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AN INVERSE STABILITY RESULT FOR NON COMPACTLY SUPPORTED POTENTIALS BY ONE ARBITRARY LATERAL NEUMANN OBSERVATION

In this paper we investigate the inverse problem of determining the time independent scalar potential of the dynamic Schrödinger equation in an infinite cylindrical domain, from partial measurement of the solution on the boundary. Namely, if the potential is known in a neighborhood of the boundary of the spatial domain, we prove that it can be logarithmic stably determined in the whole waveguide from a single observation of the solution on any arbitrary strip-shaped subset of the boundary.

INTRODUCTION

In the present paper we seek global stability in the inverse problem of determining the (non necessarily compactly supported) zero-th order term (the so called electric potential) of the dynamical Schrödinger equation in an infinite cylindrical domain, from a single lateral observation of the solution over the entire time span. But in contrast to [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF], where the measurement is performed on a sub-boundary fulfilling the geometric control property expressed by Bardos, Lebeau and Rauch in [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization from the boundary[END_REF], we allow in this paper that the Neumann data be taken on any infinitely extended strip-like subset of the lateral boundary, with positive Lebesgue measure.

1.1. Inverse problem. Let us make this statement a little bit more precise. We stick with the notations of [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF]. Namely, ω is an open connected bounded domain in R n-1 , n ≥ 3, with smooth boundary ∂ω, and we consider the infinite straight cylinder Ω := ω × R, in R n , with cross section ω. Its boundary is denoted by Γ := ∂ω × R. Given T > 0, p : Ω → R and u 0 : Ω → R, we consider the Schrödinger equation, -i∂ t u(x, t) -∆u(x, t) + p(x)u(x, t) = 0, (x, t) ∈ Ω × (0, T ), (1.1) associated with the initial data u 0 , u(x, 0) = u 0 (x), x ∈ Ω,

and the homogeneous Dirichlet boundary condition, u(x, t) = 0, (x, t) ∈ Γ × (0, T ).

(1.3)

For suitable (real-valued) u 0 and p, and under appropriate compatibility conditions on these two functions, we denote by u p the unique C 0 ([0, T ], H 1 (Ω))-solution to the initial boundary value problem (abbreviated as IBVP in the sequel) (1.1)- (1.3). Given an arbitrary relatively open subset S * of ∂ω, with positive Lebesgue measure, we aim for determining the unknown potential p = p(x) from one Neumann observation of the function u p on Σ * := Γ * × (0, T ), where Γ * := S * × R is an infinitely extended strip designed on the boundary Γ of the waveguide Ω. We refer to [29, Section 1] for both the relevance and the physical interpretation of the system modeled by (1.1)-(1.3) and the related inverse problem. The uniqueness issue in the inverse problem examined in this paper is to know whether any two admissible potentials p j , j = 1, 2, are equal, i.e. p 1 (x) = p 2 (x) for a.e. x ∈ Ω, if their observation data coincide, that is if the following identity holds true:

∂ ν u p 1 (x, t) = ∂ ν u p 2 (x, t), (x, t) ∈ Σ * .
Here ν = ν(x), x ∈ Γ, denotes as usual the unit outward normal vector to Γ and ∂ ν u = ∇u • ν stands for the normal derivative of u. We shall give a positive answer to this question provided the two unknown functions p 1 and p 2 coincide in a neighborhood of the boundary Γ. This extra information imposed on the unknown zero-th order coefficient of (1.1) near Γ is technically restrictive, but it is acceptable from a strict practical viewpoint upon admitting that the electric potential can be measured from outside the domain Ω in the vicinity of the boundary.

Actually, the above mentioned uniqueness result follows from a stronger statement claiming logarithmic stability in the determination of the potential p from the observation of ∂ ν u p on Σ * . This amount to saying that p 2 -p 1 L 2 (Ω) can be bounded from above in terms of (the logarithm of) a suitable norm of the trace of the function ∂ ν u p 2 -∂ ν u p 1 on Σ * . Such stability estimates play a key role in the analysis of ill-posed inverse problems (in the classical sense of [START_REF] Lavrent | ev: Some ill-posed problems of mathematics physics[END_REF]), by suggesting regularization parameters and indicating the rate of convergence of the regularized solutions to the exact one.

The main achievement of this paper is that the Neumann data used in this stability estimate can be measured on any arbitrary unbounded strip-shaped subset Γ * = S * ×R of the whole boundary Γ. The key idea of the proof is to combine the analysis carried out in [START_REF] Bellassoued | Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation[END_REF][START_REF] Yu | Global uniqueness and stability in determining coefficients of wave equations[END_REF], which is based on a Carleman estimate specifically designed for the system under consideration, with the Fourier-Bros-Iagolnitzer (abbreviated as FBI in the following) transformation used by Robbiano for sharp unique continuation in [START_REF] Robbiano | Fonction de coût et contrôle des solutions des équations hyperboliques[END_REF] (see also [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF][START_REF] Phung | Observability and control of Schrödinger equations[END_REF]). Indeed we take advantage of the fact that the FBI transform of the (time derivative of the) solution to (1.1) satisfies a parabolic equation in the vicinity of the boundary Γ in order to apply a Carleman parabolic estimate where no geometric condition is imposed on the control domain.

Existing papers.

There is a wide mathematical literature on uniqueness and stability issues in inverse coefficients problems of partial differential equations, see e.g. [START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients[END_REF][START_REF] Bellassoued | Lipschitz stability in determining density and two Lamé coefficients[END_REF][START_REF] Yu | Global uniqueness and stability in determining coefficients of wave equations[END_REF][START_REF] Puel | On a global estimate in a linear inverse hyperbolic problem[END_REF] and the references therein. However, most of the known results on these two problems require that the corresponding Dirichlet or Neumann data be at least measured on a sufficiently large part Γ of the boundary Γ of the spatial domain under consideration, if not on the whole boundary itself.

On the other hand, when Γ = {x ∈ Γ, (x -x 0 ).ν(x) ≥ 0}, where x 0 denotes a fixed point in the complement set of Ω, is the sub-boundary suggested by the geometric optics condition for the observability derived by Bardos, Lebeau and Rauch in [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization from the boundary[END_REF], Baudouin and Puel [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF] proved uniqueness and Lipschitz stability in the inverse problem of determining the electric potential of the Schrödinger equation from the observation of one Neumann data on Γ . In the present paper we claim logarithmic stability for arbitrarily small boundary parts Γ = Γ * which do no necessarily comply with the geometric condition of Bardos, Lebeau and Rauch. Nevertheless this is at the expense of a stronger assumption on the potential, which is assumed to be known in a neighborhood of Γ.

In the framework this paper, we are dealing with a single observation of the solution. Uniqueness results for multidimensional inverse problems from a single observation of the solution were first derived by Bukhgeim and Klibanov [START_REF] Bugheim | Global uniqueness of class of multidimensional inverse problems[END_REF] or Yamamoto [START_REF] Yamamoto | Uniqueness and stability in multidimensional hyperbolic inverse problems[END_REF] when Γ = Γ, by means of suitable Carleman estimates. For the analysis of inverse coefficients problems with a finite number of observations, based on Carleman estimates, we also refer to, Bellassoued [START_REF] Bellassoued | Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation[END_REF][START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients[END_REF], Bellassoued, Imanuvilov and Yamamoto [START_REF] Bellassoued | Inverse problem of determining the density and two Lamé coefficients by boundary data[END_REF], Bellassoued and Yamamoto [START_REF] Bellassoued | Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation[END_REF][START_REF] Bellassoued | Lipschitz stability in determining density and two Lamé coefficients[END_REF], Bukhgeim [START_REF] Bukhgeim | Introduction to the theory of inverse problems[END_REF], Bukhgeim, Cheng, Isakov and Yamamoto [START_REF] Bukhgeim | Uniqueness in determining damping coefficients in hyperbolic equations[END_REF], Choulli and Yamamoto [START_REF] Choulli | Generic well-posedness of a linear inverse parabolic problem with respect to diffusion parameters[END_REF][START_REF] Choulli | Conditional stability in determining a heat source[END_REF], Imanuvilov and Yamamoto [START_REF] Yu | Global uniqueness and stability in determining coefficients of wave equations[END_REF][START_REF] Yu | Lipschitz stability in inverse parabolic problems by Carleman estimate[END_REF][START_REF] Yu | Determination of a coefficient in an acoustic equation with single measurement[END_REF], Isakov [START_REF] Isakov | Inverse Problems for partial differential equations[END_REF], Isakov and Yamamoto [START_REF] Isakov | Carleman estimates with the Neumann boundary condition and its applications to the observability inequality and inverse problems[END_REF], Kha ȋdarov [START_REF] Khaidarov | On stability estimates in multidimentional inverse problems for differential equation[END_REF], Klibanov [START_REF] Klibanov | Inverse problems and Carleman estimates Inverse Problems[END_REF], Klibanov and Yamamoto [START_REF] Klibanov | Lipschitz stability of an inverse problem for an acoustic equation[END_REF], Puel and Yamamoto [START_REF] Puel | On a global estimate in a linear inverse hyperbolic problem[END_REF], and Yamamoto [START_REF] Yamamoto | Uniqueness and stability in multidimensional hyperbolic inverse problems[END_REF].

The stability issue in the inverse problem of determining the time-independent electric potential in the dynamic Schrödinger equation from a single boundary measurement was treated by Baudouin and Puel in [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF] and by Mercado, Osses and Rosier in [START_REF] Mercado | Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights[END_REF]. In these two papers the Neumann data is observed on a sub-boundary satisfying the geometric control condition of Bardos, Lebeau and Rauch. This condition was relaxed in [START_REF] Bellassoued | Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation[END_REF] under the assumption that the potential is known near the boundary.

As for inverse problems for the non-stationary Schrödinger equation by infinitely many boundary observations (i.e. the Dirichlet-to-Neumann map, abbreviated as DN map in the sequel), we refer to e.g. Avdonin et al. [START_REF] Avdonin | Protopopescu: Solving the dynamical inverse problem for the Schrödinger equation by the boundary bontrol method[END_REF], where the real valued electric potential is retrieved from the partial knowledge of the DN map (the observation of the Neumann data is performed on a sub-part of Γ).

In all the above mentioned papers the Schrödinger equation is defined in a bounded spatial domain. In the present work we rather investigate the problem of determining the scalar potential of the Schrödinger equation in an infinite cylindrical domain. Actually, there are only a few mathematical papers dealing with inverse coefficient problems in an unbounded domain. In [START_REF] Li | Inverse problems with partial data in a slab[END_REF], Li and Uhlmann proved uniqueness in the determination of the compactly supported electric potential in an inifinite slab from partial DN map. In [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF], the compactly supported potential of the Schrödinger equation defined in an unbounded waveguide was Lipschitz stably retrieved from one measurement of the solution on a sub-boundary fulfilling the geometric control property of Bardos, Lebeau and Rauch. This result was extended to non compactly supported potentials in [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF], but Lipschitz stability degenerated to Hölder stability. Similar uniqueness results for noncompactly supported coefficients of the wave equation are derived by Rakesh in [START_REF] Rakesh | An inverse problem for the wave equation in the half plane[END_REF] and Nakamura in [START_REF] Nakamura | Uniqueness for an Inverse Problem for the Wave Equation in the Half Space[END_REF], while the stability issue was treated by Kian in [START_REF] Kian | Stability of the determination of a coefficient for the wave equation in an infinite waveguide[END_REF].

1.3. Main results. We start by examining the direct problem associated with (1.1)- (1.3). To this purpose we consider a fixed natural number k ∈ N * := {1, 2, . . .}, and given p 0 ∈ W 2(k-1),∞ (Ω) and u 0 ∈ H 2k (Ω), we set v 0 := u 0 and v j := (-∆ + p 0 )v j-1 for j = 1, . . . , k -1.

We say that u 0 satisfies the k-th order compatibility conditions with respect to p 0 if the k following identities

v j (x) = 0, x ∈ Γ, j = 0, • • • , k -1,
hold simultaneously. Evidently, if u 0 satisfies the k-th order compatibility conditions with respect to p 0 then it satisfies the k-th order compatibility conditions with respect to p for any p ∈ W 2(k-1),∞ (Ω) verifying p = p 0 in the vicinity of Γ. Further, we introduce the set

H k = H k (Ω × (0, T )) := k j=0 C j ([0, T ], H 2(k-j) (Ω)),
where H k (Ω) denotes the usual Sobolev space of order k in Ω. Endowed with the norm

u 2 H k := k j=0 ∂ j t u 2 C 0 ([0,T ],H 2(k-j) (Ω)) , u ∈ H k ,
H k is a Banach space, and we recall from [30, Theorem 1.1] the following existence and uniqueness result for the system (1.1)-(1.3).

Proposition 1.1. For k ∈ N * fixed, assume that ∂ω is C 2k , and pick p ∈ W 2(k-1),∞ (Ω) such that we have p W 2(k-1),∞ (Ω) ≤ M for some M ≥ 0. Then for any u 0 ∈ H 2k (Ω) satisfying the k-th order compatibility conditions with respect to p, there exists a unique solution u ∈ H k to the IBVP (1.1)- (1.3). Moreover, the estimate

u H k ≤ C u 0 H 2k (Ω) , (1.4) 
holds for some constant C > 0, depending only on ω, T , k and M .

Put N := [n/4] + 1, where [s] stands for the integer part of s ∈ R. Then, applying Proposition 1.

1 with k = N + 1, we get that u ∈ C 1 ([0, T ], H 2N (Ω)) satisfies the estimate u C 1 ([0,T ];H 2N (Ω)) ≤ C u 0 H 2(N +1) (Ω)
. Further, as the embedding H 2N (Ω) → L ∞ (Ω) is continuous, since 2N > n/2, we deduce from Proposition 1.1 the following claim.

Corollary 1.2. Assume that the conditions of Proposition 1.1 are satisfied with k = N + 1. Then there exists a positive constant C, depending only on ω, T and M , such that the solution u to (1.1)-(1.3) satisfies the estimate:

u C 1 ([0,T ],L ∞ (Ω)) ≤ C u 0 H 2(N +1) (Ω) .
Having seen this we turn now to introducing the inverse problem associated with (1.1)-(1.3). We consider p 0 ∈ W 2N,∞ (Ω; R) and pick an open subset ω 0 of ω such that ∂ω ⊂ ω 0 . Given b > 0 and d > 0, we aim to retrieve all functions p : Ω → R satisfying

N b,d (p -p 0 ) := e b xn d (p -p 0 ) L ∞ (Ω) < ∞ and p(x) = p 0 (x) for x ∈ Ω 0 := ω 0 × R. (1.5)
Here and henceforth s is a short hand for (1 + s 2 ) 1/s , s ∈ R. Notice that the assumption (1.5) is weaker than the compactness condition imposed in [29, Theorem 1.1] on the support of the unknown part of p. Further, M being an a priori fixed non-negative constant, we define the set of admissible potentials as

A(p 0 , ω 0 ) := {p ∈ W 2N,∞ (Ω); p = p 0 in Ω 0 , p W 2N,∞ (Ω) ≤ M and N b,d (p -p 0 ) ≤ M }. (1.6)
Last, we chose a relatively open subset S * of ∂ω, put Γ * := S * × R and introduce the norm

∂ ν u * := ∂ ν u H 1 (0,T ;L 2 (Γ * )) , u ∈ H k .
The main result of this article is as follows.

Theorem 1.3. Let the conditions of Proposition 1.1 be satisfied with k = N + 1 and p = p 0 . Assume moreover that u 0 fulfills u 0 H 2(N +1) (Ω) ≤ M for some constant M > 0, and that ∃κ > 0, ∃d 0 ∈ (0, 2d/3),

|u 0 (x , x n )| ≥ κ x n -d 0 /2 , (x , x n ) ∈ Ω\Ω 0 . (1.7)
For p j ∈ A(p 0 , ω 0 ), j = 1, 2, we denote by u j the H N +1 -solution to (1.1)- (1.3), where p j is substituted for p. Then, for any ∈ (0, N/2), there exists a constant C = C(ω, ω 0 , T, M, M , b, d, ) > 0, such that we have

p 1 -p 2 L 2 (Ω) ≤ C ∂ ν (u 1 -u 2 ) * + |log ∂ ν (u 1 -u 2 ) * | -1 . (1.8) 1.4.
Comments. Thanks to the extra information p 1 = p 2 in the vicinity of Γ, the sharp unique continuation result by Robbiano [START_REF] Robbiano | Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques[END_REF], Robbiano and Zuily [START_REF] Robbiano | Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients[END_REF] or Tataru [START_REF] Tataru | Carleman estimates and unique continuation for solutions to boundary value problems[END_REF][START_REF] Tataru | Carleman Estimates, Unique Continuation and Controllability for anizotropic PDE's[END_REF], entails u 1 = u 2 and ∇u 1 = ∇u 2 on ∂(Ω \ Ω 0 ) × (0, T ), provided T > 0 is sufficiently large. Therefore the method developed by Baudouin and Puel in [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF] yields uniqueness in the inverse problem under consideration. However, since we address the stability issue here, it is worth noticing that Theorem 1.3 cannot be obtained by only combining the results of [START_REF] Yu | Lipschitz stability in inverse parabolic problems by Carleman estimate[END_REF][START_REF] Robbiano | Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques[END_REF][START_REF] Tataru | Carleman estimates and unique continuation for solutions to boundary value problems[END_REF].

The technique carried out in this article may be applied, with appropriate modifications, to the determination of higher order unknown coefficients of the Schrödinger equation, but in order to avoid the inappropriate expense of the size of this paper, we shall not go further into details about the treatment of this specific problem.

The analysis developed in this paper boils down to a new specifically designed Carleman estimate for the Schrödinger equation in the cylindrical domain Ω × (0, T ), when the classical one is valid only in level sets bounded by the weight function. For a general treatment of Carleman estimates, we refer to Hörmander [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], Isakov [START_REF] Isakov | Inverse Problems for partial differential equations[END_REF], Tataru [START_REF] Tataru | Carleman estimates and unique continuation for solutions to boundary value problems[END_REF], and also to Baudouin and Puel [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF], where Carleman estimates are derived in a direct pointwise manner. Due to the extra information p 1 = p 2 in the vicinity of the boundary Γ, it is useless to discuss here the uniform Lopatinskii condition (see [START_REF] Tataru | Carleman estimates and unique continuation for solutions to boundary value problems[END_REF] or [8, Section 1.3]) or Carleman estimates with a reduced number of boundary traces.

We assume in (1.7) that |u(•, 0)| = |u 0 | > 0 in any subset of Ω where the electric potential is retrieved. This is because the uniqueness of the potential is not known in general, without this specific assumption, even in the case where the set {x ∈ Ω \ Ω 0 ; u 0 (x) = 0} has zero Lebesgue measure. This non-degeneracy condition is very restrictive but it is still an open question to know how it can be weakened in the context of inverse coefficients problems with a finite number of data observations.

Notice that in the framework of the Bukhgeim-Klibanov method in a bounded spatial domain Ω, it is crucial that |u 0 | be bounded from below by a positive constant, uniformly in Ω. But since Ω is infinitely extended here, such a statement is incompatible with the square integrability property satisfied by u 0 in Ω. Therefore the usual non-degeneracy condition imposed on the initial condition function has to weakened into (1.7). In the same spirit we point out that the derivation of a Carleman estimate in an unbounded domain such as Ω is not straightforward and does not directly follows from the corresponding known results in bounded domains.

The subset {x ∈ Γ, (x -x 0 ) • ν ≥ 0}, lying in the shadow of the boundary Γ viewed from a point x 0 taken in the complement set of Ω, satisfies the geometric control property introduced by Bardos, Lebeau and Rauch in [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization from the boundary[END_REF]. This property is essentially a necessary and sufficient condition for exact controllability and stabilization of wave equations. However, due to infinite speed of propagation in the Schrödinger equation, this concept is not completely natural in the context of quantum systems. Nevertheless, Lebeau proved in [START_REF] Lebeau | Contrôle de l'équation de Schrödinger[END_REF] that the above mentioned condition guarantees the boundary controllability of the Schrödinger equation in H -1 (Ω) with L 2 (Ω) boundary controls.

The remainder of the paper is organized as follows. In section 2, we establish a Carleman inequality for the Schrödinger equation and we state a stability estimate for unique continuation. These two results are needed in the proof of Theorem 1.3, which is given in Section 3. Finally, section 4 contains the proof of the logarithmic observation inequality stated in Section 2.

PRELIMINARY ESTIMATES

In this section we state two preliminary PDE estimates which are the main ingredients in the analysis of the inverse problem under study. To this end we introduce the following notations used throughout the entire text. We consider three open subsets ω j , j = 1, 2, 3, of ω 0 , obeying

ω j ω j-1 and ∂ω ⊂ ∂ω j , (2.1) 
and we set

Ω j := (ω \ ω j ) × R = Ω \ (ω j × R) and Q j := Ω j × (-T, T ).

2.1.

A Carleman estimate for the Schrödinger equation. A Carleman estimate is a weighted L 2 -norm inequality for a PDE solution. It is particularly useful for proving uniqueness in Cauchy problems or unique continuation results for PDEs with non-analytic coefficients. Carleman estimates are also well adapted to energy estimation in PDEs (see e.g. Kazemi and Klibanov [START_REF] Kazemi | Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequality[END_REF] or Klibanov and Malinsky [START_REF] Klibanov | Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time dependent data[END_REF]). An alternative method for the derivation of energy inequalities, which is not applicable to the problem under consideration in this paper, can be found in [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization from the boundary[END_REF]. It is Carleman who first derived in his pioneering paper [START_REF] Carleman | Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendentes[END_REF], a suitable inequality, which was later called a Carleman estimate, for proving uniqueness in a two-dimensional elliptic Cauchy problem. Since then, Carleman estimates have been extensively studied by numerous mathematicians. For the general theory of Carleman inequalities for PDEs with isotropic (resp. anisotropic) symbol and compactly supported functions, we refer to Hörmander [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (resp. Isakov [START_REF] Isakov | Inverse Problems for partial differential equations[END_REF]). For Carleman estimates with non-compactly supported functions, see Tataru [START_REF] Tataru | Carleman estimates and unique continuation for solutions to boundary value problems[END_REF], Bellassoued [START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients[END_REF], Fursikov and Imanuvilov [START_REF] Fursikov | Imanuvilov: Controllability of Evolution Equations[END_REF], and Imanuvilov [START_REF] Yu | Imanuvilov: On Carleman estimates for hyperbolic equations[END_REF]. Notice that a direct derivation of pointwise Carleman estimates for hyperbolic equations, which are applicable to non compactly supported functions, is available in Klibanov and Timonov's paper [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF].

Although Carleman estimates for Schrödinger operators in a bounded domain are rather classical (see e.g. [START_REF] Albano | Carleman estimates for the Euler-Bernoulli plate operator[END_REF][START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF][START_REF] Tataru | Carleman Estimates, Unique Continuation and Controllability for anizotropic PDE's[END_REF]), we seek in the context of this paper, a Carleman inequality for the operator

P := L + p with L := -i∂ t -∆, (2.2) 
acting in the infinite cylinder Ω. We start by defining suitable weight functions. To this end we fix x 0 ∈ R n-1 \ω and put

β(x ) := x -x 0 2 , x ∈ ω, (2.3) 
in such a way that β ∈ C 4 (ω). Here |x | denotes the Euclidian norm of x ∈ R n-1 . Next, for every

x = (x , x n ) ∈ Ω, we set β(x) := β(x ) + K, where K := r β L ∞ (ω) for some r > 1, (2.4) 
and we define two weight functions associated with the parameter λ > 0:

ϕ(x, t) := e λβ(x) (T + t)(T -t) and η(x, t) := e 2λK -e λβ(x) (T + t)(T -t) , (x, t) ∈ Q := Ω × (-T, T ). (2.5)
Finally, for all s > 0, we denote by M 1 (resp. M 2 ) the adjoint (resp. skew-adjoint) part of the operator e -sη Le sη , acting in

(C ∞ 0 ) (Q), i.e. M 1 := i∂ t + ∆ + s 2 |∇η| 2 and M 2 := is(∂ t η) + 2s∇η • ∇ + s(∆η), (2.6) 
where we recall that L is the principal part of the operator P given by (2.2).

Having said that, we now state the following global Carleman estimate for the operator P .

Proposition 2.1. Let β, ϕ and η be given by (2.3)-(2.5), and let the operators M j , j = 1, 2, be defined by (2.6). Then there are two constants s 0 > 0 and C > 0, depending only on ω and T , such that the estimate

s e -sη ∇ x w 2 L 2 (Q 2 ) + s 3 e -sη w 2 L 2 (Q 2 ) + j=1,2
M j e -sη w 2

L 2 (Q 2 ) ≤ C e -sη P w 2 L 2 (Q) + e -sη ∇ x w 2 L 2 (Q 3 \Q 2 ) + e -sη w 2 L 2 (Q 3 \Q 2 ) , (2.7) 
holds for all s ≥ s 0 and any function w ∈ L 2 (-T, T ;

H 1 0 (Ω)) verifying P w ∈ L 2 (Q).
Proof. The proof boils down to [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF]Proposition 3.3], which provides two constants s 0 > 0 and C > 0, both of them depending only on ω, T and M , such that we have

s e -sη ∇ x w 2 L 2 (Q) + s 3 e -sη w 2 L 2 (Q) + j=1,2 M j e -sη w 2 L 2 (Q) ≤ C e -sη P w 2 L 2 (Q) , (2.8) 
for every s ≥ s 0 , and any w ∈ L 2 (-T, T ;

H 1 0 (Ω)) obeying P w ∈ L 2 (Q) and ∂ ν w = 0 on Σ. Next we pick a cut-off function χ ∈ C ∞ (R n-1 , [0, 1]) satisfying χ(x ) =    1 if x ∈ ω \ ω 2 0 if x ∈ ω 3 ,
and apply the estimate (2.8) to w(x, t) = χ(x )w(x, t). Using that P w = χP w + [P, χ]w, where [A, B] stands for the commutator of the operators A and B, and taking into account that [P, χ] is a first order differential operator whose coefficients are supported in Ω 3 \ Ω 2 , we obtain (2.7).

Logarithmic stability of unique continuation.

The unique continuation of a solution to the Schrödinger equation (1.1) from lateral boundary data on Γ * was proved by Phung in [START_REF] Phung | Observability and control of Schrödinger equations[END_REF]. The coming result claims stability for the same problem. Lemma 2.2. Let p j ∈ A(p 0 , ω 0 ) for j = 1, 2, let u j be a solution to the Schrödinger equation (1.1) where p j is substituted for p, and put u := u 1 -u 2 . Then for each T > 0 and all µ ∈ (0, 1), we may find a constant C = C(ω, ω 0 , T, M, M , µ) > 0, depending neither on p 1 nor on p 2 , such that we have

∂ t u 2 L 2 ((Ω 3 \Ω 2 )×(0,T )) + ∇ x ∂ t u 2 L 2 ((Ω 3 \Ω 2 )×(0,T )) ≤ C ∂ ν u 2 * + |log ∂ ν u * | -1 2µN . (2.9)
The proof of this result boils down to the analysis carried out by Robbiano in [START_REF] Robbiano | Fonction de coût et contrôle des solutions des équations hyperboliques[END_REF][START_REF] Robbiano | Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques[END_REF] or Phung in [START_REF] Phung | Observability and control of Schrödinger equations[END_REF], by means of the FBI transformation. Since it is rather lengthy, we postpone it to Section 4.

PROOF OF THEOREM 1.3

In this section we establish the stability estimate (1.8) by adapting the Bukhgeim-Klibanov method presented in [START_REF] Bugheim | Global uniqueness of class of multidimensional inverse problems[END_REF], to the context of the infinite waveguide Ω. The first step involves linearizing the system (1.1)-(1.3) and symmetrizing its solution with respect to the time variable t. 

:= u 1 -u 2 is a H N +1 -solution to the IBVP          -i∂ t u -∆u + p 1 u = pu 2 in Ω × (0, T ) u(•, 0) = 0, in Ω u = 0, in Γ × (0, T ). (3.1) 
In particular we have u ∈ C 1 ([0, T ]; H 2N (Ω)), hence upon differentiating (3.1) with respect to t, we get that v := ∂ t u ∈ H N is solution to the system

         -i∂ t v -∆v + p 1 v = p∂ t u 2 in Ω × (0, T ) v(•, 0) = ipu 0 , in Ω v = 0, on Γ × (0, T ). (3.2) 
Further, putting u 2 (x, -t) := u 2 (x, t) for all (x, t) ∈ Ω × (0, T ] and bearing in mind that u 0 and p are realvalued, we deduce from (3.2) that the function v, extended on

[-T, 0) × Ω by setting v(x, t) := -v(x, -t), is the ∩ N k=0 C k ([-T, T ], H 2(N -k) (Ω))-solution to the system          -i∂ t v -∆v + p 1 v = p∂ t u 2 in Q = Ω × (-T, T ) v(•, 0) = ipu 0 , in Ω v = 0, on Σ := Γ × (-T, T ). (3.3) 
The second step in the derivation of (1.8) is to apply the global Carleman inequality of Proposition 2.1 to v in order to establish Lemma 3.1 stated below.

3.

2. An a priori estimate. We stick with notations of Subsection 3.1 and establish the following technical result, which is quite similar to [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF]Lemmas 3.3 & 3.4] and [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF]Lemma 3.3]. Nevertheless we include the proof just for the convenience of the reader.

Lemma 3.1. Let v denote the C 1 ([-T, T ], L 2 (Ω)) ∩ C 0 ([-T, T ], H 1 0 (Ω) ∩ H 2 (Ω))-solution to (3.3).
Then there exists a constant C > 0, independent of s, such that we have

e -sη(•,0) pu 0 2 L 2 (Ω) ≤ Cs -3/2 e -sη(•,0) p∂ t u 2 2 L 2 (Q) + e -sη ∇ x v 2 L 2 (Q 3 \Q 2 ) + e -sη v 2 L 2 (Q 3 \Q 2 ) , uniformly in s ∈ (0, +∞). Proof. Put φ(x, t) := e -sη(x,t) ξ(x )v(x, t) for (x, t) ∈ Ω × (-T, T ), where ξ ∈ C ∞ 0 (ω) is a cut-off function satisfying ξ(x ) =    1 if x ∈ ω \ ω 1 0 if x ∈ ω 2 .
In light of (2.4)-(2.5) we have lim t↓(-T ) η(x, t) = +∞ for every x ∈ Ω, and hence lim t↓(-T ) φ(x, t) = 0. As a consequence it holds true that

φ(•, 0) 2 L 2 (Ω) = Ω×(-T,0) ∂ t |φ| 2 (x, t)dxdt = 2Re Ω×(-T,0) (∂ t φ)φ(x, t)dxdt . (3.4) 
On the other hand, (2.6) and the Green formula yield

Im Ω×(-T,0) (M 1 φ)φ(x, t)dxdt = Re Ω×(-T,0) (∂ t φ)φ(x, t)dxdt + R,
where

R = Im Ω×(-T,0) (∆φ)φ(x, t)dxdt + s 2 (∇η)φ 2 L 2 (Ω×(-T,0)) = -Im ∇φ 2 L 2 (Ω×(-T,0)) = 0.
We deduce from this, (3.4) and the identity φ(•, 0

) L 2 (Ω) = e -sη(•,0) ξv(•, 0) L 2 (Ω) , that e -sη(•,0) ξv(•, 0) 2 L 2 (Ω) = 2Im Ω×(-T,0) (M 1 φ)φ(x, t)dxdt ≤ 2 M 1 φ L 2 (Q) φ L 2 (Q) ≤ s -3/2 s e -sη ∇ x v 2 L 2 (Q 2 ) + s 3 e -sη v 2 L 2 (Q 2 ) + M 1 e -sη v 2 L 2 (Q 2 )
. Finally, the desired result follows from this upon recalling (3.3), applying Proposition 2.1 to v, and noticing from (2.4)-(2.5) that η(x, t) ≥ η(x, 0) for all (x, t) ∈ Q.

3.3.

End of the proof. For any fixed y > 0 it follows from Lemma 3.1 that

e -sη(•,0) pu 0 2 L 2 (ω×(-y,y)) ≤ Cs -3/2 e -sη(•,0) p∂ t u 2 2 L 2 (Q) + 2 , s > 0, (3.5) 
where

2 := ∇ x v 2 L 2 (Q 3 \Q 2 ) + v 2 L 2 (Q 3 \Q 2 ) .
Here and in the remaining part of the proof, C denotes a generic positive constant that is independent of s.

Notice from (1.7) and the vanishing of p in Ω 0 that the inequality |(pu 0 )(x)| ≥ κ y -d 0 /2 |p(x)| holds for every x ∈ ω × (-y, y). Furthermore, we have ∂ t u 2 L ∞ (Q) ≤ C by Corollary 1.2, and η(x, 0) ≥ 0 for every x ∈ Ω, by (2.4)-(2.5), so we may deduce from (3.5) that κ 2 y -d 0 -Cs -3/2 e -sη(•,0) p 2 L 2 (ω×(-y,y)) ≤ Cs -3/2 p 2 L 2 (ω×(R\(-y,y))) + 2 , s > 0. (3.6) Thus, taking s = (κ 2 /(2C)) -2/3 y 2d 0 /3 in (3.6) and recalling from (2.4)-(2.5) that η(., 0) L ∞ (Ω) ≤ e 2λK /T 2 , we obtain that Since d > 2d 0 /3 we have sup t∈(0,1) e Ct 2d 0 /3 -δt d < +∞, whence (3.10) yields

p 2 L 2 (ω×(-y,y)) ≤ C sup t∈(1,+∞) e Ct 2d 0 /3 -δt d e -2(b-δ) y d ≤ C 2θ , ∈ (0, δ ), (3.11) 
with

θ := b -δ 2b -δ ∈ (0, 1/2). (3.12)
On the other hand, we have p 2 L 2 (ω×(R\(-y,y))) ≤ Ce -2(b-δ) y d ≤ C 2θ for all ∈ (0, δ ), by (3.8). This and (3.11) entail p 2 L 2 (Ω) ≤ C 2θ , ∈ (0, δ ).

(3.13)

In the case where ∈ [ δ , +∞), we use the upper bound p 2 L 2 (Ω) ≤ C e -2b • d L 1 (R) , arising from (1.5), and obtain that

p 2 L 2 (Ω) ≤ C e -2b • d L 1 (R) / 2θ δ 2θ ≤ C 2θ , ∈ [ δ , +∞). (3.14) 
Now, recalling that v = ∂ t u and applying Lemma 2.2 to u, we get

2 ≤ C ∂ ν u * + |log ∂ ν u * | -1 2µN , (3.15) 
for any arbitrary µ ∈ (0, 1). Therefore, θ being any real number in (0, 1/2), according to (3.12) and since δ is arbitrary in (0, b), the estimate (1.8) follows from (3.13)-(3.15) upon taking = θµN .

LOGARITHMIC OBSERVABILITY INEQUALITY: PROOF OF LEMMA 2.2

In this section we prove the logarithmic observability inequality stated in Lemma 2.2.

Prior to doing that we recall for further reference from the energy inequality (1.4) with k = N + 1, that for any p j ∈ A(ω 0 , M ), j = 1, 2, the solution v = ∂ t (u 1 -u 2 ) to the IBVP (3.3) satisfies the estimate

v C N ([-T,T ],L 2 (Ω)) + v C N -1 ([-T,T ],H 2 (Ω)) ≤ 2C u 0 H 2(N +1) (Ω) , (4.1) 
where the positive constant C = C(ω, ω 0 , T, M, M ) > 0 is the same as in (1.4).

4.1.

A parabolic Carleman estimate for unbounded cylindrical domains. In this subsection we state a parabolic Carleman estimate for the Schrödinger equation in unbounded cylindrical domains, which is needed in the proof of Lemma 2.2. To do that, we start by introducing the set S := ∂ω 0 \ ∂ω and Γ := S × R, and we assume without loss of generality (upon possibly smoothening ∂ω 0 by enlarging ω 0 ), that S is C 2 . Then, with reference to [23, Lemma 2.3] and its proof, we pick a function ψ 0 ∈ C 2 (ω 0 ), obeying the four following conditions:

ψ 0 (x ) > 0, x ∈ ω 0 and ∇ψ 0 (x ) > 0, x ∈ ω 0 , (4.2) 
ψ 0 (x ) = 0, x ∈ S and ∂ ν ψ 0 (x ) ≤ 0, x ∈ ∂ω 0 \ S * . (4.3) 
Next we put (τ ) := (1 -τ )(1 + τ ) for each τ ∈ (-1, 1), and introduce the two functions

ϕ 0 (x , τ ) := e λ(ψ 0 (x )+a) (τ ) , x ∈ ω 0 , τ ∈ (-1, 1), (4.4) 
and α(x , τ ) := e λ(ψ 0 (x )+a) -e

λ( ψ 0 L ∞ (ω 0 ) +b) (τ ) , x ∈ ω 0 , τ ∈ (-1, 1), (4.5) 
where λ ∈ (0, +∞) is a fixed parameter, ψ 0 is the function defined by (4.2)-(4.3), and

ψ 0 L ∞ (ω 0 ) < a < b < 2a -ψ 0 L ∞ (ω 0 ) .
Further, in connection with the Schrödinger operator P defined in (2.2), we consider the formal parabolic operator in Ω 0 = ω 0 × R, associated with some fixed parameter h ∈ (0, 1),

L h := h -1 ∂ τ -∆ + p 1 . (4.6) 
We are now in position to state the following Carleman estimate for the operator L h .

Lemma 4.1. Let ϕ 0 and α be defined by (4.4)-(4.5), and for h ∈ (0, 1) fixed, let L h be defined by (4.6).

Then we may find three positive constants λ 0 , σ 0 and C 0 , such that for every λ ≥ λ 0 and σ ≥ σ 0 /h, the estimate

σ e σα ∇ x w 2 L 2 (Ω 0 ×(-1,1)) + σ 3 e σα w 2 L 2 (Ω 0 ×(-1,1)) ≤ C 0 e σα L h w 2 L 2 (Ω 0 ×(-1,1)) + σ ϕ 1/2 0 e σα ∂ ν w 2 L 2 (Γ * ×(-1,1)) , (4.7 
)

holds for w ∈ L 2 (-1, 1; H 1 0 (Ω 0 )) verifying L h w ∈ L 2 (-1, 1; L 2 (Ω 0 )) and ∂ ν w ∈ L 2 (-1, 1; L 2 (Γ * )).
Here the constant C 0 > 0 depends continuously on λ, M , M and h, but is independent of σ.

We stress out that a result similar to Lemma 4.1 can be found in [START_REF] Yu | Lipschitz stability in inverse parabolic problems by Carleman estimate[END_REF]Lemma 2.4] (see also [START_REF] Fernandez-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF][START_REF] Fursikov | Imanuvilov: Controllability of Evolution Equations[END_REF]) in the context of bounded spatial domains.

The dependence of the various constants appearing in (4.7), with respect to the parameter h ∈ (0, 1), is made precise in the derivation of Lemma 4.1, which is given in Appendix A.

A connection between Schrödinger and parabolic equations.

As pointed out by Lebeau and Robbiano [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF], Robbiano [START_REF] Robbiano | Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques[END_REF], Robbiano and Zuily [START_REF] Robbiano | Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients[END_REF] and Phung [START_REF] Phung | Observability and control of Schrödinger equations[END_REF], connections between solutions of different types of PDEs may be useful for examining the controllability of numerous Cauchy problems. In this subsection we prove that the FBI transform of χv, where v is the solution to (3.3) and χ = χ(x ) is a suitable cut-off function that will be made precise below, is solution to a parabolic Cauchy problem in

Ω 0 = ω 0 × R.
Prior to doing that we introduce the FBI transform as defined by Lebeau and Robbiano in [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF]. To this purpose we fix µ ∈ (0, 1) and choose m ∈ N * so large that 2m ≥ N and ρ :

= 1 - 1 2m > µ. (4.8)
Then for any γ ∈ (1, +∞), the function

F γ (z) := 1 2π R e izη e -(η/γ ρ ) 2m dη, z ∈ C, (4.9) 
is holomorphic in C, and there exist four positive constants C j , j = 1, 2, 3, 4, none of them depending on γ, such that we have

|F γ (z)| ≤ C 1 γ ρ e C 2 γ|Imz| 1/ρ , z ∈ C, (4.10) 
and

|F γ (z)| ≤ C 1 γ ρ e -C 3 γ|Rez| 1/ρ , z ∈ {z ∈ C, |Imz| ≤ C 4 |Rez|} . (4.11) Given T 0 ∈ (T /3, +∞), we consider a cut-off function θ ∈ C ∞ 0 (R) obeying θ(η) =    1 if |η| ≤ 2T 0 0 if |η| ≥ 3T 0 , (4.12) 
and we define the partial FBI transform of w ∈ S(R n+1 ) by

w γ,t (x, τ ) := F γ w(x, z) = R F γ (z -η)θ(η)w(x, hη)dη, z = t -iτ, (4.13) 
for all t ∈ (-T 0 , T 0 ), τ ∈ (-1, 1), γ ∈ (1, +∞) and x ∈ R n , where h := T /(3T 0 ). Next, taking into account that ω 1 ⊂ ω 0 , by (2.1), we deduce from the continuity of the function ψ 0 introduced in Subsection 4.1, and from the first part of (4.2), that there exists a constant β 0 > 0 such that

ψ 0 (x ) ≥ 2β 0 , x ∈ ω 2 \ ω 3 . (4.14)
Moreover, due to the vanishing of ψ 0 on S , imposed by the first claim of (4.3), we may find a subset ω ⊂ ω 0 \ ω 1 such that S ⊂ ω and ψ 0 (x ) ≤ β 0 for x ∈ ω . (4.15)

Let us now pick ω ⊂ ω such that S ⊂ ω , and introduce a function

χ ∈ C ∞ (R n-1 , [0, 1]) satisfying χ(x ) =    1 if x ∈ ω 0 \ ω 0 if x ∈ ω . (4.16)
Thus, bearing in mind that p = p 1 -p 2 vanishes in Ω 0 and that v is the solution to (3.3), we easily find that the function w(x, t) := χ(x )v(x, t) satisfies the IBVP

         -i∂ t w -∆w + p 1 w = -[∆, χ] v, in Q 0 := Ω 0 × (-T, T ) w(0, •) = 0, in Ω 0 w = 0 on Σ 0 := ∂Ω 0 × (-T, T ).
(4.17)

Moreover, we deduce from (4.1) that

w C N ([-T,T ],L 2 (Ω)) + w C N -1 ([-T,T ],H 2 (Ω)) ≤ C u 0 H 2(N +1) (Ω) , (4.18) 
where C denotes a generic positive constant that is independent of γ. From this, (4.10) and (4.13), we get two positive constants C = C(ω, ω 0 , T, T 0 , M, M ) and δ 1 , the last one being independent of T 0 , such that the estimate

w γ,t 2 
L 2 (Ω 0 ×(-1,1)) + ∇w γ,t 2 
L 2 (Ω 0 ×(-1, 1 
)) ≤ Ce δ 1 γ , holds uniformly in t ∈ (-T 0 , T 0 ) and γ ∈ (1, +∞).

We turn now to establishing that w γ,t is solution to a parabolic Cauchy problem in Ω 0 , we shall make precise below. To do that we derive from (4.13) upon integrating by parts that

h -1 ∂ τ w γ,t (x, τ ) = -iF γ (∂ t w)(x, z) -ih -1 R F γ (z -η)θ (η)w(x, hη)dη, z = t -iτ.
Next, as we have ∆w γ,t (x, τ ) = F γ (∆w)(x, z) by direct calculation, we get upon applying the FBI transform F γ to (4.17) and remembering (4.6), that

   L h w γ,t (x, τ ) = A γ,t (x, τ ) + B γ,t (x, τ ), (x, τ ) ∈ Ω 0 × (-1, 1), w γ,t (x, τ ) = 0, (x, τ ) ∈ ∂Ω 0 × (-1, 1), (4.19) 
where

A γ,t (x, τ ) := - R F γ (z -η)θ(η) [∆ x , χ] v(x, hη)dη = -[∆ x , χ] v γ,t (x, τ ), (4.20) and B γ,t (x, τ ) 
:= -ih -1 R F γ (z -η)θ (η)w(x, ηh)dη, z = t -iτ. (4.21) 
The next step of the proof is to apply the parabolic Carleman estimate of Lemma 4.1 to the solution w γ,t of (4.19) in order to derive the coming result. Lemma 4.2. There exists ε ∈ (0, 1), δ j > 0 for j = 2, 3, and γ 0 > 0, such that any solution w γ,t to (4.19) satisfies the estimate

w γ,t 2 L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) + ∇ x w γ,t 2 L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) ≤ C e -δ 2 γ + e δ 3 γ ∂ ν w γ,t 2 L 2 (Γ * ×(-1,1)) , uniformly in t ∈ (-T 0 , T 0 ) and γ ∈ [γ 0 , +∞).
Proof. Fix γ ∈ (1, +∞) and t ∈ (-T 0 , T 0 ). In light of (4.19), we apply the Carleman estimate of Lemma 4.1 to w γ,t , and find for every σ ∈ [σ 0 /h, +∞) that

σ e σα ∇ x w γ,t 2 L 2 (Ω 0 ×(-1,1)) + σ 3 e σα w γ,t 2 L 2 (Ω 0 ×(-1,1)) ≤ C 0 e σα A γ,t 2 L 2 (Ω 0 ×(-1,1)) + e σα B γ,t 2 L 2 (Ω 0 ×(-1,1)) + σ ϕ 1/2 0 e σα ∂ ν w γ,t 2 L 2 (Γ * ×(-1,1)) . (4.22) 
Further, we notice from (4.16) that A γ,t (•, τ ) is supported in Ω := ω × R for every τ ∈ (-1, 1), and from (4.5) and (4.15) that α(x , τ ) ≤ (-µ 1 ) for all (x , τ ) ∈ ω ×(-1, 1), with µ 1 := e λ( ψ 0 ∞ +b) -e λ(β 0 +a) > 0.

As a consequence we have

e σα A γ,t 2 
L 2 (Ω 0 ×(-1,1)) ≤ e -2µ 1 σ A γ,t 2 
L 2 (Ω ×(-1,1)) ≤ e -2µ 1 σ A γ,t 2 
L 2 (Ω 0 ×(-1,1)) . (4.23) 
The next step is to chose ε ∈ (0, 1) so small that µ 2 (e λ( ψ 0 ∞ +b) -e λ(2β 0 +a) )/ (ε) < µ 1 . Then, bearing in mind that (τ ) ≥ (ε) > 0 for each τ ∈ (-ε, ε), we see from (4.14) that α(x , τ ) ≥ (-µ 2 ) for every

(x , τ ) ∈ (ω 2 \ ω 3 ) × (-ε, ε). This entails that e -2µ 2 σ ∇ x w γ,t 2 
L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) + w γ,t 2 L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) ≤ σ e σα ∇ x w γ,t 2 
L 2 (Ω 0 ×(-1,1)) + σ 3 e σα w γ,t 2 
L 2 ((Ω 0 ×(-1,1)) , σ ∈ [1, +∞).
Setting µ := µ 1 -µ 2 , it follows from this and (4.22)-(4.23) that

∇ x w γ,t 2 L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) + w γ,t 2 L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) ≤ C e -2µσ A γ,t 2 
L 2 (Ω 0 ×(-1,1)) + e 2µ 2 σ B γ,t 2 
L 2 (Ω 0 ×(-1,1)) + σe 2µ 2 σ e σα ϕ 1/2 0 ∂ ν w γ,t 2 
L 2 (Γ * ×(-1,1)) , (4.24) 
whenever σ ∈ [σ 0 /h, +∞). Here we assumed upon possibly substituting max(1, σ 0 /h) for σ 0 , that σ 0 ≥ h. In view of (4.10) and (4.20), the first term in the right hand side of (4.24) can be treated with the energy estimate v C 0 ([-T,T ],H 1 (Ω)) ≤ 2C u 0 H 2(N +1) (Ω) , arising from (4.1): We get a constant δ > 0, independent of T 0 and γ, such that

A γ,t 2 L 2 (Ω 0 ×(-1,1)) ≤ Ce δ γ , t ∈ (-T 0 , T 0 ). (4.25) 
For the second term, we take into account the vanishing of θ in the interval (-2T 0 , 2T 0 ), imposed by (4.12), and deduce from (4.11) and (4.21) that

B γ,t 2 
L 2 (Ω 0 ×(-1,1)) ≤ Ce -δT 1/ρ 0 γ , t ∈ (-T 0 , T 0 ), (4.26) 
for some constant δ > 0 depending neither on T 0 nor on γ. Here we used the estimate

w C 0 ([-T,T ],L 2 (Ω)) ≤ C u 0 H 2(N +1) (Ω) arising from (4.18).
Last we notice from (4.3)-(4.5) that ϕ 1/2 0 e σα is bounded on S * × (-1, 1), and then deduce from (4.24)-(4.26) that

∇ x w γ,t 2 L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) + w γ,t 2 L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) ≤ C e -2µσ+δ γ + e 2µ 2 σ-δT 1/ρ 0 γ + σe 2µ 2 σ ∂ ν w γ,t 2 L 2 (Γ * ×(-1,1)) , σ ∈ [σ 0 /h, +∞). (4.27)
Now, set γ 0 := max (1, 3σ 0 /T ) and for γ ∈ [γ 0 , +∞), take σ := T 0 γ ≥ σ 0 /h in (4.27). As the sum of the two first terms in the right hand side of (4.27) is majorized by e (-2µT 0 +δ )γ + e (2µ 2 T 0 -δT 1/ρ 0 )γ ≤ Ce -δ 2 γ upon taking T 0 sufficiently large, since 1/ρ > 1, we end up getting for all t ∈ (-T 0 , T 0 ) that

∇ x w γ,t 2 L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) + w γ,t 2 L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) ≤ C e -δ 2 γ + e δ 3 γ ∂ ν w γ,t 2 L 2 (Γ * ×(-1,1)) , γ ∈ [γ 0 , +∞),
which entails the desired result.

4.3.

Completion of the proof. Set w γ (x, t) := w γ,t (x, 0) and recall from (4.13) that we have

w γ (x, t) = (F γ * (θ w)(x, •))(t), (4.28) 
for all γ ∈ [γ 0 , +∞), x ∈ R n and t ∈ (-T 0 , T 0 ), where F γ is defined in (4.9) and w(x, η) := w(x, hη).

Let us first deduce from Lemma 4.2 the following estimate on w γ .

Lemma 4.3. There exist two positive constants δ j , j = 4, 5, such that the estimate

∇ x w γ 2 L 2 ((Ω 3 \Ω 2 )×(-T 0 /2,T 0 /2)) + w γ 2 L 2 ((Ω 3 \Ω 2 )×(-T 0 /2,T 0 /2)) ≤ C e -δ 4 γ + e δ 5 γ ∂ ν w 2 L 2 (Γ * ×(-3T 0 ,3T 0 )) ,
holds for all γ ∈ [γ 0 , +∞) and for T 0 sufficiently large.

Proof. Let ε ∈ (0, 1) be given by Lemma 4.2 and fix κ ∈ [T 0 -ε, T 0 + ε]. We assume (without restricting the generality of the reasoning) that ε < T 0 /2. Since w γ (x, z) := w γ,Re(z) (x, Im (z)) is analytic in z ∈ {ζ ∈ C, Re (ζ) ∈ (-T 0 , T 0 ), Im (ζ) ∈ (-1, 1)} for every fixed x ∈ ω 2 \ ω 3 , the Cauchy formula yields

w γ (x, κ) = 1 2iπ |z-κ|= w γ (x, z) z -κ dz = 1 2π
2π 0 w γ (x, κ + e iφ )dφ, ∈ (0, ε).

Therefore we have |w γ (x, κ)| 2 ≤ (2π) -1 2π 0 w γ (x, κ + e iφ ) 2 dφ, from the Cauchy-Schwarz inequality.

Since the above estimate is valid uniformly in ∈ (0, ε), we find that

|w γ (x, κ)| 2 ≤ 1 2πε ε 0 2π 0 w γ (x, κ + e iφ ) 2 dφd ≤ 1 2πε |τ |≤ε |t-κ|≤ε |w γ (x, t + iτ )| 2 dtdτ ≤ 1 2πε T 0 -T 0 w γ,t (x, •) 2 L 2 (-ε,ε) dt,
and hence

w γ 2 L 2 ((Ω 3 \Ω 2 )×(-T 0 /2,T 0 /2)) ≤ C T 0 -T 0 w γ,t 2 
L 2 ((Ω 3 \Ω 2 )×(-ε,ε)) dt,
upon integrating with respect to (x, κ) over (Ω 3 \ Ω 2 )×(-T 0 /2, T 0 /2). Thus, bearing in mind (4.12)-(4.13) and applying Lemma 4.2, we end up getting that

w γ 2 L 2 ((Ω 3 \Ω 2 )×(-T 0 /2,T 0 /2)) ≤ C e -C 3 γ + e C 4 γ ∂ ν w 2 L 2 (Γ * ×(-3T 0 ,3T 0 )) . (4.29) 
Finally, we notice upon arguing in the same way, that ∇ x w γ may be substituted for w γ in the left hand side of (4.29) so the desired result follows from this and (4.29).

We next establish the coming result with the help of Lemma 4.3.

Lemma 4.4. For any T > 0 fixed, we may find T 1 ∈ (0, T ) such that we have

v 2 L 2 ((Ω 3 \Ω 2 )×(-T 1 ,T 1 )) + ∇ x v 2 L 2 ((Ω 3 \Ω 2 )×(-T 1 ,T 1 )) ≤ C 1 γ 2µN + e δ 5 γ ∂ ν v 2 L 2 (Γ * ×(-T,T )) , (4.30) 
for every γ ∈ [γ 0 , +∞). Here C > 0 depends only on ω, ω 0 , and T , and the constant δ 5 is the same as in Lemma 4.3.

Proof. Let u(•, ζ), for ζ ∈ R, denote the partial Fourier transform computed at ζ of t → u(•, t). In light of (4.28), it holds true that

θ w(•, ζ) -w γ (•, ζ) = (1 -F γ ) θ w(•, ζ), ζ ∈ R. (4.31)
Therefore, taking into account that F γ (ζ) = e -(ζ/γ ρ ) 2m , using that 1 -e -y 2m ≤ Cy N for all y ∈ [0, +∞) (since 2m ≥ N from (4.8)) and recalling that ρ > µ and γ > 1, we derive from (4.31) that

θ w(x, •) -w γ (x, •) L 2 (R) ≤ 1 γ µN ζ N θ w(x, •) L 2 (R) , x ∈ Ω 3 \ Ω 2 .
(4.32)

Since the function θ, defined in (4.12), is supported in (-3T 0 , 3T 0 ), it then follows from (4.32) that

θ w(x, •) -w γ (x, •) L 2 (R) ≤ 1 γ µN ∂ N t (θ w)(x, •) L 2 (R) ≤ C γ µN w(x, •) H N (-3T 0 ,3T 0 ) , x ∈ Ω 3 \ Ω 2 , (4.33) 
for some constant C > 0 depending neither on x nor on γ. Thus, bearing in mind that θ(t) = 1 for each t ∈ [-T 0 /2, T 0 /2], we get upon squaring and integrating both sides of (4.33) with respect to x over

Ω 3 \ Ω 2 , that w -w γ L 2 ((Ω 3 \Ω 2 )×(-T 0 /2,T 0 /2)) ≤ C γ µN , γ ∈ (1, +∞). (4.34) 
Here we used (4.18) to bound from above the L 2 (Ω 3 \ Ω 2 , H N (-3T 0 , 3T 0 ))-norm of the function w(x, t) = w(x, T /(3T 0 )t), uniformly in γ ∈ (0, 1). Further, we proceed in the same way as in the derivation of (4.34) and obtain that

∇ x w -∇ x w γ L 2 ((Ω 3 \Ω 2 )×(-T 0 /2,T 0 /2)) ≤ C γ µN .
From this, (4.34) and Lemma 4.3, it follows for all γ ∈ [γ 0 , +∞) that

w 2 L 2 ((Ω 3 \Ω 2 )×(-T 0 /2,T 0 /2)) + ∇ x w 2 L 2 ((Ω 3 \Ω 2 )×(-T 0 /2,T 0 /2)) ≤ C γ 2µN + w γ 2 L 2 ((Ω 3 \Ω 2 )×(-T 0 /2,T 0 /2)) + ∇ x w γ 2 L 2 ((Ω 3 \Ω 2 )×(-T 0 /2,T 0 /2)) ≤ C 1 γ 2µN + e δ 5 γ ∂ ν w 2 L 2 (Γ * ×(-3T 0 ,3T 0 )) ,
provided T 0 is sufficiently large. As a consequence we have

w 2 L 2 ((Ω 2 \Ω 3 )×(-hT 0 /2,hT 0 /2)) + ∇ x w 2 L 2 ((Ω 2 \Ω 3 )×(-hT 0 /2,hT 0 /2)) ≤ C 1 γ 2µN + e δ 5 γ ∂ ν w 2 L 2 (Γ * ×(-3hT 0 ,3hT 0 )) , (4.35) 
since w(•, t) = w(•, ht) for every t ∈ R. Finally, bearing in mind that h = T /(3T 0 ) and recalling from (4.16) that w(x, t) = χ(x )v(x, t) = v(x, t) for every (x, t) ∈ (Ω 3 \ Ω 2 ) × (-T, T ), we end up getting from (4.35) that

v 2 L 2 ((Ω 2 \Ω 3 )×(-T /6,T /6)) + ∇ x v 2 L 2 ((Ω 2 \Ω 3 )×(-T /6,T /6)) ≤ C 1 γ 2µN + e δ 5 γ ∂ ν v 2 L 2 (Γ * ×(-T,T )) .
This yields (4.30) with T 1 = T /6.

Armed with Lemma 4.4, we are now in position to complete the proof of Lemma 2.2. This can be done upon applying (4.30) with γ = |log ∂ ν v * | /δ 5 , which is allowed when ∂ ν v * ∈ (0, e -δ 5 γ 0 ] so that we have γ ≥ γ 0 . We find that

v 2 L 2 ((Ω 2 \Ω 3 )×(-T 1 ,T 1 )) + ∇ x v 2 L 2 ((Ω 2 \Ω 3 )×(-T 1 ,T 1 )) ≤ C |log ∂ ν v * | -2µN + ∂ ν v * ≤ C |log ∂ ν v * | -2µN , (4.36) 
for C is a suitable positive constant. On the other hand, when

∂ ν v * > e -δ 5 γ 0 , it is clear from the estimate v L 2 (-T,T ;H 1 (Ω)) ≤ 2C u 0 H 2(N +1) (Ω) , arising from (4.1), that v 2 L 2 ((Ω 2 \Ω 3 )×(-T 1 ,T 1 )) + ∇ x v 2 L 2 ((Ω 2 \Ω 3 )×(-T 1 ,T 1 )) ≤ C ∂ ν v 2µN *
, so we get (2.9) directly from this and from (4.36) (upon enlarging T into 6T so that we have T 1 = T / 6 = T ).

APPENDIX

In this appendix we prove the parabolic Carleman estimate stated in Lemma 4.1. Incidentally we make precise the dependence with respect to λ and h, of the constant C 0 appearing in the right hand side of (4.7).

We stick with the notations of Section 4 and start by gathering several useful straightforward properties of the weight functions ϕ 0 and α, defined by (4.4)-(4.5), in the coming lemma.

Lemma 5.1. We may find three constants λ 0 ≥ 1, c > 0 and c > 0, all of them depending only on ω 0 , such that for each λ ≥ λ 0 and all (x , τ ) ∈ ω 0 × (-1, 1), the following estimates hold simultaneously:

D 2 x α(∇ x α, ∇ x α)(x , τ ) ≥ cλ 4 ϕ 0 (x , τ ) 3 , (5.1) ∆ x α(x , τ ) ≤ c λ 2 ϕ 0 (x , τ ) 2 ,
(5.2)

∆ 2 x α(x , τ ) ≤ c λ 4 ϕ 0 (x , τ ) 3 , (5.3) 
(∂ τ α)(∆ x α)(x , τ ) ≤ c λ 2 ϕ 0 (x , τ ) 3 , (5.4) 
∂ 2 τ α(x , τ ) ≤ c ϕ 0 (x , τ ) 3 , (5.5) 
∇ x (∂ τ α)(x , τ ) • ∇ x α(x , τ ) ≤ c λ 2 ϕ 0 (x , τ ) 3 , (5.6) 
D 2 x α(ξ , ξ )(x , τ ) ≥ -cλϕ 0 ξ 2 , ξ ∈ R n-1 .
(5.7)

In the sequel C denotes a generic positive constant which depends only on ω 0 , whose value can change from line to line.

Put z := e σα w and notice for further reference from (4.4)-(4.5) that

z(x, ±1) = 0, x ∈ Ω 0 = ω 0 × R. (5.8) 
Next, setting f σ := e σα (h -1 ∂ τ -∆)w, we find through direct computation that

L 1 z + L 2 z = g σ := f σ -σ(∆ x α)z, (5.9) 
where

L 1 z := h -1 ∂ τ z + 2σ∇ x α • ∇ x z, (5.10) 
L 2 z := -∆z -σ h -1 (∂ τ α) + σ |∇ x α| 2 z. (5.11) 
Due to (5.9), we have the identity

j=1,2 L j z 2 L 2 (Ω 0 ×(-1,1)) + 2Re 1 -1 Ω 0 L 1 zL 2 zdxdτ = g σ 2 L 2 (Ω 0 ×(-1,1)) , (5.12) 
so we are left with the task of estimating the L 2 (Ω 0 × (-1, 1))-scalar product of L 1 z and L 2 z, appearing in the left hand side of (5.12). In view of (5.10)-(5.11), we have

2 1 -1 Ω 0 L 1 zL 2 zdxdτ = j=1,2,3 I j , (5.13) 
where

I 1 := 2h -1 1 -1 Ω 0 ∂ τ z -∆z -σ h -1 (∂ τ α) + σ |∇ x α| 2 z dxdτ, (5.14) 
I 2 := -4σ 1 -1 Ω 0 (∇ x α • ∇ x z) ∆zdxdτ, (5.15) 
I 3 := -4σ 2 1 -1 Ω 0 (∇ x α • ∇ x z) h -1 (∂ τ α) + σ |∇ x α| 2 zdxdτ. (5.16) 
Bearing in mind that z |∂Ω 0 ×(-1,1) = 0 from the very definition of z (since the same is true for the function w, according to (4.17)), we integrate by parts with respect to x in (5.14)and obtain that

Re (I 1 ) = h -1 1 -1 Ω 0 ∂ τ |∇z| 2 -σ(h -1 ∂ τ α + σ |∇ x α| 2 )∂ τ |z| 2 dxdτ.
Recalling (5.8), we next integrate by parts with respect to τ and find that

Re (I 1 ) = σh -1 1 -1 Ω 0 h -1 (∂ 2 τ α) |z| 2 + 2σ∇ x (∂ τ α) • ∇ x α |z| 2 dxdτ.
(5.17)

The second term, I 2 , is handled in a similar way. Namely, we integrate by parts with respect to x in the right hand side of (5.15), use the identity ∇z = (∂ ν z)ν on ∂Ω 0 × (-1, 1), and get

Re (I 2 ) = 4σ 1 -1 Ω 0 D 2 x α(∇ x z, ∇ x z)dxdτ + 2σ 1 -1 Ω 0 ∇α • ∇|∇z| 2 dxdτ -4σ 1 -1 ∂Ω 0 (∂ ν α) |∂ ν z| 2 dxdτ.
Therefore, taking into account that where have set

J 1 := 4σ 3 1 -1 Ω 0 D 2 x α(∇ x α, ∇ x α) |z| 2 dxdτ, (5.22) 
J 2 := -2σ 

J 3 := 2σ 2 h -1 1 -1 Ω 0 (2∇ x (∂ τ α) • ∇ x α + (∂ τ α)∆ x α) |z| 2 dxdτ +σh -2 1 -1 Ω 0 (∂ 2 τ α) |z| 2 dxdτ.
(5.24)

The next step of the proof is to bound from below each of the three terms J j , j = 1, 2, 3, appearing in the right hand side of (5.21). In view of (5.1), J 1 is easily treated by (5.22), as we have

J 1 ≥ 4cσ 3 λ 4 ϕ 3/2 0 z 2 L 2 (Ω 0 ×(-1,1)) , λ ≥ λ 0 , (5.25) 
where c is the constant defined in Lemma 5.1. Similarly, we deduce from (5.4)-(5.6) and (5.24) that

|J 3 | ≤ (6σ 2 h -1 + σh -2 )C 2 λ 2 ϕ
3/2 0 z 2 L 2 (Ω 0 ×(-1,1)) , λ ≥ λ 0 , where c is the same as in Lemma 5.1. Therefore, for all σ ≥ σ 0 /h,it follows readily from this and (5. . Having estimated all the contributions depending on h, we proceed as in [START_REF] Fernandez-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]Appendix] and obtain the desired result.

3. 1 .

 1 Linearization and time symmetrization. With reference to the notations of Theorem 1.3 we put p := p 2 -p 1 and notice that u

p 2 L 2 . 7 )Moreover, as p 2 L 2 2 L 2 2 L 2 in ( 3 . 9 )

 22722222239 (ω×(-y,y)) ≤ Ce C y 2d 0 /3 p 2 L 2 (ω×(R\(-y,y))) + 2 .(3(ω×(R\(-y,y))) ≤ C e -2b • d L 1 (R\(-y,y)) from (1.5), we have for any δ ∈ (0, b),p (ω×(R\(-y,y))) ≤ C e -δ • d L 1 (R) e -(2b-δ) y d ≤ Ce -(2b-δ) y d . (3.8)Putting this together with (3.7) we find thatp (ω×(-y,y)) ≤ Ce C y 2d 0 /3 e -(2b-δ) y d + 2 . (3.9) Set δ := e -(2b-δ) and let us now examine the two cases ∈ (0, δ ) and ∈ [ δ , +∞) separately. First, if ∈ (0, δ ) we take y = y( so we have 2 = e -(2b-δ) y d , and consequently p 2 L 2 (ω×(-y,y)) ≤ Ce C y 2d 0 /3 -(2b-δ) y d . (3.10)

1 - 1 Ω 0 ∇α • ∇|∇z| 2 dxdτ = - 1 - 1 Ω 0 (∆α)|∇z| 2 dxdτ + 1 - 1 1 - 1 1 - 1 Ω 0 (∆α)|∇z| 2 dxdτ -2σ 1 - 1 1 - 1 1 - 1 Ω 0 |∇ x α| 2 ∆ 1 - 1 Ω 0 (- 1 - 1 1 - 1 Ω 0 |∇ x α| 2 ( 1 - 1 1 - 1 Ω 0 L 1 zL 2 zdxdτ = -2σ 1 - 1 Ω 0 (∆ x α) |∇z| 2 -σ 2 |∇ x α| 2 |z| 2 dxdτ +4σ 1 - 1

 110110111111011111102110111102111101102211 ∂Ω 0 (∂ ν α) |∂ ν z| 2 dxdτ,we see thatRe (I 2 ) = 4σ Ω 0 D 2 x α(∇ x z, ∇ x z)dxdτ -2σ ∂Ω 0 (∂ ν α) |∂ ν z| 2 dxdτ.(5.18)Let us now compute the real part of I 3 . To this end we notice upon integrating by parts with respect to x that2Re Ω 0 |∇ x α| 2 (∇ x α • ∇ x z)zdxdτ =x α + 2D 2 x α(∇ x α, ∇ x α) |z| 2 dxdτ, ∂ τ α)(∇ x α • ∇ x z)zdxdτ = Ω 0 ((∂ τ α)(∆ x α) + (∇ x (∂ τ α) • ∇ x α)) |z| 2 dxdτ.It follows from this, (5.16) and(5.19) thatRe (I 3 ) = 2σ 3 ∆ x α) + 2D 2 x α(∇ x α, ∇ x α) |z| 2 dxdτ +2σ 2 h -1 Ω 0 ((∂ τ α)(∆ x α) + ∇ x (∂ τ α) • ∇ x α) |z| 2 dxdτ.(5.20)Finally, putting (5.13), (5.17), (5.18) and (5.20) together we end up getting that 2Re Ω 0 D 2 x α(∇ x z, ∇ x z)dxdτ +

25 ) that J 1 + J 3 ≥ Cσ 3 λ 4 ϕ 3 / 2 0 z 2 L 2 ( 2 ≥ -2σλ ϕ 1 / 2 0 1 - 1 Ω 0 L 1 zL 2 zdxdτ ≥ Cσ 3 λ 4 ϕ 3 / 2 0 z 2 L 2 ( 2 0ν ψ 0 ) 1 / 2 ∂ ν z 2 L 2 ( 1 - 1 Ω 0 (∆ x α) |∇z| 2 -σ 2 2 += σ 1 - 1 1 - 1 Ω 0 (∆ 2 x α/ 2 )x α| 1 /2 z 2 L 2 ( 2 0 z 2 L 2 ( 1 - 1 Ω 0 L 1 2 L 2 (Q) / 2 ≥ σ 3 λ 4 ϕ 3 / 2 0 z 2 L 2 ( 2 0 ∇ x z 2 L 2 (0

 2513322221211032222122211022211110212222211012223222222 Ω 0 ×(-1,1)) , λ ≥ λ 0 ,(5.26) for some constant C > 0, depending only on ω 0 . On the other hand, since ∂ ν α = λ(∂ ν ψ 0 )ϕ 0 on ∂Ω 0 × (-1, 1) , by (4.4), the identity (5.23) yieldsJ (∂ ν ψ 0 ) 1/2 ∂ ν z 2 L 2 (Γ * ×(-1,1). Now, putting this together with (5.7), (5.21) and (5.26), we obtain for all λ ≥ λ 0 and all σ ≥ σ 0 /h that2Re Ω 0 ×(-1,1)) -4cσλ ϕ 1/∇ x z L 2 (Ω 0 ×(-1,1)) |∇ x α| 2 |z| 2 dxdτ.(5.28)The rest of the proof involves bounding S from above. To this purpose we recall from (5.11) that|∇z| 2 -σ 2 |∇ x α| 2 |z| 2 = Re ((L 2 z)z) + ∆|z| 2 σh -1 (∂ τ α)|z| 2 ,and then deduce from (5.28) thatS Ω 0 (∆ x α) ∆|z| 2 /2 + Re ((L 2 z)z) + σh -1 (∂ τ α)|z| 2 dxdτ = σ |z| 2 + (∆ x α) Re ((L 2 z)z) + σh -1 (∂ τ α)|z| 2 dxdτ.As a consequence we have|S| ≤ L 2 z 2 L 2 (Q) /4 + |∆ 2 Ω 0 ×(-1,1)) +σ 2 (∆ x α)z 2 L 2 (Ω 0 ×(-1,1)) + h -1 |∂ τ α| z 2 L 2 (Ω 0 ×(-1,1)) . This, together with (5.2)-(5.3) and (5.6), yields that|S| ≤ L 2 z 2 L 2 (Q) /4 + C σλ 4 + σ 2 λ 2 (λ 2 + h -1 ) ϕ 3/Ω 0 ×(-1,1)) . It follows from this and (5.27) upon taking σ ≥ σ 0 /h that 2Re zL 2 zdxdτ + L 2 z Ω 0 ×(-1,1)) -4cσ ϕ 1/(∂ ν ψ 0 ) 1/2 ∂ ν z 2 L 2 (Γ * ×(-1,1))

  (∂ ν α) |∂ ν z| 2 dxdτ,(5.23)

	1
	-1 ∂Ω 0