 1, v, = (d)E) ¢¢ and p, = E7,, therefore both belong
to St. The following theorem is due to Hedlund and Morse [HM].

Theorem 2. Let x be a Sturmian sequence. Then

(1) There is n > 1 such that © = ---v_jvov1 - -+ where (v;);c4 is a sequence taking values in
{o1"*1,01"} or in {10"*!,107}.
(2) If 2 = p, (2) or & = yp (2), for some n > 1 and z € {0,1}%, then 2 is Sturmian.
Proof. Assertion 1 follows from Theorem 7.1 in [HM] and Point 2 is Theorem 8.1 in [HM]. O
Let (X, o) be a Sturmian subshift and a € {0, 1}, we set [a] = { (2;);c7 € X | zo = a }. This defines
clopen sets of X.

Proposition 1. Let (X,0) be a Sturmian subshift. There exists a sequence (Cn),cy taking values
in {p1,71,P2,72,- .-} such that
(1) y= lim (¢ (00---) generates (X,0).
n—+oo

(2) P():{[O]a[l]}a andfornZl, Pn:{o'kél gn [CL ‘ 0<k<|€1 (CL)|, 0’6{071} }
s a partition of X with the following properties:

(@) G- Cur ([0) UG-G (1) € G-+~ G ([0]) U G- -+ G ([1]),

(b) Pp < Pyy1 as partitions,
(c) the set ﬂ (C1---Cu([0) Uy ---Cn ([1]) comsists of only one point,
neN

(d) the sequence of partitions (Py),cy spans the topology of X.

Proof. Assertion 1 follows from Theorem 2 and assertion 2 comes from the fact (which can be proved
by induction) that for all n € N and all x € X, = has a unique decomposition into a concatenation
of elements of {(1---(y (a) | a € {0,1} }. O

Let (X, 0) be a Sturmian subshift and (P,),cy be the sequence of partitions given by Proposition
1. To such a sequence is associated an ordered Bratteli-Vershik diagram B = (V| E, <) which can
be described as follows: For all n € N\ 0, V}, consists in two vertices and Ep1 is given by ¢, and

described in Figure 1, the hat is determined by Py and it is i , and this ordered Bratteli-Vershik

diagram is isomorphic to (X, o) (for more details see [HPS] or [DHS)).
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0 0
1 n 1 n
0 0
0 0
L7No L7\o
(a) Ordering inducing M ') (b) Ordering inducing M (°»)
FIGURE 2.

3. PROOF OF THEOREM 1.

The proof of Theorem 1 will be the consequence of Proposition 2 stated below and the construction
of the Bratteli—Vershik representation for Sturmian subshifts given in Section 2.

Proposition 2. Let o be a positive quadratic irrational with periodic simple continued fraction
expansion. There exists M, € GL(2,7) such that if M is a unit keeping automorphism of (ZQ, Pa),
then there exists k € Z such that M = MS

We will devote appendix A) to the proof of Proposition 2.

For the remaining of the section, we will consider a fixed Sturmian subshift (Qg, o). From Proposi-
tion 1 there exists a sequence ((p),en i {P1,71, 02,72, ...} such that y = lgr_l CoC1-+ G (00--+)
n [e.e]

generates (Qg,0).

For all n > 1 the matrices associated to 7, and p, are respectively

(1) M(Wz[’“rl 1] and M(”")z[l "“].
n 1 1 n

These matrices can be factored out as

(7n) _ 11 . n 1 (on) 1 n 1 . 01

(2) M _[1 0] [10 M 1 10 1 0|

Let us introduce the following notation: N, = 7{ (1) ] for n € N. With this we can write the
decompositions for MOm) and M) as MOn) = Ny, Men) = Ny - N, - Np.

We order the edges of the factor blocks in (2) as shown in Figure 2. These orderings are compatible
with the ones the original matrices had, in the sense that when we contract we recover the orderings
required for M) and M(»),

In view of the discussion above, we conclude that a Bratteli-Vershik representation associated to
(Qg,0) can be obtained as a concatenation of blocks associated to matrices N,, n > 1. Since
Ny - No - Ny = Nptm, we can contract the diagram to obtain a new one in which the blocks are of

the form Ny, with d > 0. (If the first matrix is Ny, we contract it with the vector ( Zl ) associated
2
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(a) Ordering O%Y (b) Ordering O
FIGURE 3.

to the top edges in Ey, or hat, and the new diagram will have ( Zz ) as its hat and no Ny block
1
any longer.)

Let us analyze the order structure in this ordered Bratteli-Vershik diagram. Notice that a level with
incidence matrix N, can appear with two possible different orderings. We will use the notation
O to indicate a level with incidence matrix N, ordered as shown in Figure 3 (a), and O for a
level with incidence matrix N, ordered as shown in Figure 3 (b). If m > 1, the second ordering

(1)

appears exactly when it comes from a level contraction. If m =1, 011 is the ordering for Ny when

it represents a bottom block in Figure 2, and O%O) the block on top of it.

Summarizing, to any Sturmian subshift (Qg, o) we associate a Bratteli—Vershik representation whose

incidence matrix and ordering for any level k > 2 are Ng,, O(gi’“), with dy, > 0,4 € {0,1}. We will
call this representation standard.

The following technical lemma will be useful later.

Lemma 1. Let ((Ndk)kZO , (Oz(iik))po) and ((Ndk)k207 <O‘(ij’;k))k>0> be two sequences of matrices

and orderings coming from standard Bratteli-Vershik representations of Sturmian subshifts. Then,

o If (di);>¢ is not the constant sequence (111...), then iy = jj for all k large enough.
o If (di)y>o is (111...), then either iy, = ji for all k large enough, or iy # ji for all k large
enough, and in both cases ix 1 # iy for k large enough.

Proof. Let us suppose there is kK > 0 such that iy # ji. Without loss of generality we can suppose
that ¢ = 0 and jp = 1.

First we assume that dp # 1. Since iy = 0 (this corresponds to a non contracted level) then
ix—1 = 1 and the incidence matrix at level kK — 1 is N;. On the other hand, since jr = 1, level &k
for the second diagram is a contracted one, then the order associated to the previous level must
be jr—1 = 0. Now, by the same argument we have that j,_o = 1 with incidence matrix equal to
N1, which implies that i_o = 0 and the corresponding incidence matrix is also N;. This way, we

prove inductively that dy = dy = --- = dg_1 =1, with iy = tp_o=--- =1 = jp_1 = jp_3 = ---
and ig_1 = g3 = -+ =0 = jp = jg—o = ---. If d = 1, the same procedure implies that
dy =d; =--- =d =1 and similar conditions for the orderings in each level of both diagrams. O

We will now try to get more information about this Bratteli-Vershik diagram by studying its asso-
ciated dimension group, and in particular we will be interested on the automorphisms of the group.
For that we need the following proposition which proof is given in the appendix B).
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Proposition 3. Let (Qg,0) be a Sturmian subshift then (K°(Qg,0), K°(Qg, o)1) is isomorphic to
(Z%,P1_a) as ordered groups.

Let Ko be the dimension group of (Qg,0). From Proposition 3, Ko is isomorphic to (Z?, Pg).

On the other hand, from the Bratteli-Vershik diagram one can compute this dimension group:

Ky = lim (Z?, Ny, ). By [ES, Th. 3.2] we obtain that Ko = (Z?, P,), where the simple continued
—

fraction expansion of « is eventually equal to the simple continued fraction expansion of @.

The following lemma implies that if @ is not a quadratic algebraic number, the identity is the only
automorphism of the dimension group K. For the sake of completeness we will write the proof.
Similar results appear in [S].

b

Lemma 2. Let 8 > 0 be a real number and M = [ CCL d

of (Z?,Pg). Then:

] € GL(2,Z) \ {12} be an automorphism

(1) B is a quadratic algebraic number.
(2) M does not have any column < 0.
(3) If moreover [3 is irrational, then b # 0, ¢ # 0 and the irreducible polynomial for § in Q[X]

d—a c
s X2 X - -,
18 + b b

Proof. 1t is clear that if M- Pg = Pg, then there exists an integer k such that the vector M - ( _lﬁ ) €

R? is equal to k ( _15 ) This implies that (—a +bp) - (=) = (—c+dp) - 1, which is in turn

equivalent to b3? + (d — a) 8 — ¢ = 0. This proves 1. and 3..
To prove 2., assume that the first column of M is negative, then M would fail to be an automorphism
of Pg, since it would send the vector ( (1) ) € Pg into < Ccl ) ¢ Ps (an identical argument works if

the second column is negative). O

Let us study the case of a and @ quadratic irrationals. Thus, their continued fraction expansions
are ultimately periodic, and since they are eventually equal, the period in both expansions is the

same. Moreover, by Lemma 1, the sequence of orderings (Ot(ii’“))k>0 is eventually periodic, with

the same period. Without loss of generality we will suppose that « and the orderings are periodic:
a= [do tdy,...dr—1 ] (otherwise we multiply up all matrices in the Bratteli-Vershik diagram that
appear before they become periodic, and we get a new “hat” and a periodic diagram), and T the

length of the least period of a.. Let us denote My = Ng,._, ... Ng, + Ny,.
We get,
Corollary 1. Let @ = [co 1Cl,y...,Cp,do,di,. ..dT,l] be a quadratic irrational number and o =

[do 1dy,. ..dT,l], where do,d1,...dr—1 > 0 and T is the length of a minimal period of a. Then,

(1) If a # [1], then (Qa,0) is topologically conjugate to a stationary Bratteli-Vershik system
with stationary incidence matrizc Mo = Ng, | - ... - Ng, - Ng,.

(2) If a = [T], then (Qg,0) is topologically conjugate to a stationary Bratteli-Vershik system
with stationary incidence matric My, = N1 - N1 and order induced by Ogo) followed by Ogl).
O

Before giving the proof of Theorem 1 let us remark that Proposition 16 in [DHS]| and last corollary
imply for a quadratic number « that (g, 0) is a substitutive system. The converse is also true. In
fact, if (Qg, o) is a substitutive system it is clear that there are non trivial automorphisms, then
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/ /

FIGURE 4. The two possible orders for N?.

using Lemma 2 we conclude that @ is quadratic. This result is part of the folcklore but we do not
know any reference to it. We are now ready to prove Theorem 1.

Proof of Theorem 1. Let 0 < @ < 1 be an irrational number such that (Qg,0) and (X,T) are
Kakutani and orbit equivalent. From the Kakutani equivalence, given a Bratteli-Vershik represen-
tation of (Qg, o), by deleting and adding a finite number of arrows to it, we get a representation
of (X,T). Let o = [dp : d1,d2,...] be the simple continued fraction expansions coming from the
standard Bratteli-Vershik representations of the Sturmian system. By contracting both diagrams
we will assume that they are the same, up to the corresponding hats u = ( Zl ) and v = ( Zl )

2 2
respectively.

It is easy to see that the unique infinitesimal of the ordered group (Z?, P,) is ( 8

(Qg,0) and (X, T) are strong orbit equivalent. It follows that there is a unit keeping automorphism
between their dimension groups. Let M be this automorphism of (Z?, P,) such that M -u = v.
If « is not a quadratic irrational, then by Lemma 2, M = I, and u = v, which implies that both
representations are the same, and the systems topologically conjugate.

) . Consequently

When « is quadratic we can assume it is periodic with expansion a = [dp : d1,...dr_1|. Then, by
Proposition 2 there is k € Z such that M = M¥. Thus, M* . u = v. Without loss of generality we
can assume k > (.

We consider two cases. First assume o # [T] Then by Corollary 1, Case 1, M, is the stationary
matrix in the Bratteli-Vershik representation of the system. Then by contracting the k first levels
of the diagram with unit u we get the diagram of the system with unit v. This proves they are
topologically conjugate.

We suppose now that « = [I]. There exists an integer k such that M = NF. On the other hand,
by Corollary 1, Case 2, the stationary matrix of the Bratteli-Vershik representation of the system
is My = Np - N;. We contract the ordered Bratteli diagram starting with v, to have a new ordered

Bratteli diagram with w = Mkv =u = as its hat and with stationary matrix M, = N1 N;.

a
b
In this way we have two stationary ordered Bratteli diagrams, B, and By, which can only differ
on the orderings of M,. If the orderings are the same then the proof is finished, hence we can
suppose that the orderings are given by Figure 4. Let B; and Bs be respectively the stationary
ordered Bratteli diagrams with the same incidence matrices and orderings as By and By, for levels
. 1 o .
k > 2, but with hat ( 1 ) In [DHS] it is proved that (Xp,,Vp,) and (Xp,, VB,) are respectively
isomorphic to the subshifts (X1,0) and (X2, 0) generated by the substitutions 7; : {0,1} — {0,1}"

% 0) =100 0) =001
and 72 : {0,1} — {0,1}" defined by 2 Elg — 10 and Z Elg oL
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Let ¢ : {0,1} — {(0,7) | 0<i<a-—-1}U{(1,79) | 0<i<b—1} be the map defined by¢(0) =
(070) (071)"'(070’_1)7 ¢(1) = (150) (171)"'(17b_1)'

Let z € X; and y € X,. We see that the subshift (Y1,0) (resp. (Y2,0)) generated by ¢ (z) (resp.
¢ (y)) is isomorphic to (Xp,, Vp,) (resp. (Xp,, VB, ))- But we can prove that X; = X5 (the proof is
left to the reader), hence using the minimality of (X;,0) and (X2,0) and the fact that ¢ (X;) CYj,
i € {1,2}, it follows that Y7 = Y5 and that (Xp,, Vp,) is isomorphic to (Xp,,, Vs, ). This achieves
the proof . O

APPENDIX.
A) Proof of Proposition 2.

The results of this section are closely related to the ones found in [S]. We write whole proofs here
for the sake of completeness.

Lemma 3. If M € GL(2,7Z) \ {12} is a unit keeping automorphism of (Zz, Pa), then either M >0
or M~ > 0.

d

Proof. Since M = Ccl ] is invertible, det M = +1 and M ! = det M [ _ab ] Let us make

ST )

a couple of remarks:

By Lemma 2, neither M nor M ' (since M ! is also an automorphism of (Z?, P,)) can have any
column < 0.

The matrix M can not have a row < 0, otherwise, if for instance its first row was non-positive, M
31
U2
is not possible by definition of a unit keeping automorphism.

would send the unit ( > 0 into a vector which first coordinate would be au + bv < 0, which

It follows from the above remarks about the impossibility for M to have non-positive columns and
rows that M has at most two non positive entries. If it has two of them, they must be either a and
d, or b and ¢ (and the other two entries must be > 0). But in view of the computation of M !, in
that case all entries of this inverse have the same sign, which must be positive in view of a previous
remark. If it has only one strictly positive entry, it is easy to see that the condition |det M| =1 can
not be realized. This complete the proof. O

Let M be a unit keeping automorphism of (ZQ, Pa). From Lemma 3, either M or its inverse must
be positive. Without loss of generality we will assume that M > 0. Let Ko(M) = (Z* K1 (M)) be
the dimension group of M, that is to say,

K+(M)={veZ2| MEv >0, forsomekeN}.

Lemma 4. If M > 0 is an automorphism of (Z2,Pa) with M # I, then M is a primitive matriz
and Ko(M) = (Z*, P,,).

Proof. Calling K+ = KT (M), the proof of the lemma consists on showing that K = P,.

Notice first that it follows easily from Lemma 2 that M can have at most one 0 entry, and it would
be in the diagonal, which implies that in any case M? > 0 and M is primitive.

Thus, by Perron—Frobenius theorem, M has an eigenvalue A\; > 1 associated to a strictly positive

. . 1 .
eigenvector vi > 0. On the other hand, since M - P, = P,, vy = < Ca ) must be an eigenvector

of M, and since |det M| = 1, the eigenvalue A\ = de/{—lM associated to vo satisfies || < 1.
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Therefore any v € Z? can be written in a unique way as v = 21v1 + x2va, with z1, 22 € R. Notice
that for such a v, v € P, & 1 > 0. For any k£ € N we get Mkv = )\’fxlvl + )\IQC:L“QVQ, and since
v1 > 0, if 9 # 0, M*v will eventually become positive if and only if z; > 0. If x5 = 0, the condition
becomes 1 > 0, and noticing that the only point v with integer coordinates on the line of equation
x1 = 0 is the origin, we conclude that v € KT < x; > 0. Thus K+ = P,. O
Let us consider now a positive matrix M € GL(2,Z). From [ES, Lemma 4.1|, M = N¢,-N¢,_,-...-Ne,,
with ¢; > 0, 1 =0,...,[. The following lemma tells us exactly what the dimension group for M is
(not just a characterization up to isomorphism).

Lemma 5. Let M = Ng - N¢_, -...- Ny 20, withc; >0, i =0,...,1, be a non negative invertible
primitive 2 X 2 matriz, and let B = [¢g: ¢1,...,¢). Then M is an automorphism of (ZQ,Pg) and
Koy(M) = (Z2,P5).

Proof. Since Ny - Ny - Ny = Ny, q for all d,d’, we can suppose that in the decomposition M =
Ne - Ney, - ... - Ng, all numbers ¢; are strictly positive, except perhaps ¢y and/or ¢;. Thus we have
four cases, and in each of them we can compute the simple continued fraction expansion for the
associated irrational number 3:

(1) co>1,c>1, M=N,+...- Ny - Ny and § = [cgTer; 5], L > 0.

(2) co=0,¢>1, M=N¢ ... N, - Nopand f=[0:¢1,¢2,...,¢-1,¢1 +¢], 1 > 2.

(3) co>1,¢4=0, M=Ny-Ng_,-...-N¢y - Negand = [co:cr,...,¢-9,¢0+c—1],1>2.
(4) co=c =0, M=No-N¢g_,-...-Neg - No andﬁz[O:m],ZZZ

Notice that in cases 2 and 3, M fails to be primitive if [ = 1.

Let us prove the lemma in Case 1, and the other three cases will follow from it later.

For ro,r1,...,mn > 0 in R, the notation r = [rq : r1,..., 7] will stand for the positive real number
r such that .
r=r7r9+ 1
T+
ro+
Tm—1+ —
T'm
In an analogous way as in the theory of continued fractions presented in [HW], recursive matrix
equations can be written for computing r. Namely, if we write Fy = Ny, Fj = [ pp k qqk ] ,
k-1 GQk—1
and the recursion Fj, = N, - Fi_; for 1 < k < m, one easily gets Fy, = N, - N, _, - * Ny,
1
and r = Z—m. Now, since 8 = [¢p : ¢1,.--¢ ), then 8 = ¢o + n . In other words,
v 1
C| -
B

ﬂZ[Cotcl,...,Cl,ﬂ].

Therefore 8 will be of the form § = E, with the matrix Fj 1 = [ Z g ] satisfying
Yy l l

(3) [;;]:[fé]'[;l1 mqll]

and F; = [ p‘;D ! qlql ] coming from the finite (rational) continued fraction
-1 Q-1

r=co:cr,-..,q) =B, which, incidentally, implies that F; = N, - N,

3 .+ N, = M. From the

-1
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. . _x _ pBtpi-a :
matrix equation (3), 8 = Y = aprq_, thatis,

(4) 62 + qi—1 _plﬁ N bi—1 —0.
qi qi

Notice that (4) defines the irreducible polynomial for 8 in Q[X], and since the constant coefficient
is strictly negative, 3 is the only positive root of this equation.

Using the fact that M > 0 is primitive and following a similar argument as the one on the proof of
Lemma 4, M has an associated ordered dimension group Ko(M) = (Z*, P,), p € R\ Q. Moreover
P, can be computed as P, = {v € 72 ‘ Mkv >0, for some k € N }, and therefore M - P, = P,
(that is, M is an automorphism of (Z2, P,)). Since M = F} = [ pp t qql ], it follows from

-1 qi-1
Lemma, 2 that u satisfies the equation p? + %u - ’% = 0. Since p > 0 is a root for (4), then
u = B, and Case 1 is proved.

Let us deduce the Case 2 from what we just proved. Since 3 =[0: ¢1,¢2,...,¢-1,¢1 + ¢ ], we can
1 1 1
write § =0+ T=a+—-= apt , with p =[co:...,¢_1,c1 + ¢ ]. Calling
¢+ m © K
My, =N¢ye - Ney oo v Ney = Ney - No - Ney - Ny, - ... - N, the matrix having p as its associated

irrational number, then M = N, -...- Ny, - Ng = (N, - No) ™" - My, - (N, - Ny).

We know from Case 1 that M), - ( —1N > is parallel to ( ) Therefore

M - (N, - No)™ - ( —lu ) = (N - No) ™' - M, - ( —lu ) is parallel to
(1 1 : 1.
(Ng, - No) )= (cip+1) | ¢pu+1 |, which means that M - _3 is parallel to
"

( 3 ) Since M is positive, Case 2 is established. The remaining two cases are proved in a

similar fashion.
O

We are ready to prove Proposition 2 now. If M # I, is a positive automorphism of (Zz, Pa), then
by Lemma 4, M is primitive and M - P, = P,. It follows from Lemma 5 that M - P3 = Pg, with 3
the irrational number associated to M. But then it is clear that 8 = a. Recall that
a=|[do:d,...dr—1], Ma=Ngy_, -...- Ng, - Ngy, with d; >0 forall i =0,...,7 —1, and T is
the minimal length of a period in the simple continued fraction expansion of . Thus the simple
continued fraction expansion for  is periodic and must be of the form of Case 1 in the proof of
Lemma 5, that is to say 8 =[¢y:¢1,...,¢) and M = N, -...- N, - Ng, with all ¢; > 0. Finally,
from the minimality of the period of o, I + 1 =k - T for some k € N, and M = Mk,

B) Proof of Proposition 3.

We will make use of the following lemma which proof can be found in [H].
Lemma 6. Let (X,T) be a minimal Cantor system and f € C (X,Z).

(1) There exists g € C(X,Z) such that f +goT — g > 0 if and only if for every x € X the
sequence (f (T"x) +---+ f (Tz) + f () ey 5 bounded from below.

(2) f is a coboundary if and only if for all x € X the sequence (3> v, f (T* (x)))nGN is bounded.

Let us also state a technical lemma:

Lemma 7. Let (Qq,0, 1) be a Sturmian subshift, then
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(1) [K] For all clopen U of Qq and all z € Q,, the sequence (Z?:_Ol (1 (o (z)) — (U))) is

eN
bounded; "
(2) [HMK{u(U) | U is a clopen set in Q4 } C{ma+n| m,n€Z};

(For example we have 4 ([0]) =1 — a and p ([1]) = a.)
We start the proof of Proposition 3 with some notations. For all n € N let
L, = {IEZ © Titn—1 | 1 € 7, (wn)nEZ € Qq, }

(this set is usually called language of Q,) and @, = {U (u) | u € Lop41 } where for all u =
ug - uzp € Lopy1

U(U) = [UO s Up—1-UpUp+1 - - ‘U2n] = {(yn)nez € Qq | Yien = U, 0 <7< 2n }
It is classical that this last set is a clopen set, that @), is a partition and that U,cnQr is a basis for
the topology 2.
Let f € C (Q2q,2Z). There exists an integer n such that f is constant on each set of @,,. Hence there
exists { fu | v € Lap+1 } C Z such that f = ZueL2n+1 fuly(u)- From Lemma 7 there exists p,q € Z
such that ) . Lonss Jut ({U (u)}) = pa + q. Hence there exist two integers go and g1 (uniquely
determined) such that pa + g = go (1 — @) + g1 = gop ([0]) + g1 ([1]). We remark that go and g1
do not depend on @), is the sense that if f is constant on each clopen of Q,,, for some m € N, then

ZueL2m+1 fur ({U (u)}) = pa+q.
We define g € C(Qa,Z) by g(x) = goly(z) + g1l (z) for all x € Q4. We now show that
(Zf\!ol (f—9) (o (x)))N . is bounded for all z € Q,. Let x € Q,, then

€

N-1 '
Y (f-9) (@) =
i=0
N-1 . N-1 .
Y (fuluw (0" (2)) = gou ([0) = gupe (1)) | + (90 ([0]) + g1 ([1]) = g (0" (2))) -
i=0 \uE€Lzni1 =0

Using Lemma, 7 we clearly see that the second sum is bounded independently of N, and using the
definition of go and g; together with the same lemma it is not difficult to see that the first sum is
also bounded independently of N. It follows from Lemma 6 that f — g is a coboundary.

We set ¥ (f) = (g0,91). It is not difficult to see that this defines a group homomorphism 1) :
C (Q,Z) — Z2.

If ¥ (f) = 0 then using 7 it is not difficult to prove that f if bounded and hence that Kery =
BC (Qq,Z), consequently K (Q,,7Z) is isomorphic to Z?. Moreover if f is positive then we obtain
that go (1 — @) + g1 > 0, that is to say (go,91) € Pi—o. And conversely if (a,b) belongs to Pi-o
Lemma 6 together with Lemma 7 show that the function h = alpg + b1y is cohomologous to a

positive function. Finally K is isomorphic to (Zz, Pl;a) as an ordered group.
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