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Abstract—In human-human interaction, the process of com-
munication can be established through three modalities: verbal,
non-verbal (i.e., gestures), and/or para-verbal (i.e., prosody). The
linguistic literature shows that the para-verbal and non-verbal
cues are naturally aligned and synchronized, however the nat-
ural mechanism of this synchronization is still unexplored. The
difficulty encountered during the coordination between prosody
and metaphoric head-arm gestures concerns the conveyed mean-
ing, the way of performing gestures with respect to prosodic
characteristics, their relative temporal arrangement, and their
coordinated organization in the phrasal structure of utterance.
In this research, we focus on the mechanism of mapping between
head-arm gestures and speech prosodic characteristics in order to
generate an adaptive robot behavior to the interacting human’s
emotional state. Prosody patterns and the motion curves of
head-arm gestures are aligned separately into parallel Hidden
Markov Models (HMM). The mapping between speech and head-
arm gestures is based on the Coupled Hidden Markov Models
(CHMM), which could be seen as a multi-stream collection
of HMM, characterizing the segmented prosody and head-arm
gestures’ data. An emotional state based audio-video database
has been created for the validation of this study. The obtained
results show the effectiveness of the proposed methodology.

I. INTRODUCTION

Developing intelligent robots able to behave and inter-
act naturally and to generate appropriate social behaviors
to humans in different interaction contexts, so that make
them believe in the robots’ communicative intents, is not a
trivial task. The work described in this paper is based on
some findings in the literature, which show that head-arm
movements (e.g., nodding, turn-taking system, waving, etc) are
synchronized with the verbal and para-verbal cues. It presents
a new methodology that allows the robot to automatically
adapt its head-arm gestural behavior to the user’s emotional
profile, and therefore, to produce a personalized interaction.

Humans use gestures and postures in communicative acts.
McNeill and Kendon in [1], [2] defined a gesture as a body
movement synchronized with the flow of speech, that is
strongly related parallelly or complementarily to the semantic
meaning of the utterance. During human-human interaction,
gestures and speech are simultaneously used to express not
only verbal and para-verbal information, but also important
communicative non-verbal cues that enrich, complement, and
clarify the conversation, such as: facial expressions, head
movements, and/or arm-hand movements. The human natural

alignment of the three communication modalities described
in [3], [4], shows a relationship between prosody and ges-
tures/postures, which constituted our inspiration for this work.

The literature reveals a lot of efforts towards understanding
the semiotic references (i.e., pragmatic and semantic) of ges-
tures [5], [6]. The encountered complexity in understanding
the semiotics of gestures indicates the need for a broad
classification of gestures, in order to better characterize what
is happening within a human-robot interaction situation.

Different categories of gestures were discussed in the liter-
ature. Ekman et al., in [7] identified five gesture categories:
(1) emblems (e.g., waving goodbye and shoulder shrugging),
(2) illustrators (e.g., pointing gestures), (3) facial expressions,
(4) regulators (e.g., head, eyes, arm-hand movements, and
body postures), (5) adaptors (e.g., scratching). On the other
hand, Kendon in [8] criticized the classification of Ekman
for neglecting the linguistic phenomena. He proposed a new
classification for gestures of four categories: (1) gesticulation
(e.g., gestures which accompany speech), (2) pantomime (e.g.,
sequence of gestures with a narrative structure), (3) emblem
(e.g., Ok-gesture), (4) signs of a sign language. McNeill in
[1] collected these four types in a continuum called Kendons
continuum. This continuum was later elaborated into four
main types of widely cited gesture categories: (1) iconics
(e.g., gestures representing images of concrete entities and/or
actions, like when accompanying the adjective narrow with
gesturing the two hands in front of each other with a small
span in-between), (2) metaphorics (e.g., gestures representing
abstract ideas), (3) deictics (e.g., pointing gestures), (4) beats
(e.g., hand, finger, or arm movements performed side to side
with the rhythmic pulsation of speech).

Iconic and metaphoric gestures (according to McNeill’s
categorization) constitute the main body of the generated
non-verbal behavior during human-human interaction. Many
researches have focused on generating both kinds of gestures
in human-robot and human-computer interaction applications.
Cassell et al., in [9] proposed a rule-based gesture generation
toolkit (BEAT) using the natural language processing (NLP)
of an input text, producing an animation script that can be
used to animate both virtual agents (e.g., the conversational
agent REA) [10], and humanoid robots [11]. This system can
synthesize gestures of different categories (including iconic



gestures) except for metaphoric gestures. Similarly, Pelachaud
in [12] developed the 3D virtual conversational agent GRETA,
which can generate a synchronized multimodal behavior to
human users. GRETA can generate all kinds of gestures
regardless of the domain of interaction, unlike the other 3D
conversational agents (e.g., MAX agent [13]). It takes a text
as input to be uttered by the agent, and then it tags it with
the communicative functions information. The tag language is
called Affective Presentation Markup Language (APML) [14],
which is used as a script language to control the animation
of the agent. Recently, an interesting architecture has been
discussed in [15], which proposes a common framework that
generates a synchronized multimodal behavior for a humanoid
robot, as well as for the agent GRETA. Another competitive
approach based on processing an input text in order to generate
a corresponding set of different gestures for animated agents
(including metaphoric gestures only), was discussed in [16], in
which the authors proposed a probabilistic synthesis method
trained on hand-annotated videos. Similarly, another system
was illustrated in [17], which can synthesize different types
of gestures for humanoid robots (including metaphoric and
iconic gestures) corresponding to an input text through a part-
of-speech tagging analysis. In general, the fact that these
methods are based on synthesizing gestures from an input
text, makes them unable to measure the different meanings
that a text may have, which could be conveyed mostly through
prosody. Besides, it makes them unable to measure emotions
that influence body language, which may hinder generating a
robot’s behavior adapted to human’s emotional state [18].

Another interesting approach towards generating iconic
gestures was discussed in [13], in which the authors devel-
oped the 3D virtual conversational agent MAX, which uses
synchronized speech and gestures to interact multimodally
with humans (e.g., describing a place multimodally based on
some prescribed dimensional knowledge about that place). It
has the advantage that it can synthesize new unprescribed
iconic gestures according to the context of interaction in a
specific domain (unlike BEAT system, which is a rule-based
gesture generator). However, it is -still- away from consider-
ing human’s emotional state, when generating a multimodal
behavior, in which voice prosody correlates with the internal
emotional state and body language of human.

On the way towards generating an animation script based on
speech features, Bregler et al., and Brand in [19], [20] studied
the relationship between phonemes and facial expressions.
Sargin et al., in [21] proposed a time-costly probabilistic model
to synthesize metaphoric head gestures from voice prosody.
A similar approach was discussed in [22], which uses the
features of head gestures and voice prosody to create a training
database for a statistical model that can generate a set of
motion sequence for 3D agents. Another interesting approach
was discussed in [23], which selects animation segments
from a motion database based on an audio input, and then
synthesizes these segments into metaphoric head-arm gestures
animating 3D agents. Despite these interesting approaches,
the relationship between human’s emotional state and head-

arm gestures in human-robot interaction is still incompletely
addressed, which constituted our motivation for this work.

The rest of the paper is organized as following: Section
(II) presents an overview for the whole system, Section (III)
presents the database used in this research, Section (IV)
illustrates the analysis of gesture kinematics, Section (V)
illustrates data segmentation, Section (VI) validates the cho-
sen voice-gesture characteristics, Section (VII) describes data
quantization, Section (VIII) explains the coupling between
speech and head-arm gestures using the CHMM, Section (IX)
describes the synthesis of customized head-arm gestures to
emotional state, and last but not least, Section (X) concludes
the paper.

II. SYSTEM OVERVIEW

The system is coordinated through three stages, as illustrated
in Figure (1). Stage 1 represents the training stage of the
system, in which the raw audio and video training inputs get
analyzed in order to extract relevant characteristics (e.g., the
pitch-intensity curves for voice and the motion curves for
gesture). Afterwards, the extracted characteristic curves go
to the segmentation phase and then to the Coupled Hidden
Markov Models (CHMM) phase. Gesture and prosody seg-
mented patterns are modeled separately into parallel HMM,
composing the CHMM [24], [25], through which new adaptive
head-arm gestures are synthesized (i.e., stage 2) based on the
prosodic patterns of a new speech-test signal which undergoes
the same phases of the training stage. The main advantages
of using the CHMM for generating gestures are: the random
variations of the generated gestures’ patterns, which make
them more human-like than if a fixed gesture dictionary is
used, and the ability to generate gestures of varying durations
and amplitudes adapted to the prosody patterns of the hu-
man. In order to create a successful long term human-robot
interaction (i.e., stage 3), the robot should be able to increase
online its initial learning database by acquiring more raw audio
and video data from humans in the surrounding of the robot.
This requires the Kinect sensor that can calculate in real time
the rotation curves of head and arms’ articulations, beside a
microphone that can receive the interacting human’s audio
signal. Afterwards, both audio and video captured data will
follow the previously explained phases of the training stage
1, increasing the robot’s ability to generate more appropriate
gestures. Similarly, a new speech-test signal from one of the
individuals around the robot will follow the phases of the test
stage 2. In this work, we will focus on stages 1-2 and we will
validate their theoretical bases. However, stage 3 represents
a future experimental stage towards a complete human-robot
interaction architecture.

III. DATABASE

The synchronized audio-video database used in this re-
search was captured by MOCAP recorder, and the roll-pitch-
yaw rotations of body articulations were tracked frame-by-
frame by MOCAP studio. The total duration of the database
is around 90 minutes, divided into six categories of pure



Fig. 1. System Overview

continuous emotion expression: Sadness, Surprise, Disgust,
Anger, Fear, and Neutral. The chosen emotions constitute the
main primary emotions stated by most of the contemporary
theories of emotions [26], [27]. We have not tried to include
any complex emotion [27] to the database, because it is
difficult to make the actors express continuously a complex
emotion for several minutes. The motion files (.bvh) of our
database are available at: http://www.ensta.fr/∼tapus/HRIAA/
media/MotionDataBaseAlyTapus.rar.

IV. GESTURE KINEMATIC ANALYSIS

The hierarchical construction of human body could be
imagined as linked segments that can move together or in-
dependently. The segments called parent, are the segments
composed of other child segments (e.g., the parent segment
arm is composed of 3 child segments up-arm, low-arm, hand
(level 2), however the arm is considered as a child segment
(level 1) for the main parent segment body) [28]. This parent-
child relationship of body segments allows the inheritance of
motion characteristics from the parent to child segments, and
vice versa. In this research, we assume that the legs, waist,
and torso keep static during emotion expression, so that for
the parent segment body, the child segments are limited to
head, left arm, and right arm as illustrated in Figure (2).
The kinematic characteristics of body gestures during emotion
expression could be studied in terms of the linear velocity
and acceleration of segments, in addition to the position and
displacement of articulations (except for the head, which will
be characterized in terms of the linear velocity and acceleration
only considering the small motion domain of the head).

A. Linear Velocity and Acceleration of Body Segments

The angular velocity and acceleration of level 2 body seg-
ments could be expressed in terms of the roll-pitch-yaw right-
handed rotations of the corresponding articulations obtained
from the generated frame-by-frame report of MOCAP studio.

Considering the ZYX coordinates axes indicated in Figure
(3), the rotation about the reference z-axis is denoted by φ
(Roll), meanwhile the rotation about the reference y-axis is

Fig. 2. Parent-Child Hierarchy

Fig. 3. Roll-Pitch-Yaw Rotations

denoted by θ (Pitch), and the rotation about the reference x-
axis is denoted by ψ (Yaw). The angular velocity of a child
segment through each frame could be expressed it terms of the
3 rotations of its corresponding articulation [29], as indicated
in Equation (1):

ω =

ωx

ωy

ωz

 =

0 −sinφ cosφ cosθ
0 cosφ sinφ cosθ
1 0 −sinθ

φ̇θ̇
ψ̇

 (1)

Where the derivatives of the roll-pitch-yaw rotations through
each frame could be calculated from the time rate of change of
the specific rotation value in the current frame with respect to
the previous frame. Similarly, the angular acceleration could
be calculated from the time derivative of the angular velocity,
as indicated in Equation (2):

ω̇ =

ω̇x

ω̇y

ω̇z

 =

0 −sinφ cosφ cosθ
0 cosφ sinφ cosθ
1 0 −sinθ

φ̈θ̈
ψ̈


+

−cosφ −sinφ cosθ −cosφ sinθ
−sinφ cosφ cosθ −sinφ sinθ

0 0 −cosθ

 φ̇ θ̇

φ̇ ψ̇

θ̇ ψ̇


(2)

B. Body Segment Parameters Calculation

The parameters of body segments required for the kinematic
analysis of body gestures are:
• The mass of body segments (i.e., head, upper arm, lower

arm, hand), which is concentrated in the center of mass
of the segment.

• The length of body segments.
• The proximal distance from each calculated center of

mass to the nearest articulation in the segment.



The literature of kinetics illustrates big efforts towards
stating a unified mathematical representation of human body
including the previously mentioned parameters, however the
outcome was always approximate and different from a research
to another [30], [31], [32]. For the calculation of the mass of
each body segment required for gesture segmentation (as dis-
cussed in Section V-A), we used the highly cited relationships
stated in [33], as indicated in Equation (3) (where M denotes
the total body mass):

Head Mass = 0.0307 ∗M + 2.46

Up Arm Mass = 0.0274 ∗M − 0.01

Low Arm Mass = 0.70 ∗ (0.0233 ∗M − 0.01)

Hand Mass = 0.15 ∗ (0.0233 ∗M − 0.01)

(3)

Similarly, the length of each body segment could be cal-
culated in terms of the person’s height using the following
approximate relationships (Equation 4) [34]:

Neck Length = 0.052 ∗ Person Height
Up Arm Length = 0.187 ∗ Person Height
Low Arm Length = 0.1455 ∗ Person Height
Hand Length = 0.108 ∗ Person Height
Shoulder Length = 0.129 ∗ Person Height

(4)

The Neck and the shoulder are not considered as body
segments. However, the length of the neck is required for
calculating the proximal distance from the head’s center of
mass to the proximal joint of the upper neck (Equation 5),
in addition to calculating the Denavit-Hartenberg parameters
of the head [35]. Meanwhile, the length of the shoulder is
required for calculating the forward kinematics model of the
arm (IV-C).
The proximal distances from the center of mass (CM) of each
segment to the nearest articulation could be calculated in terms
of the length of the segments, as illustrated in Equation (5)
(where the left and right arm segments are symmetric and have
equal lengths) [32]:

dCMHead�UpNeck = Neck Length

dCMUpArm�Shoulder = 0.447 ∗ Up Arm Length

dCMLowArm�Elbow = 0.432 ∗ Low Arm Length

dCMHand�Wrist = 0.468 ∗Hand Length

(5)

From Equations (1), (2), and (5), the linear velocity and ac-
celeration of body segments could be formulated as following
(Equations 6, and 7):

VHead

VUpArm

VLowArm

VHand

 =


ωHead ∗ dCMHead�UpNeck

ωUpArm ∗ dCMUpArm�Shoulder

ωLowArm ∗ dCMLowArm�Elbow

ωHand ∗ dCMHand�Wrist

 (6)


AHead

AUpArm

ALowArm

AHand

 =


ω̇Head ∗ dCMHead�UpNeck

ω̇UpArm ∗ dCMUpArm�Shoulder

ω̇LowArm ∗ dCMLowArm�Elbow

ω̇Hand ∗ dCMHand�Wrist

 (7)

C. Forward Kinematics Model of The Arm

The 3 articulations of human arm contain 7 degrees of
freedom (DOF): 3 DOF in the shoulder, 1 DOF (pitch rotation)
in the elbow, and 3 DOF in the wrist. The Denavit-Hartenberg
convention is used for calculating the forward kinematics
function through the 7 DOF of the arms’ articulations by
a series of homogeneous transformation matrices [36]. The
transformation matrix required to transform the coordinate
frame i-1 to i is illustrated in Equation (8) (where Cθ denotes
Cos(θ) and Sθ denotes Sin(θ)):

Ti−1� i =


Cθi −CαiSθi SαiSθi aiCθi
Sθi CαiCθi −SαiCθi aiSθi
0 Sαi Cαi di
0 0 0 1

 (8)

The parameters of the transformation matrix for the left and
right arms are defined in Table (I). The highlighted elements
in the last column represent the position coordinates (x,y,z)
of the joint. Therefore, the position of the arms’ articulations
could be calculated as in Equation (9):

 Position Shoulder

Position Elbow

Position Wrist (EndEffector)

 =



3∏
i=1

Ti

4∏
i=1

Ti

7∏
i=1

Ti

 (9)

Finally, the displacement of the articulations could be calcu-
lated directly from the Euclidian distance between the position
coordinates of an articulation in frames i and i+1 of video data.

V. MULTIMODAL DATA SEGMENTATION

The structure of the Hidden Markov Models (HMM) of
speech and gesture sequences that compose the CHMM (where
they both have N parallel states composed of M observa-
tions) is illustrated in Figure (4). Each state of the gesture
sequence represents a complete gesture, while each state of the
audio sequence represents the corresponding audio segment
(syllable) to the segmented gesture. Therefore, gestures are
segmented first using the algorithm discussed below, then the
corresponding audio segments’ boundaries will be calculated
in terms of gesture boundaries.

A. Gesture Segmentation

The difficulty behind gesture segmentation lies in the fact
that people perceive gesture boundaries in different manners
within a continuous motion sequence [37], [38], which poses a
potential challenge towards defining unified characteristics for
gesture segmentation. The literature reveals 2 main techniques
for gesture segmentation: pose-based segmentation, which
is inappropriate for segmenting metaphoric gestures from a
continuous gesture sequence [39], [40], and Low-level de-
scriptors based segmentation (e.g., velocity and acceleration)
[41], [42]. Velocity and acceleration based techniques consider
each local minimum point as a gesture boundary, which is not



Ti−1� i θi left arm θi right arm αi left arm αi right arm ai di
0 � 1 θShoulder θShoulder −90◦ 90◦ Shoulder Length 0
1 � 2 φShoulder − 90◦ φShoulder + 90◦ −90◦ 90◦ 0 0
2 � 3 ψShoulder + 90◦ ψShoulder − 90◦ 90◦ −90◦ 0 Up Arm Length
3 � 4 θElbow θElbow −90◦ 90◦ 0 0
4 � 5 θWrist θWrist 90◦ −90◦ 0 Low Arm Length
5 � 6 φWrist + 90◦ φWrist − 90◦ −90◦ 90◦ 0 0
6 � 7 ψWrist ψWrist 90◦ −90◦ Hand Length 0

TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR THE LEFT AND RIGHT ARMS

totally a valid assumption, because not all the local minimum
points of velocity or acceleration curves represent real gesture
boundaries [38]. Consequently, other velocity and acceleration
based descriptors (that can better characterize the activity of a
body segment): textitforce (F), momentum (M), and kinetic
energy (KE), will be used for gesture segmentation. Equation
(10) indicates the mathematical formulas for calculating the
activity of body segments, in terms of the mass, velocity, and
acceleration obtained from Equations (3), (6), and (7):

FSegment =MassSegment ∗ASegment

MSegment =MassSegment ∗ VSegment

KESegment =
1

2
∗MassSegment ∗ V 2

Segment

(10)

The steps of the algorithm could be summarized as stated
below (in which the calculation of the total body force assures
the consideration of the mutual effect of body segments on
each other, leading to a precise segmentation):
• Calculate the mean value of the total force of body seg-

ments Force Body =
∑
Force Segment, then calculate

the local minimum points of the total force curve.
• Calculate the local minimum points of the activity char-

acteristic curves FSegment, MSegment, and KESegment

for each segment.
• Intersect the calculated local minimum points of
Force Body with the local minimum points of FSegment,
MSegment, and KESegment, resulting in the gestures
boundary points of each segment.

• Segment gestures and their motion characteristics using a
window (10 frames) at the previously calculated gesture
points in each segment.

B. Audio Data Segmentation

After calculating gesture boundaries, the corresponding
audio segment’s boundaries could be simply derived as in
Equation (11) (where A denotes Audio, G denotes Gesture,
and Fs denotes the audio Sampling Frequency):

ABoundaries = GBoundaries ∗ FrameTime ∗ FS (11)

VI. MULTIMODAL DATA CHARACTERISTICS
VALIDATION

In order to generate an emotionally-adapted gesture se-
quence corresponding to an audio test input to the CHMM,

Emotions Body Gestural Behavior
Sadness 85.4%
Surprise 88.4%
Disgust 79.3%
Anger 93.9%
Fear 76.3%

Neutral 88.9%

TABLE II
RECOGNITION SCORES OF THE BODY GESTURAL BEHAVIOR UNDER

DIFFERENT EMOTIONAL STATES

both gesture and voice should be optimally characterized.
Therefore, we validate first the relevance of the chosen char-
acteristics of gesture and voice before the generation phase.

A. Body Gestural Behavior Recognition Under Different Emo-
tional States

After gesture segmentation, each gesture performed by a
body segment is characterized in terms of the linear velocity,
linear acceleration, position, and displacement. Afterwards,
common statistic measurements: mean, variance, maximum,
minimum, and range have been calculated for the 4 character-
izing curves, composing the learning and test database. Data
was cross validated using the Support Vector Machine algo-
rithm (SVM). Table (II) illustrates the recognition scores of the
total body gestural behavior under different emotional internal
states, validating the relevance of the chosen characteristics.

B. Emotional State Recognition Based On Audio Character-
istics

Emotion recognition based on prosodic features (i.e., the
pitch and intensity), has been the focus of a lot of researches in
the literature. Table (III) demonstrates the recognition results
of different emotions, which we have obtained in a previous
research using 3 well-known databases (GES, GVEESS, and
SES) [43]. Meanwhile, the last column indicates the recog-
nition scores of the same emotions using our new database
composed of the segmented audio data accompanied to the
body behavior under study. These results validate the relevance
of the chosen prosodic characteristics to emotion recognition.

VII. DATA QUANTIZATION

Voice and gesture characterizing curves should be quantized
before training the CHMM. Common inflection points between
the pitch and intensity curves are calculated, afterwards the



Emotions GES GVEESS SES NEW DATABASE
Sadness 86.9% 90.1% 94.1% 95.3%
Surprise - - 95.7% 82.5%
Disgust 92.1% 91.7% - 75.2%
Anger 80.8% 88.7% 79.8% 96.9%
Fear - 85.7% - 82.3%

Neutral 83.7% - 89.5% 91.4%

TABLE III
RECOGNITION SCORES OF DIFFERENT EMOTIONAL STATES. EMPTY

SPACES ARE EMOTIONS NOT INCLUDED IN THESE DATABASES

resulting corresponding segmented trajectories of both curves
are labeled, as indicated in Table (IV). Similarly, the common
inflection points of gesture motion curves are calculated and
the corresponding trajectory labels are attributed as indicated
in Table (V), where both the velocity and acceleration curves
share the same inflection points (in case of the motion curves
of the head (i.e., the velocity and acceleration curves), only
two labels will be attributed: 1 if the trajectory state of both
the velocity and acceleration segments increases ”↑”, and 2 if
the trajectory state decreases ”↓”).

Trajectory Class Trajectory State
1 Pitch (↑) & Intensity (↑)
2 Pitch (↑) & Intensity (↓)
3 Pitch (↓) & Intensity (↑)
4 Pitch (↓) & Intensity (↓)
5 Pitch (No Change) & Intensity (↑)
6 Pitch (No Change) & Intensity (↓)
7 Pitch (↑) & Intensity (No Change)
8 Pitch (↓) & Intensity (No Change)
9 Pitch (No Change) & Intensity (No Change)

10 Pitch (Unvoiced) & Intensity (↑)
11 Pitch (Unvoiced) & Intensity (↓)
12 Pitch (Unvoiced) & Intensity (No Change)

TABLE IV
VOICE SIGNAL SEGMENTATION LABELS

Trajectory Class Trajectory State
1 D (↑) & V and A (↑) & P (↑)
2 D (↑) & V and A (↑) & P (↓)
3 D (↑) & V and A (↓) & P (↑)
4 D (↑) & V and A (↓) & P (↓)
5 D (↓) & V and A (↑) & P (↑)
6 D (↓) & V and A (↑) & P (↓)
7 D (↓) & V and A (↓) & P (↑)
8 D (↓) & V and A (↓) & P (↓)

TABLE V
GESTURE SEGMENTATION LABELS (D denotes Displacement, V denotes

Velocity, A denotes Acceleration, and P denotes Position)

VIII. SPEECH TO GESTURE COUPLING

A typical CHMM structure is shown in Figure (4), where
the circles represent the discrete hidden nodes/states, while the
rectangles represent the observable nodes/states, which contain
the observation sequences of voice and gesture characteristics.
According to the sequential nature of gesture and speech, the
CHMM structure is of type lag-1 in which couple (backbone)
nodes at time t are conditioned on those at time t−1 [24], [44].

A CHMM model λC is defined by the following parameters
stated in Equation (12):

πC
0 (i) = P (qC1 = Si)

aCi|j,k = P (qCt = Si|qaudiot−1 = Sj , q
video
t−1 = Sk)

bCt (i) = P (OC
t |qCt = Si)

(12)

where C ∈ {audio, video} denotes the audio and visual
channels respectively, and qCt is the state of the coupling node
in the cth stream at time t [45].

Fig. 4. Coupled Hidden Markov Model CHMM lag-1 Structure

The training of this model is based on the maximum
likelihood form of the expectation maximization (EM) algo-
rithm. Supposing 2 observable sequences of the audio and
video states: O = {AN

1 , B
N
1 }, where A1..N = {a1, · · · , aN}

is the set of observable states in the first audio sequence,
B1..N = {b1, · · · , bN} is the set of observable states in the
second visual sequence, and S = {X1..N , Y1..N} is the set
of states of the couple nodes at the first audio chain and the
second visual chain respectively [44]. The expectation maxi-
mization algorithm finds the maximum likelihood estimates of
the model parameters by maximizing the following function
in Equation (13) [25]:

f(λC) = P (X1)P (Y1)

T∏
t=1

P (At|Xt)P (Bt|Yt)

P (Xt+1|Xt, Yt)P (Yt+1|Xt, Yt) 1 ≤ T ≤ N
(13)

where:
• P (X1) and P (Y1) are the prior probabilities of the audio

and video chains respectively.
• P (At|Xt) and P (Bt|Yt) are the observation densities of

the audio and video chains respectively.
• P (Xt+1|Xt, Yt) and P (Yt+1|Xt, Yt) are the couple

nodes transition probabilities in audio and video chains.
The training of the CHMM differs from the standard HMM
in the expectation step (E) while they are both identical in the
maximization step (M), which tries to maximize Equation (13)
in terms of the expected parameters [46]. The expectation step
of the CHMM is defined in terms of the forward and backward



recursion. For the forward recursion, we define a variable α
for the audio and video chains at t = 1, as in Equation (14):

αaudio
t=1 = P (A1|X1)P (X1)

αvideo
t=1 = P (B1|Y1)P (Y1)

(14)

Then, the variable α is calculated incrementally at any arbi-
trary moment t, as indicated in Equation (15):

αaudio
t+1 = P (At+1|Xt+1)∫ ∫

αaudio
t αvideo

t P (Xt+1|Xt, Yt)dXtdYt

αvideo
t+1 = P (Bt+1|Yt+1)∫ ∫

αaudio
t αvideo

t P (Yt+1|Xt, Yt)dXtdYt

(15)

Meanwhile, for the backward direction, there is no split
in the calculated recursions, which could be expressed as
following (Equation 16):

βaudio,video
t+1 = P (ON

t+1|St) =∫ ∫
P (AN

t+1, B
N
t+1|Xt+1, Yt+1)P (Xt+1, Yt+1|Xt, Yt)

dXt+1dYt+1

(16)

IX. GESTURE SYNTHESIS AND VALIDATION

In order to synthesize appropriate gesture motion curves, it
is necessary to mark indexes on the motion curves during the
quantization of gesture. These indexes specify the boundaries
of the curves’ segments that correspond to each trajectory class
label (Table V). These defined segments of the motion curves
will be used after the Viterbi decoding of the CHMM [24],
[44] in constructing the synthesized motion curves of gesture.
Having known the synthesized motion curves of gesture, it
is possible to calculate the corresponding rotation angles of
arms articulations using the generated position curves, the
orientation, and the inverse kinematics model of the arm [36].
Similarly, the rotation angles of the head could be calculated
in terms of the orientation and the inverse kinematics model of
the head [35]. On the other hand, the other generated motion
curves are used to enhance the required emotion to express
to human (e.g., the velocity characteristics of gesture in the
“anger” emotion are faster than in the “sadness” emotion).

Figure (5) illustrates the synthesized motion curves of a
shoulder gesture. The first two graphs (i.e., velocity and
acceleration graphs) demonstrate inversed peaks (unlike the
other two graphs), and this will not have a negative effect on
the general meaning of a sequence of synthesized gestures. On
the other hand, there will not be a big difference between the
original and synthesized curves shown in Figure (5) in case
they get characterized in terms of the statistic measurements
required for the classification system explained in Section
(VI-A). This explains the relatively small differences between
the obtained recognition scores in Tables (II) and (VI). Table
(VI) discusses the obtained recognition scores of the generated
body gestural behavior in different emotional states (where the
synthesized curves have been tested and cross validated over

Emotions Generated Body Gestural Behavior
Sadness 82.3%
Surprise 80.5%
Disgust 75.2%
Anger 85.6%
Fear 72.4%

Neutral 78.1%

TABLE VI
RECOGNITION SCORES OF THE BODY GESTURAL BEHAVIOR GENERATED

BY THE CHMM UNDER DIFFERENT EMOTIONAL STATES

Fig. 5. Synthesized Motion Curves (Velocity, Acceleration, Position and
Displacement) of a Right-Arm Shoulder’s Gesture, Expressing the Emotional
State (Disgust)

the original curves in a SVM structure), which validates our
proposed methodology for synthesizing metaphoric gestures.

X. CONCLUSION

The paper discusses the recognition of metaphoric gestures
and the generation of adapted gestures to human’s emotional
state. This study is based on the motion data of body artic-
ulations captured by a kinect sensor, side to side with the
audio data captured by a microphone. Gesture characterizing
curves are calculated from the kinect-captured data (i.e., roll,
pitch, and yaw rotations), using the kinetic relationships and
parameters of human body. This calculation is based on 2
parameters: human’s mass and height, which could not be con-
sidered as limitations in this work, because the main purpose
was to construct an offline mapping system between voice
prosody and gesture. Therefore, during the construction of the
database, human’s mass and height were required. Meanwhile
in stage 3 (Figure 1), when a free human-robot interaction
starts, this information about human will not be required at
all, so that when an audio input is present, a corresponding set
of body gestures will be generated. The obtained recognition
scores of the body gestural behavior and the accompanied
audio data under different emotional states, prove the relevance
of the chosen characteristics of both voice and gesture. The
coupling between voice and gesture is performed through the
CHMM composed of 2 channels for the voice and gesture
sequences. The emotional state based recognition scores of
the synthesized gestures prove the accuracy of the system.
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