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Abstract

Magnetic resonance image texture analysis (MRI-TA) has been already demonstrated as a powerful tool to extract image information better than 
visual examination of grey levels. Human muscular dystrophy is a disease of which diagnosis is rather easy but it remains a lack of atraumatic 
methods for its follow-up as well as for the management of treatments presently in progress. MRI appears to be a potential tool for disease 
follow-up and treatment monitoring. The present study is part of the European project MYO-MRI (http :/ /myo-mri .eu/) aimed at improving 
diagnosis and understanding of muscle pathology. This paper focuses on the use of Legendre and Zernike moment-based texture analysis of MRI 
T2-weighted images to follow from 2 to 14 months 5 healthy and 5 Golden Retriever Muscular Dystrophy Dogs (GRMD), acknowledged to be the 
most accurate animal model available for human Duchenne Muscular Dystrophy. Regions-Of-Interest (ROIs) were characterized by moments and 
the features so extracted were analyzed by Principal Component Analysis and classified by means of Support Vector Machine. The preliminary 
results show relevant discriminations between dogs populations in reference to disease status and evolution.
© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

The Duchenne muscular dystrophy (DMD), an X-linked re-
cessive disorder, is the most common form of muscular dystro-
phy. The disease is due to a mutation on the gene coding for 
dystrophin. The lack of dystrophin makes the membrane un-
stable, muscle fibers degenerate and are progressively replaced 
by fibrotic and fat tissue which is mainly responsible for mus-
cular weakness, cardiac dysfunction and death. The Golden 
Retriever Muscular Dystrophy (GRMD) dog model is acknowl-
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edged to be the most accurate model available for DMD and is 
increasingly used in therapeutic trials [1–3]. The histological 
expression of the disease closely follows its clinical evolution. 
The muscle tissue lesions vary according to muscle typography 
as well as with the age of the dog. Non-invasive follow-up of 
the disease is to date still problematic. The assessment of posi-
tive or deleterious effects of therapies has been conducted with 
clinical scoring, biochemical studies, muscular strength mea-
surements [4] and particularly with histological examination of 
biopsies or post-mortem samples. Nevertheless, none of these 
measurements is completely satisfactory. The use of repeated 
biopsies might significantly alter the muscle integrity, a critical 
effect especially in the case of muscular dystrophy study where 
muscle fibers already undergo degeneration. Furthermore, his-
tological assessment by biopsies, though essential, gives a lim-
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ited account of the muscle as a whole and therefore might not be 
representative of what happens in muscle tissue in case of het-
erogeneity. MRI, for these reasons, is considered a useful tool 
for non-invasive global evaluation of diseased muscle. The tex-
ture of MR images might contain useful information about the 
state of the muscle tissue. Dystrophic muscle tissue feature such 
as fibrosis, necrosis and abnormal vascularization could be eval-
uated by texture analysis (TA). Several successful attempts have 
already been made to identify abnormal muscle features using 
MRI [5–13]. In the light of these findings, it appears that MRI-
TA could be a powerful image processing tool for a better as-
sessment of diagnosis and therapy effectiveness. A research line 
in the COST action MYO-MRI (http :/ /myo-mri .eu/) was de-
voted therefore to explore strategies for muscle imaging texture 
analysis. Texture methods are classically divided into four cat-
egories: structural methods, statistical methods, model-based 
methods and transform methods (refer for surveys to [14–16]). 
MRI-TA has been recognized of practical interest in various 
muscle dysfunctions in MR images of human muscle tissue 
[17,18], and the detection of muscle lesion in rats [19]. Among 
the transform group of TA methods, moment-based methods 
include several families of moments: complex moments, rota-
tional moments, geometric moments and orthogonal moments. 
Orthogonal moments, such as Legendre and Zernike moments, 
present the advantage of being optimal with regard to informa-
tion redundancy [20–22]. Although not yet widely considered 
in biomedical imaging, moments have already found a few ap-
plications for the segmentation in ultrasound images [23], and 
the discrimination of healthy and disease liver tissue in CT im-
ages [24].

The paper is organized as follows. Section 2 defines the pro-
tocols and the materials acquired for MYO-MRI. The analysis 
of the extracted texture features is described as well. Results 
are reported in Section 3 and discussed in Section 4. The con-
clusion in Section 5 highlights these preliminary findings and 
describes the research lines in progress.

2. Materials and methods

2.1. Animals and anaesthesia

The MRI dataset is issued from a longitudinal (2 to 14 
months) study of GRMD dogs [11]. Five control and five 
GRMD dogs were bred in a dedicated gene therapy facility at 
the Alfort National Veterinary School. All procedures were car-
ried out in accordance with the Guide for the care and the use 
of laboratory animals and approved by the Animal Use and 
Care Committee of the Veterinary School of Alfort, France, 
following the European legislation on the use of laboratory 
animals. The anaesthesia of the dogs was induced by intra-
venous injection of propofol (RapinovetND, MSD-Schering-
Plough, Courbevoie, France) at the dose of 0.65 ml/kg. The 
dogs were intubated with an endotracheal tube and general 
anesthesia was maintained using an inhalational mixture of 
2% isofluorane (ForeneND, Abbott, Chicago, USA) and oxy-
gen. Body temperature, heart rate and oxygen saturation were 
constantly monitored (Maglife Odam, Schiller Medical, Wis-
sembourg, France). During anesthesia, dogs were infused with 
isotonic sodium chloride solution.

During the first months of GRMD life, individual degen-
erating/necrotic fibers and clusters of regenerating fibers are 
prominent with numerous hypercontracted fibers also called 
hyalin fibers, some inflammatory cells and mild endomysial 
and perimysial fibrosis. Fibrosis later develops with a variable 
distribution across different muscles. Adipose tissue infiltration 
can start to occur at four months of age with a variable distribu-
tion [2,3]. Clinical function tests have a fast negative evolution 
from 2–3 to 6 months before a period of paradoxical stability 
during the next months. According to these histological main 
variations, disease evolution can be approximately divided in 
three different periods: phase 1 (0 to 3–4 month) is mainly char-
acterized by degenerating fibers but also regenerating groups, 
inflammatory cells, hypercontracted cells, beginning of fibrosis 
and large decrease of clinical functions. Phase 2 (around 4–6 
months) is characterized by increased fibrosis, fat infiltration 
and a relative stability of clinical signs. Fig. 1 shows histolog-
ical slices of skeletal muscle after specific staining for fibrosis 
evidencing the tissue changes between phase 1 and phase 2. 
During phase 3 (from around 6 months up to death), fibrosis 
and fat infiltration are variable with important prenecrotic and 
necrotic tissues.

2.2. MR images acquisition

NMR acquisitions were performed at the NMR laboratory of 
the Institute of Myology, Pitié-Salpétrière University Hospital, 
using a 3T Siemens Magnetom Trio TIM imager/spectrome-
ter (Siemens Healthcare, Erlangen, Germany) with the stan-
dard circularly polarized extremity coil. A T2-weighted (Spin 
Echo sequence, TR = 3000 ms, TE1 = 6.3 ms, TE2 = 50 ms, 
NEX = 5, 12–14 axial slices along the limb with a slice thick-
ness of 3 mm and an in-plane resolution of 0.56 × 0.56 mm2) 
was performed. The NMR protocol included T1-weighted and 
proton density images but according to results obtained by 
Thibaud et al. [11], the T2-weighted images provided the most 
promising results in terms of heterogeneity criteria when com-
pared to T1-weighted. The heterogeneity was defined as the 
standard deviation corrected for noise and it was significantly 
higher in T2-weighted images of GRMD dogs. Thus, it was 
assumed that this increase of heterogeneity with disease may 
be related to the development of a fibrosis that impacts the T2 
values. The T1- and T2-weighted images were acquired during 
the same scanning session, with exactly the same geometrical 
parameters. The animals were anaesthetized so that no motion 
correction was needed and no registration step was required.

Fig. 2 displays two sample images of a GRMD dog and a 
healthy dog with a zoom on one limb. MR images of the GRMD 
and healthy dogs were acquired every few months (Table 1). 
Although the acquisitions were not worked out the same month 
of age due to the facilities constraints, they well match the three 
phases previously mentioned. Some GRMD dogs died from res-
piratory complications between 9 and 12 months of age.

Four muscles of the hind limbs (right and left legs) were 
considered: the Extensor digitorum longus (EDL), the Gastroc-

http://myo-mri.eu/
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Fig. 1. Typical histopathological presentation of skeletal muscles of GRMD dogs, 3, 6 and 12 month-old. Changes are mild at 2 months (A) with only some 
hypercontracted fibers, and a diffuse increase in cell number. At 6 months, degenerative and necrotic changes are more severe, elicitating some inflammatory cell 
infiltration (∗). At 12 months, fibrotic (black arrowhead) and fat tissues (open arrowhead) are proeminent. (A–C) Hemalun eosin saffron and (E–F) Picrosirius red 
stainings. Bars = 100 µm (A–B, D–E) and 200 µm (C and F). Collagen (fibrosis) is red with Picrosirius staining and yellow with Hemalun eosin saffron staining. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Examples of T2-weighted MR images in a 4-month-old GRMD dog 
(left) and a 4-month-old healthy dog (right). The images are zoomed on the 
right limbs to show the detail of muscles. Two interested muscles for texture 
analysis in this paper, i.e. GL and GM, are marked by # and ∗ respectively.

nemius lateralis (GL), the Gastrocnemius medialis (GM) and 
the Tibial cranialis (TC). Indeed, other muscles are too small 
for including enough pixels for TA. The ROIs were manually 
drawn by an MRI specialist, thus composing 936 diseased mus-
cle Regions-Of-Interest (ROI) images of GRMD and 1057 of 
healthy dogs. The contours were traced on a preliminary T1 Fat 
Saturated weighted images and transferred on the T2-weighted 
images. Flow artifact, if any, large vessels and areas of partial 
volume effects were carefully excluded from the ROIs. Mus-
cles were contoured in all images where they were visible. The 
ROI sizes depend on the muscle and the position of the slices: 
in average, there are 90 pixels for the GM and TC, 56 pixels for 
the GL and 60 pixels for the EDL. In most cases the number 
Table 1
Rows indicate the dog’s reference, columns the months (M) were MRI acquisi-
tions were performed.

Dataset acquisitions

Dog Age

2M 3M 4M 5M 6M 8M 9M 11M 12M 14M

Diseased 1 + + + +
2 + + +
3 + + + +
4 + + + +
5 + + +

Healthy 6 + + + +
7 + + +
8 + + + + +
9 + + + + +

10 + + +

of slices available for the delineation of a given muscle ranges 
from three to eight.

2.3. Image processing and texture analysis methods

The TA methods which has been used in this preliminary 
study includes the Legendre and the Zernike moments (a com-
prehensive survey can be found in [20–22] and in-depth infor-
mation in [25,26]).

2.3.1. Legendre moments
The two-dimensional (2D) (n +m)th order of Legendre mo-

ment of an image intensity function f (x, y), Lnm, is defined as 
[20]

Lnm = (2n + 1)(2m + 1)

4

1∫ 1∫
Pn(x)Pm(y)f (x, y)dxdy, (1)
−1 −1
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Fig. 3. Global analysis process where “PCA” stands for Principal Component Analysis and “SVM” for Support Vector Machine.
where Pn(x) is the nth order of Legendre polynomial given by

Pn(x) = 1

2n

n/2∑
k=0

(−1)k
(2n − 2k)!

k!(n − k)!(n − 2k)!x
n−2k. (2)

Since the Legendre polynomials are orthogonal over the in-
terval [−1, 1], the image f (x, y) can be reconstructed from its 
moments. Teague [27] derived a simple approximation to the 
inverse transform for a set of moments through order P given 
by

f (x, y) ≈
P∑

n=0

n∑
m=0

Ln−m,mPn−m(x)Pm(y). (3)

When an analog original image is digitized to its discrete form, 
the 2D Legendre moments Lnm defined by Eq. (1) are usually 
approximated by

Lnm = (2n + 1)(2m + 1)

(N − 1)(M − 1)

N∑
i=1

M∑
j=1

Pn(xi)Pm(yj )f (i, j), (4)

with xi = 2i−N−1
N−1 , yi = 2j−M−1

M−1 .

2.3.2. Zernike moments
The 2D Zernike moments, Znm, of order n with repetition m, 

are defined in polar coordinates (r, θ ) inside the unit circle as 
[20]

Znm = n + 1

π

1∫
0

2π∫
0

Rnm(r)e−jmθf (r, θ)rdrdθ,

0 ≤ |m| ≤ n, n − |m| being even. (5)

where Rnm(r) is the nth order of Zernike radial polynomial 
given by

Rnm(r)

=
(n−|m|)/2∑

k=0

(−1)k
(n − k)!

k! [(n − 2k + |m|)/2
]! [(n − 2k − |m|)/2

]! rn−2k.

(6)

Like the rotational moments and the complex moments, the 
magnitude of the Zernike moments is invariant under image ro-
tation transformation. The image can be reconstructed using a 
set of moments through order P as

f (r, θ) ≈
P∑∑

ZnmRnm(r)ejmθ . (7)

n=0 m
Eq. (5) can be discretized as [28]

Znm = n + 1

π(N − 1)2

N∑
i=1

N∑
j=1

Rnm(rij )e
−jmθij f (i, j), (8)

where N is the number of pixels along each axis of the image, 
the mapping transformation to the interior of the unit circle is 
given by

rij =
√

(c1i + c2)2 + (c1j + c2)2,

θij = tan−1
(

c1j + c2

c1i + c2

)
, (9)

with c1 = √
2/(N − 1), c2 = −1/

√
2.

2.4. Feature extraction and data analysis

In order to compare the results obtained by the different 
groups involved in MRI-TA of MYO-MRI, standard methods 
for data analysis have been chosen. This is important to de-
termine the role played by the extracted features alone and to 
decide what features better capture the tissue properties. So, the 
extracted moment features are examined in a first step by ap-
plying a Principal Component Analysis (Fig. 3) and in parallel 
classified using a Support Vector Machine (SVM) technique. 
As seen in the equations above, the Legendre and Zernike mo-
ments of a function are calculated respectively inside the in-
terval [−1, 1] and the unit circle. In order for the moment to 
preserve the image information as accurately as possible, ROIs 
must be placed in appropriate bounding boxes. Several configu-
rations were tested in each case to take into account the varying 
muscle shapes: (i) by defining the largest bounding box over 
all ROIs, and centering or not the other ROIs inside, with com-
plementary zero values outside the ROIs; (ii) by selecting the 
smallest box bounding each ROI with zero values added out-
side the ROI. Among the all tests performed so far, the second 
option was retained for the Legendre moments. The same sys-
tematic approach was applied for Zernike moments and the best 
solution was obtained by first setting the minimal square win-
dow containing the ROI and then by using the bounding circle 
with proper zero values inserted accordingly.

The basic set of moments calculated for the study are: Leg-
endre moments LM00, LM10, LM01, LM11, LM20, LM02 and 
Zernike moments ZM00, ZM11, ZM20, ZM22, ZM31, ZM33. 
Adding higher order up to the third order for Legendre mo-
ment values was also tested. The moments are calculated in all 
2D ROIs and then gathered for a whole muscle by keeping the 
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mean moment values over the available slices (six Legendre 
moments and six Zernike moments). The standard deviations 
are also calculated and build the second half part of the feature 
vector. Legendre and Zernike moments are treated separately. 
Several options were considered depending or not on a normal-
ization of the moment values by LM00 and ZM00 respectively. 
They lead either to an 80 feature vector or a 96 feature vector. 
The feature vectors of the eight muscles are then assembled to 
form the final feature vector: this vector represents the imaging 
information corresponding to all muscles of a dog at a certain 
time. The same approach was applied when considering the 
third order of Legendre moments.

A descriptive study was performed by means of the Princi-
pal Component Analysis (PCA) [29] in order to get a visual 
representation of the multi-dimensional data (80 to 96 dimen-
sions depending on the type of feature vector) in a reduced 
dimensional space. It relies on the principle that some of the 
variables can be correlated, and therefore can be transformed 
into a smaller amount of variables called principal compo-
nents. The principal components are a linear combination of 
the variables. The data can then be projected on the principal 
components and visualized. PCA is achieved by finding the 
eigenvectors (principal components) and eigenvalues (princi-
pal values, which account for the quantity of information the 
eigenvector restitutes) of the covariance matrix of the data. The 
Support Vector Machine (SVM) [30] was then used to classify 
the multidimensional data in two classes. Considering the small 
number of datasets, the leave-one-out cross-validation is used 
to evaluate the performance of the classification. Different ker-
nel functions and parameters are tested in the experiments. The 
kernel function and parameters are selected when the best re-
sults obtained. As a result, the linear and radial basis function 
(RBF) kernels are adopted when using Legendre and Zernike 
moment respectively. The penalty parameter c and γ of RBF 
kernel are set to 2.0 and 0.02 respectively. The SVM classifier 
is performed via LIBSVM toolbox (version 3.2) [31].1

3. Results

The main results obtained with the two TA methods, Zernike 
and Legendre moments, are presented in Table 2. 1993 ROIs 
have been analyzed from the 5 healthy dogs and the 5 GRMD. 
It means that numerous ROIs are from the same dog but con-
cerning different muscles and different MRI slices. In this pre-
liminary study, a potential difference between the Extensor dig-
itorum longus, the Gastrocnemius lateralis, the Gastrocnemius 
medialis and the Tibial cranialis has not been taken into ac-
count. As well a potential difference in the disease evolution 
for the 5 different GRMD has not been the main goal for this 
preliminary study.

Using Legendre moment, all the healthy dogs are well clas-
sified. Results are not so good with Zernike moment where we 
have about 15% of false positives (corresponding to 2 dogs 
on 5). With both methods, the early detection of the disease 

1 http :/ /www.csie .ntu .edu .tw /~cjlin /libsvm/.
Table 2
Results for Legendre moments (up to the second order) and for Zernike mo-
ments (up to the third order). The specificity is the ratio between true negative 
and condition negative and the sensitivity the ratio between true positive and 
the condition positive.

AGE (month) 2 3 4 5 6 8 > 9

Healthy ROIs analyzed 111 105 115 144 44 308 230
Diseased ROIs analyzed 121 0 228 161 117 165 144
Sensitivity (Legendre moment)% 0 – 48 100 100 100 34
Specificity (Legendre moment)% 100 100 100 100 100 100 100
Sensitivity (Zernike moment)% 0 – 48 100 48 100 34
Specificity (Zernike moment)% 100 100 100 38 100 40 100

(month 2) was not possible. At the end (month 4) of phase 1 
as previously described, a discrimination between GRMD and 
healthy dogs starts to appear in 2 GRMD on 5 providing a 
global sensitivity of about 50% with both methods. Legendre 
moment method provides a sensitivity of 100% during months 
5, 6 and 8 corresponding to the phase 2 of disease evolution; 
the sensitivity with Zernike method is not so good during this 
phase 2 with one GRMD determining 57 false negative ROIs. 
MRI-TA is not a relevant method for early diagnosis easily per-
formed by clinical examination; then, sensitivity appears more 
relevant than specificity for a-traumatic disease follow-up and 
evaluation of treatment efficiency. As T2-weighted images can 
be related to fibrosis, an early modification of MRI-TA param-
eters is not observed during the first months of evolution but 
a significant evolution is observed during the second phase of 
disease evolution as previously described. The last phase of the 
disease evolution (from 9 month up to death) again provides, 
as the last phase 1, irregular results. The best results obtained 
throughout all the tests performed were obtained with the 96 
feature vector of Legendre moments which includes the first 
moment, LM00. The same procedure, conducted with Zernike 
moments (here also using a normalization of moment values by 
ZM00) leads to a much complex mixed picture of the two pop-
ulations and a higher rate of misclassification.

4. Discussion

Despite the fact that the inter-animal variations are large, this 
first attempt in analyzing the two dog populations is encourag-
ing. These preliminary results show that: i) the different texture 
parameters do not provide the same sensitivity and specificity; 
ii) the texture parameters are modified during the disease evolu-
tion, iii) the best performance is achieved when using Legendre 
moments. Another study conducted in parallel in MYO-MRI 
was based on well-known methods [32] and it was shown that, 
if the results differed between muscles, among the top methods 
were the co-occurrence matrix-based, gray-level differences 
matrix-based, gradient-based, histogram-based, Laws’ filtering, 
and run-length matrix-based. The features from the first method 
were top ranked for the early stage of GRMD development, 
while the last method ensured the best tissue recognition for the 
final stage of canine life [33]. The comparison of different TA 
methods on the same MRI data, a goal of the European COST 
action MYO-MRI appears yet to be a relevant challenge not up 
to now realized by any research consortium.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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The second preliminary conclusion suggested by this study 
opens the discussion on the relationship between MRI-TA and 
histology though there is a scale gap between the spatial reso-
lutions in clinical MRI and in optical microscopy; for instance, 
the good sensitivity of Legendre moment method during the 
phase 2 of the disease suggests a correlation between this MRI-
texture parameter and fibrosis. To not use MRI-TA as a “black 
box” for clinicians, such study has to be performed at a large 
scale, which is another goal of the European COST action 
MYO-MRI.

However, the size of the dataset must be extended before 
arriving to a definitive conclusion on the capability of texture 
parameters to not only separate the two populations but also 
track the disease evolution and ultimately follow an effect of 
treatment. A next step will have to focus on muscle entities in 
order to understand which muscle is more sensitive to the dis-
ease evolution, in what extent it is affected and if it is possible 
to better characterize the underlying histological processes.

On the methodological side, several issues pointed out by 
this study must be addressed in the future. Over all the exper-
iments performed so far, the effect of the bounding box has to 
be better understood. Different bounding boxes have been con-
sidered among which a window preset on the largest ROI of a 
given muscle and a window as small as possible centered on the 
center of mass of the ROI; they lead to different performances 
in terms of classification. Another major issue concerns the re-
spective roles of texture, shape, orientation and size of ROIs. 
The relative impact of these factors is hard to evaluate and both 
theoretical developments and simulations should be conducted. 
Increasing the moment orders may provide more details on tex-
ture but biases due to noise and the small ROI sizes may limit 
the significance of higher moment values. Moment invariants 
[34,35] rather than moments are of interest here since moment 
invariants are not affected by the position, orientation or scale 
of the objects.

5. Conclusion

The positive results of the analysis performed in this pre-
liminary study open exciting perspectives in the use of these 
MRI-TA methods for the follow-up of muscle dystrophy. How-
ever, several major questions remain open at the experimental 
level. From the methodological point of view, several issues 
have been raised that need further theoretical studies and in par-
ticular the analysis of the bounding box effect, the respective 
roles of texture, shape and orientation of muscle ROIs, the de-
termination of the optimal order of moments to be chosen, the 
more appropriate kernel functions, etc. However, a systematic 
exploration of all these factors leads to a very high combinato-
rial space. Local texture analysis must also be considered: its 
advantage is to partially avoid the problems related to bound-
ing box selection, ROI shape and orientation mentioned above 
but with a severe restriction on the number of window samples 
in each muscle due to the very small sizes of ROIs.

Since about twenty years, a lot of very exciting and positive 
results of MRI-TA have been published in numerous clinical 
situations though comparison between various TA methods and 
explanation of the results in terms of potential histological tex-
ture are still in their infancy; it is a major challenge of which 
the European COST Action MYO-MRI tried to contribute.
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