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ABSTRACT
The problem of summarizing a large collection of homo-
geneous items has been addressed extensively in particular
in the case of geo-tagged datasets (e.g. Flickr photos and
tags). In our work, we study the problem of summarizing
large collections of heterogeneous items. For example, a user
planning to spend extended periods of time in a given city
would be interested in seeing a map of that city with item
summaries in different geographic areas, each containing a
theater, a gym, a bakery, a few restaurants and a subway
station. We propose to solve that problem by building rep-
resentative Composite Items (CIs).

To the best of our knowledge, this is the first work that
addresses the problem of finding representative CIs for het-
erogeneous items. Our problem naturally arises when sum-
marizing geo-tagged datasets but also in other datasets such
as movie or music summarization. We formalize building
representative CIs as an optimization problem and propose
KFC, an extended fuzzy clustering algorithm to solve it. We
show that KFC converges and run extensive experiments on
a variety of real datasets that validate its effectiveness.

Categories and Subject Descriptors
H.3.3 [Information storage and retrieval]: Information
Search and Retrieval—Selection process

Keywords
summarization; fuzzy clustering; composite items

1. INTRODUCTION
The problem of summarizing a large collection of items has

received a lot of attention in particular in the case of geo-
tagged datasets. For example, in [13], representative tags
are used to summarize a large collection of Flickr photos. In
the presence of several collections, each representing a dif-
ferent item type (e.g., schools, restaurants, subway stations,
and theaters in a city), we are faced with the question of
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defining an effective summarization. One could summarize
one collection at a time and show the results on a map. For
example, in the case of a city, each item type such as restau-
rant and subway station, would be summarized separately
and rendered on the same map. This one-type-at-a-time ap-
proach does not necessarily guarantee that each area in the
map will contain representative items of each type, nor does
it ensure that items in the same area will be close to each
other, i.e., cohesive. In this paper, we propose to explore
the applicability of Composite Items (CIs) to this question.

CIs have been shown to be very effective in solving com-
plex information needs such as planning a city tour, selecting
books for a reading club, or organizing a movie rating con-
test [2,3,7,9,10,12,13,15,16]. In those applications, a CI is a
set of close items (e.g., geographically close points of interest
- POIs, movies rated by the same users) that satisfy a budget
(e.g., at least two schools and one theater, at least one movie
per genre). When summarizing POIs, a CI may correspond
to geographically close places that have different types (e.g.,
theater and museum) and whose total visit time does not
exceed 3 hours. When selecting books, a CI may be formed
by similar books, i.e., on similar topics, written by differ-
ent authors and whose total price is less than a maximum
amount. When organizing a movie contest, a CI is a set
of comparable movies, i.e., having common reviewers, and
with different genres or release years. The budget constraint
of a CI can therefore be used to glue together heterogeneous
items, i.e., items with different types. In that case, we say
that a CI is valid. The problem of summarizing heteroge-
neous item collections can therefore be formulated as finding
K valid, cohesive and representative CIs, i.e., each CI sat-
isfies budget constraints, is formed of “close” items, and the
set of CIs “covers” all input items.

Forming valid, cohesive and representative CIs can be nat-
urally expressed as a constrained optimization problem [2].
Existing solutions to solve this problem usually rely on two
phases: in one solution, many valid CIs (i.e. satisfying the
budget constraint) are built, and then the K farthest are
chosen thereby resulting in representative CIs. In the other,
a K-clustering is performed in the first stage to address
representativity, and then one valid CI, i.e. satisfying con-
straints, is picked from each cluster in order to produce K
CIs overall. This process decouples budget constraint satis-
faction (e.g., a CI must contain one museum and 2 restau-
rants) from the optimization goal (e.g., each CI is a set of
closely located POIs). As a result, we can argue that while
clustering is a natural solution to finding CIs, existing formu-
lations are not well-adapted to achieve validity, cohesiveness



(a) One-at-a-Time Approach (b) Two-Stage Approach (c) Integrated Approach

Figure 1: Alternative approaches to build composite items

and representativity simultaneously. We hence advocate the
seamless integration of validity, cohesiveness and representa-
tivity when building CIs. We illustrate that on the following
example.

Example 1. Consider the case of Mary whose job is to
train future users of products developed by a large software
company. Mary often travels to different places where she
spends extended periods of time, i.e., at least 2 weeks, during
which she rents an apartment. In her free time, Mary en-
joys going to the theater and dining out wherever she stays.
She also practices yoga and likes swimming. Mary would
be interested in exploring a map with representative CIs in
different areas in the city she is planning to visit. Each CI
must be valid, i.e., contain at least one theater, a pharmacy,
a gym, two restaurants and a subway station (at least 6 items
in total with specific cardinality constraints per item type),
and cohesive, i.e., contain closeby items. Figures 1a, 1b
and 1c show three sets of CIs for Paris produced using the
Tourpedia dataset1 with three different methods: the one-
at-a-time approach that summarizes each homogeneous item
collection separately, the two-stage approach that decouples
validity, cohesiveness and representativity, and an integrated
approach that optimizes validity, cohesiveness and represen-
tativity together. The CIs generated using the integrated ap-
proach (Figure 1c) offer the best trade-off between validity,
cohesiveness and representativity. Indeed, the CIs in Fig-
ure 1a tend to favor representativity (coverage of the city)
to the expense of cohesiveness (items in each CI are not close
to each-other). Those in Figure 1b are located on the edges
of the city because this two-stage approach first produces the
most cohesive valid CIs, which limits their representativity
in the second stage.

Our example intuitively illustrates that summarizing in-
dividual lists of items and decoupling validity and represen-
tativity results in finding sub-optimal CIs in case of het-
erogeneous item collections. In addition, while existing ap-
proaches are based on hard clustering techniques imposing
that an item must belong to one CI, in the case of a hetero-
geneous set of items, an item may have multiple types and
should be able to belong to more than one CI. Therefore,
we propose to study the applicability of fuzzy clustering [6]
to find valid and representative composite items. In fuzzy
clustering, an item may belong to more than one cluster.

1http://datahub.io/dataset/tourpedia

Our algorithm solves a joint optimization problem where
one part aims at identifying item representatives (related
here to cluster centroids obtained through fuzzy clustering)
whereas the other part ensures that the representatives cho-
sen are “close” to valid CIs (that is CIs satisfying budget
constraints) and are cohesive. We consider in fact two prob-
lems: a minimization problem involving distance functions,
and in particular the Euclidean distance, and a maximiza-
tion problem involving similarity functions, and in particular
cosine similarity.

Our problem naturally arises when summarizing geo-tagged
datasets but also in other datasets such as book and movie
summarization. That is illustrated in our experiments that
make use of real datasets: Tourpedia2, BookCrossing3,
and MovieLens4. We compare our integrated approach
with the two-phase approaches proposed in [2] and show that
blending validity, cohesiveness and representativity produces
higher quality CIs efficiently.

In summary, the paper makes the following contributions:

• We formalize an optimization problem for building valid,
cohesive and representative CIs to summarize large col-
lections of heterogeneous items. In particular, we de-
fine validity that glues together items of different types
into a single CI according to budget constraints such
as:

〈2 drama, 2 action, 1 comedy, $5〉

We also define a clustering objective function that cap-
tures cohesiveness and representativity. Representa-
tivity aims at finding the K CIs that cover best the
input set of items. Cohesiveness is ensured by select-
ing the closest valid CI to each cluster centroid.

• We design KFC, a constraint-based fuzzy clustering al-
gorithm that seamlessly integrates validity, cohesive-
ness and representativity and show that it converges.

• We run an extensive set of experiments on 3 real datasets
with different characteristics. Our experiments explore
the quality of CIs produced by KFC and compares them
with state-of-the-art two-stage approaches from the lit-
erature [2]. In particular, we show that our CIs are
higher quality (validity) and provide a better coverage

2http://datahub.io/dataset/tourpedia
3http://www.bookcrossing.com/
4https://movielens.org/



of input items (representativity). We also run per-
formance experiments demonstrating that KFC outper-
forms two-stage approaches and that it scales linearly
with different parameters.

Section 2 contains our formalization and general problem
statement. Section 3 describes our integrated algorithm,
KFC. Experiments are provided in detail in Section 4. Re-
lated work and conclusion are given in Sections 5 and 6
respectively.

2. MODEL AND PROBLEM
In this section, we first define our formal model and dis-

cuss the link between clustering, validity, cohesiveness and
representativity. We then formalize the problem of finding
a set of K, possibly overlapping, valid, cohesive and repre-
sentative CIs.

2.1 Data Model
We are given a set X of items where x ∈ X is uniquely

identified. X is a heterogeneous set of items each of which
may have one or several types in T = {t1, . . . , tn}. For
example, the movie Titanic has two types: romance and
drama. A book type could be novel or adventure and the
type of a point of interest could be museum, park, etc. We
use x.type to refer to the type(s) of x. We furthermore
assume that an item x may have a cost, that will be denoted
as x.cost. For a book, this would typically be its selling price.
For a museum, it could either be the cost of an entry ticket
or the average time required to visit it.

We define a budget vector b = 〈#t1, . . . ,#tn,#$〉 where
each #ti specifies a cardinality for an item type ti ∈ T and
#$ is a total cost (e.g., maximum price a user is willing to
pay for a movie or maximum time a user is willing to spend
visiting a place). For example, the vector 〈1, 2, 1, 90〉 applied
on books would represent 1 novel, 2 art books, and 1 self-
help book, assuming those are the only available book types,
whose total price does not exceed 90$. The same vector
applied on points of interest in a city would be interpreted
very differently and represent 1 gym, 2 subway stops and 1
bakery and a total time not exceeding 90 minutes.

Depending on the context, we will make use of a distance
function, noted d(, ) or a similarity function, noted s(, ), to
compare a pair of items (x, x′) ∈ X × X . For instance, if
x and x′ are points of interest in a city, it is natural to use
their geographic distance. If items are books, it is more ap-
propriate to compare them according to content similarity,
e.g. based on the cosine between their vectors; similarly, if
items are movies, their similarity can be computed as the
fraction of reviewers who like both x and x′.

2.2 Representativity through fuzzy clustering
We are interested in identifying valid, cohesive and rep-

resentative sets of items where each item has one or several
types. The validity of a set of items is expressed in terms of
the budget vector b = 〈#t1, . . . ,#tn,#$〉 introduced above.
The cohesiveness is the ability to identify sets of items rel-
atively close to each other, whereas the representativity is
the ability to cover the input dataset. The clustering lit-
erature contains many proposals for finding representative
points of a dataset. Indeed, representative points are typi-
cally obtained, in any given dataset, as the centroids of the
clusters present in that dataset: The set of clusters “covers”

the whole dataset and their centroids represent a summary
of the content of each cluster. In hard clustering, items are
divided into distinct clusters and each item belongs to ex-
actly one cluster, a framework well adapted to homogeneous
items [13]. However, in the case of a heterogeneous set of
items, an item may have different types and hence belong to
more than one cluster. Therefore, we propose to study the
applicability of fuzzy clustering [6] to the problem of finding
valid, cohesive and representative items.

The most popular fuzzy clustering algorithm is Fuzzy C-
Means (FCM) [6]. FCM assigns a set of items X to a col-
lection of K fuzzy clusters represented through their cen-
troids vj , 1 ≤ j ≤ K (the set of centroids will be denoted
V ). More precisely, given a set of N items, X , the algo-
rithm returns both the K centroids and a partition matrix
W = wi,j ∈ [0, 1], i ∈ [1, N ], j ∈ [1,K] where each wij repre-
sents the degree to which item xi belongs to cluster j. Given
a distance function d(, ), the standard objective function of
FCM is as follows:

argmin
V,W

N∑
i=1

K∑
j=1

wm
ij d(xi, vj)

s.t. ∀i ∈ [1, N ],

K∑
j=1

wij = 1

where m is a weighting exponent, greater than one. A large
value of m results in smaller memberships wij and hence,
fuzzier clusters, whereas setting m to 1 leads to hard clus-
tering [6]. The problem above is typically solved through
an alternate optimization process in which one fixes v (re-
spectively w) and solves for w (respectively v). The proof
that such an approach converges is given in [5]; furthermore,
initialization of k-means++ [4] can also be used for the cen-
troids.

Fuzzy clustering thus represents a direct way to identify
clusters in a dataset and their representative points defined
by their centroids. Furthermore, its fuzzy nature enables
each point to be assigned to different clusters (and centroids)
through membership values.

2.3 Problem Statement
We seek to find a set of K valid, cohesive and represen-

tative items. Intuitively, validity finds sets of items that
satisfy a budget constraint (i.e., cardinality and/or cost) b
which glues together items of different types into composite
items, CIs. Cohesion and representativity intuitively try to
identify those CIs formed of close items that cover the input
dataset (i.e., that are close to cluster centroids). We first
define a valid CIs as follows:

Definition 1. Given a set of items X and a budget b, a
valid CI, denoted {x1, · · · , xle;xi ∈ X, 1 ≤ i ≤ le}, is a set
of items such that :

(i) ∀#tj ∈ b,
le∑

i=1

1(tj , xi.type) ≥ #tj

(ii)

le∑
i=1

xi.cost ≤ #$

where 1 is an indicator function which is 1 if both arguments
are equal and 0 otherwise. le is the number of items in the
CI and is such that le ≥ n, where n is the number of type



values considered. The set of all valid CIs will be denoted as
VCI .

It is easy to check whether for any b and any X there exists a
valid CI or not (one simply gathers the #tj cheapest items
of each type tj in b and checks their total cost). We will
assume that there exists at least one valid CI for the set
of items and budget constraint considered. We also assume
that X ⊆ Rp. This assumption is not restrictive as most
data points (or items) can be transformed so as to obtain a
vector representation.

We can now formulate our problem as a joint optimization
problem where one part aims at identifying good summaries
(i.e. cluster centroids that are representative) of the set of
items whereas the other part ensures that the representa-
tives chosen are “close” to valid CIs, which are in turn cohe-
sive, i.e., formed of closeby items. The closest cohesive CIs
to the obtained centroids are thus valid and representative
of the set of items. We in fact face two problems: a mini-
mization problem involving the distance function d(, ) and a
maximization problem involving the similarity function s(, ).
Note that the weighting exponent m of the fuzzy clustering
part of each problem takes values in [1,∞] for the maxi-
mization problem and in [0, 1] for the minimization problem.
This is simply due to the fact that the functions considered
should be pseudo-convex in one case and pseudo-concave in
the other. This leads to, when considering distances:

Distance-based formulation

argmin
V,W

(1− λ)

K∑
j=1

N∑
i=1

wm
ij d(xi, vj)︸ ︷︷ ︸

FC

+

λ

K∑
j=1

min
C∈VCI

(∑
x∈C

d(x, vj)

)
︸ ︷︷ ︸

CRCI

s.t. ∀i ∈ [1, N ],

K∑
j=1

wij = 1

(1)
where V denotes a set of K points (centroids) and W a par-
tition matrix of size N × K. The Similarity-based for-
mulation is obtained from the above by replacing argmin
by argmax, min by max, and d(, ) by s(, ). λ is a parameter
that controls the influence of the two aspects of the prob-
lem: identifying cluster centroids that are representative of
the complete dataset (FC - Fuzzy Clustering) while ensur-
ing that the centroids obtained are close to some valid CI
(CRCI - Close Representative CI). Minimizing the sum of the
distances of all the items of the CI to the centroid in CRCI

additionally ensures the cohesion of the valid CI considered.
It is the compromise between these different aspects that
allows one to identify valid, cohesive and representative CIs.
It is important to note that the above formulation corre-
sponds to an integrated approach that directly yields valid,
cohesive and representative CIs. This contrasts with most
previous solutions that rely on a two-step approach in which
candidate CIs are first generated and then filtered [2].

Note that one could consider a more complex formulation
with an explicit term to account for cohesion of items within
CIs. Such a problem would however be more difficult to
solve and would make us of an additional hyper-parameter.
We rely on this study on the simpler form above in which

cohesion is implicitly captured through the distance of all
items to the centroid, as mentioned above.

Complexity considerations
The minimum sum of squared clustering problem (MSSC)
is known to be NP-hard [1] (this problem is the one tackled
by the classical k-means heuristic [14]). Setting λ to 0, m to
1 and d(, ) to the Euclidean distance in Problem (1) directly
corresponds to MSSC (setting m to 1 transforms the fuzzy
clustering defined in FC into a hard clustering problem; the
fuzzy C-means algorithm becomes standard k-means in that
case [6]). Hence, were we able to solve Problem (1) in poly-
nomial time, we would be able to solve MSSC in polynomial
time. Problem (1) is thus NP-hard (and so is its maximiza-
tion version, i.e. its similarity-based counterpart).

Furthermore, the consideration of the cost constraint in
the budget may render the minimization problem in CRCI

NP-hard. We thus introduce below a generalization of the
the above optimization problem that allows one to partly
circumvent this problem.

3. ALGORITHMIC SOLUTION
We present here an algorithmic solution for the optimiza-

tion problem above, focusing on the Euclidean distance for
d(, ) and the cosine similarity for s(, ) as these are two widely
used measures. Prior to that, we first introduce a slight gen-
eralization that partly circumvents the minimization prob-
lem in CRCI.

Given a set of items X , X ⊆ Rp, a budget constraint b and
the set of valid CIs VCI , let f be a function that associates
to a point v ∈ Rp a valid CI from VCI : f : Rp → VCI . As
before, we will denote by V a set of K points (centroids)
and by W a partition (weight) matrix of size N × K. We
consider the following general minimization problem using
the Euclidean distance:

Distance-based formulation

argmin
V,W

(1− λ)

K∑
j=1

N∑
i=1

wm
ij ||xi − vj ||22+

λ

K∑
j=1

∑
x∈Cj

||x− vj ||22

with : Cj = f(vj)

and s.t. ∀i ∈ [1, N ],
K∑

j=1

wij = 1

(2)

As before, a similarity-based formulation can be ob-
tained by replacing argmin by argmax and the Euclidean dis-
tance by the cosine similarity. In the remainder, we will use
Geucl(V,W, f) to denote (1− λ)

∑K
j=1

∑N
i=1 w

m
ij ||xi − vj ||22 +

λ
∑K

j=1

∑
x∈Cj

||x−vj ||22, with Cj obtained from vj through

f . Gcos is defined in the same way for the cosine similarity.
It is easy to see that Problem 2 is a generalization of

Problem 1 as setting f to f(vj) = min
C∈VCI

∑
x∈C ||x− vj ||

2
2 in

Problem 2 yields Problem 1. However, as mentioned above,
this setting may not be always possible as it relies on a
minimization problem that is NP-hard in the worst case.
The general formulation provided in Problem 2 allows one
to avoid this problem by considering general functions f



that can be computed more easily. We will come back to
the choice of f in Section 3.1.

If the set V is fixed and f is given, so that Cj is known
for 1 ≤ j ≤ K, then Geucl(V,W, f) is a convex function of
W and the W that minimizes it can be obtained by setting
the derivative of the Lagrangian of Geucl (that integrates the
constraints on W ) with respect to W to 0 and solving for W .
This leads to the following update rule for W (equivalent to
the standard FCM update rule [6]):

w
(l+1)
ij =

 K∑
k=1

(
||xi − v(l)j ||

2
2

||xi − v(l)k ||22

) 1
(m−1)

−1

(3)

where l serves to indicate that new values are computed
from known (old) ones. Similarly, for fixed W and given Cj ,
the function Geucl(V,W, f) is convex in V . The values of V
minimizing Geucl are obtained by setting the derivatives of
Geucl with respect to V to 0 and solving for V , leading to:

v
(l+1)
j =

(1− λ)
∑N

i=1(w
(l)
ij )mxi + λ

∑
x∈C(l)

j

x

(1− λ)
∑N

i=1(w
(l)
ij )m + λ|C(l)

j |
(4)

where |C(l)
j | represents the number of items in C

(l)
j .

For the valid composite item Cj associated to the centroid
vj , two cases may arise depending on the function f consid-
ered. Either the valid composite item provided by f for the

new centroid v
(l+1)
j leads to a better solution than the one

associated to v
(l)
j , and it is kept, or it does not lead to a

better solution, in which case the previous valid composite
item is used. This can be formalized as:

C
(l+1)
j =



f(v
(l+1)
j ) if

∑
x∈f(v(l+1)

j )

||x− v(l+1)
j ||22

≤
∑

x∈C(l)
j

||x− v(l+1)
j ||22

C
(l)
j otherwise

(5)

The above update rules guarantee that, starting with W (l),
V (l) and f , one has:

Geucl(V (l+1),W (l+1), f) ≤ Geucl(V (l),W (l), f)

as, for each update of W and V , the function Geucl is min-
imized and does not decrease when updating the CIs pro-
vided by f . Thus, the algorithm iterating over the update
rules defined by Eq. 3, 4 and 5 convergences (as Geucl is
lower bounded by 0) and provides a local minimum for the
problem with the Euclidean distance.

The development for the cosine similarity is exactly the
same, the convexity condition being replaced by a concav-
ity one. We furthermore consider that all x ∈ X are nor-
malized (||x||2 = 1) and add a normalization constraint on
vj (||vj ||2 = 1) so as to rely on a standard dot product
(s(x, x′) = xTx′, where T denotes the transpose). The up-
date rules obtained in this case are summarized below, where
xr is the rth coordinate of x and m lies in the interval [0, 1[:

w
(l+1)
ij =

(
xTi v

(l)
j∑K

k=1 x
T
i v

(l)
k

) 1
1−m

(6)

Algorithm 1

Input: X , budget constraint b, K, λ, step η, procedure f
Output: Set S of K CIs
1: S ← ∅; λ′ = λ; λ = 0
2: Initialize (e.g. through random assignment) V and W

→ V (0),W (0), f (0)(V (0)) = f(V (0))
3: repeat
4: repeat
5: Update W through Eq. 3 (resp. Eq. 6)
6: Update V through Eq. 4 (resp. Eq. 7)
7: Update f(V ) through Eq. 5 (resp. Eq. 8)
8: until Geucl (resp. Gcos) does not change
9: λ = λ+ η

10: until λ ≥ λ′
11: S ← f(V ) (with the final f and V obtained)



v
(l+1)
jr =

Ajr

(
∑p

r=1A
2
jr)1/2

with, for 1 ≤ r ≤ p :

Ajr =(1− λ)

N∑
i=1

(w
(l)
ij )mxir + λ

∑
x∈C(l)

j

xr

(7)

C
(l+1)
j =



f(v
(l+1)
j ) if

∑
x∈f(v(l+1)

j )

xT v
(l+1)
j

≥
∑

x∈C(l)
j

xT v
(l+1)
j

C
(l)
j otherwise

(8)

Algorithm 1 summarizes the steps followed. As one can note,
we first set λ to 0 and gradually increase its value. By doing
so, one first identifies fuzzy centroids that are then moved
towards valid, cohesive CIs.

3.1 Choice of f
Because the budget constraints b considered here have two

parts, related respectively to type cardinality and cost (see
Definition 1), we rely on two scenarios associated to two
different choices for f . In the first scenario, we restrict our-
selves to budget constraints b that only contain type car-
dinality constraints: b = 〈#t1, . . . ,#tn〉. In that partic-
ular case, it is possible to efficiently compute, for any vj ,
min

C∈VCI

∑
x∈C ||x− vj ||

2
2 through the following process:

1. Set C ← ∅

2. For i = 1 to n, add to C the #ti items of type ti closest
to vj

3. Return C

The function f defined by the above algorithm, the com-
plexity of which is O(KN) in the worst case, directly yields
the minimizer of CRCI in Problem 1 as there is no other valid
CI closer to the given point vj .

In the second scenario, we consider cost constraints in ad-
dition to type cardinality constraints, leading to the general
budget constraint: b = 〈#t1, . . . ,#tn,#$〉. In that case one
cannot directly use the above approach and we resort in this
study to backtracking: we first select the closest item to a



given vj with a type in b, and iteratively add the next clos-
est item to vj compatible with the constraint in b. If the
cost constraint is violated, the process backtracks until all
the constraints are satisfied. As mentioned in Section 2.3,
for any b, the existence of a solution can be determined ef-
ficiently; the search for a valid CI is thus only performed
when the existence of a solution is guaranteed. Lastly, the
backtracking process may not lead to an optimal solution
in the sense of the minimization problem defined in CRCI

(Problem 1); it will nevertheless yield a valid CI (close to
the centroid considered), which is required to solve Prob-
lem 2.

4. EXPERIMENTS
We report the results of an extensive experimental study

on a variety of real-world datasets. We first examine the
quality of our CIs and compare them to those produced by
existing algorithms and then do an in-depth study of our
integrated approach.

4.1 Summary of results
Our experiments confirm the superiority of the integrated

approach over two-stage approaches using both problem for-
mulations: distance minimization on POIs in a city and sim-
ilarity maximization on movies. In summary, the CIs pro-
duced from POIs using the integrated approach are charac-
terized by a better coverage of the city they belong to, and
the CIs produced for movies are representative of a variety
of genres and release periods. We also find that the inte-
grated algorithm produces better values for the objective
function (distance minimization or similarity maximization)
than its competitors. The second half of the experiments
studies scalability (in terms of response time) of the inte-
grated algorithm for different parameter values (K and m)
and total size of items and shows that it performs very well
and can hence be used to build representative CIs on the fly.

4.2 Experimental setup
Our prototype is implemented using JDK 1.8.0. All scal-

ability experiments are conducted on a 2.4 GHz Intel Core
i5 with 8 GB of memory on OS X 10.9.5 operating system.
Each result is an average of 10 runs with different random
seeds.

Datasets.
We use three datasets with different characteristics sum-

marized in Table 1. Section 3.1 defines two scenarios: with
and without cost constraint. We apply the former to the
first two dataset and the latter to the third dataset.

Tourpedia5 contains a collection of heterogeneous POIs
in various European cities gathered via Facebook and Four-
square. The latitude and longitude of each POI is available
allowing us to use Euclidean distance. We collect data for
Paris, Berlin, Barcelona and Amsterdam. The heat maps

5http://datahub.io/dataset/tourpedia

Dataset # items Obj. function
Tourpedia (POIs) 2 to 3000/city min geo dist.
MovieLens (movies) 3,952 max review sim.
BookCrossing (books) 270,000 max review sim.

Table 1: Dataset statistics

CI Year Genre Name

CI1

1996 Drama Big Night
1995 Comedy Welcome to the Dollhouse
1991 Action Thelma & Louise
1997 Drama Ice Storm, The
1995 Action Get Shorty

CI2

1992 Action Batman Returns
1998 Drama Truman Show, The
1996 Drama Jerry Maguire
1992 Comedy League of Their Own, A
1994 Action True Lies

CI3

1990 Comedy Back to the Future Part III
1997 Drama Contact
1990 Action Total Recall
1995 Drama Twelve Monkeys
1996 Action Independence Day (ID4)

CI4

1998 Action Run Lola Run
2000 Drama Erin Brockovich
2000 Comedy High Fidelity
2000 Action Gladiator
1999 Drama Magnolia

CI5

1967 Drama Graduate, The
1969 Drama Midnight Cowboy
1973 Comedy American Graffiti
1971 Action French Connection, The
1969 Action Butch Cassidy & Sundance Kid

Table 2: Example of results for uKFC with λ = 0.7 on
MovieLens

showing the density of POIs in each city are depicted on
Figure 2. The budget vector for this use case exploits 4 POI
types:

〈1 accommodation, 2 public transportation,
3 restaurants, 2 health services,∞〉

The second dataset is MovieLens6, a movie rating database.
We rely on cosine similarity of user vectors to compute the
similarity between movies. The budget used for MovieLens
is defined on movie genres:

〈2 drama, 2 action, 1 comedy,∞〉

The third dataset is BookCrossing7 which contains books
and their user ratings, allowing cosine similarity computa-
tion. We assign a price to each book uniformly at random
between 5$, 10$ and 15$ and define a budget vector on re-
lease dates:

〈3 1980s, 2 1990s, 3 2000s, $70〉

Algorithms.
We denote our integrated approach presented in Section 3

as KFC. Our approach competes with two-stage approaches
from the literature [2]: BOBO and CAP. BOBO is a produce-and-
chose approach that first produces a large number of candi-
date CIs and then chooses K with the objective to maximize
the distance between them. We also designed a variant of
BOBO, called RBOBO, that optimizes representativity (i.e. the

6http://movielens.umn.edu
7http://www.bookcrossing.com/
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Figure 2: Heat maps for the Tourpedia dataset with respect to latitude and longitude
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Figure 3: Unweighted objective function with K CIs on Tourpedia (Paris)

distance between each item and the closest centroid of a CI)
in the second phase. Iteratively, RBOBO removes the candi-
date that contributes the least to decreasing the distances
of data points to their closest CI. Thus RBOBO relies on the
same objective function as KFC. CAP is a cluster-and-pick ap-
proach that clusters data points into K sets and selects the
CI whose items are most similar to each other in each set.
Since these approaches do not assign weights between data
points and CIs, we only compare them against uKFC, the
hard clustering version of KFC (with m = 1). Finally, for
KFC and uKFC, we set the η parameter to 0.01.

4.3 Qualitative experiment
We first compare the quality of CIs produced with uKFC

against those of BOBO, RBOBO, and CAP. Then, we study the
quality of CIs produced by KFC in an independent quality
evaluation.

4.3.1 Comparative quality evaluation
We use Tourpedia (city = Paris) to study the behavior

of our objective function with different values of λ and K
and for different algorithms (Figure 3). Given our problem
definition, this objective function constitutes a proxy to as-
sess the quality of the CIs generated over several executions.
We then compare one instance of the CIs produced by KFC

against those generated by two-stage approaches (Figure 4).
Figure 3 shows the evolution of the objective function.

For better understanding of the results, we normalized each
score by the one obtained by uKFC. We observe that, when
λ is lower than 0.98, uKFC always produces better values
of the objective function, which means that the CIs gen-
erated offer a better compromise between cohesiveness and
representativity. BOBO selects K CIs by optimizing the dis-
tance between them. While it seems as it could indirectly
promote representativity, in practice, BOBO tends to select
outliers, and thus obtains poor results. This highlights the
difference between KFC and existing approaches [2]: the ob-

jective function considers all points in the dataset, while
BOBO only takes the selected CIs into account. In this evalu-
ation, we varied the number of candidates available to RBOBO,
from 20K candidates, to CIs formed from all data points.
Our experiments show that this only marginally improves
the results obtained. Since we adapted RBOBO for represen-
tativity, it significantly outperforms BOBO, but remains less
efficient than KFC. CAP, while based on clustering, obtains
worse results than most algorithms, as CIs selected, while
originating from different clusters, can still be close to each
other, which is detrimental to representativity. Overall, as
K increases, the difference between uKFC and its competi-
tor diminishes. Indeed, as more CIs are selected, each item
is on average closer to a CI centroid, and thus the poten-
tial difference in the objective function is reduced. When λ
nears 1, the objective function almost only takes cohesive-
ness. In such configurations, algorithms based on generating
huge amounts of candidate CIs obtain better results, as they
have a higher probability of selecting items very close to each
other.

To confirm this analysis of the algorithm’s behavior, we
present in Figure 4 an instance of the results obtained by
each algorithm on the Tourpedia (Paris) dataset. As ex-
plained previously, to maximize distance between CIs, BOBO
selects outliers from the periphery of the city, which is clearly
visible on Figure 4a. There are fewer points in the areas
around those outliers (Figure 2a), so this achieves bad rep-
resentativity. RBOBO does significantly better, thanks to the
heuristic selecting K CIs among the candidates. The CIs
selected are spread on the periphery of dense areas, so rep-
resentativity is quite good, but not optimal. The results of
CAP and uKFC exhibit some similarities. Indeed, they are
both based on a clustering approach. However, CAP can still
select CIs close to each other, which can be observed on the
left of Figure 4c. On the contrary, CIs selected by uKFC are
well spread over space and achieve the best representativity.
We obtain similar results on the other cities.



(a) BOBO-all (b) RBOBO-all (c) CAP (d) uKFC (m = 1)

Figure 4: CIs selected by each algorithm with K = 5 CIs, λ = 0.7 on Tourpedia (Paris)
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Figure 5: Unweighted objective function for K CIs with MovieLens

We conduct a similar experiment on the Movielens dataset,
and present the results on Figure 5. Note that in this setup
(cosine similarity), the goal is to maximize the objective
function. We observe a similar trend as in the Tourpedia
experiment. uKFC achieves a higher score as long as repre-
sentativity is taken into account. When λ reaches extreme
values, cohesiveness becomes the main factor, and produce-
and-choose approaches obtain better results. Note that on
this dataset CAP performs particularly poorly.

Due to space constraints, we are unable to present exam-
ples of the CIs composed by each algorithm. Hence, we will
focus on the results of uKFC, presented on Table 2. We can
see that these CIs are quite representative of different topics,
styles and periods. For example, CI3 shows mainly science
fiction while CI4 shows movies with good soundtracks.

4.3.2 Independent quality evaluation
We first examine the quality of the results obtained by

uKFC on the Tourpedia Paris dataset (Figure 4d). The CIs
generated are clearly localized around some of Paris’ most
famous attractions: the Eiffel tower, Montmartre, Montpar-
nasse, République and Nation. Indeed, the presence of these
attractions affects the distribution of POIs in Paris, and KFC

is able to capture this to select representative CIs.
We now consider the results obtained by KFC for Berlin

(Figure 6) and Barcelona (Figure 7) for different values of
m (the weight exponent that controls the centroid position-
ing process). The higher m, the fuzzier representativity is.
Thus, while CIs are quite spread out for low values of m,
they converge towards the most central point of the dataset
as m increases. This is particularly true in the case of Berlin,
as the dataset contains several POIs located on the outside
of the city. In practice, m could be used to control the
coverage spread of the resulting CIs, while maintaining rep-
resentativity.

4.4 Scalability experiment
This last set of experiments report a study of the response

time scalability of KFC and RBOBO, its closest competitor,
with varying values of K, m and total number of items.
BookCrossing is the most challenging use case, as it com-
bines a large dataset size and a total cost constraint. Fig-
ure 8a shows the execution time of KFC. Overall, we observe
that KFC scales linearly with both K and m. This behavior is
inherited from the clustering approach underlying KFC, and
shows that while the dataset grows, convergence remains
rather fast. Despite running on a laptop, KFC generates 20
composite items on a dataset of 250,000 items in less than
7 minutes.

The results for RBOBO are given on Figure 8b. RBOBO com-
putes the distance between each candidate CI and each item.
In the case of a large dataset, this can quickly become over-
whelming. Furthermore, as the size of the dataset increases,
the number of candidate CIs increases in order to preserve
results quality. RBOBO iteratively removes candidates until
reaching the desired number of K CIs. Hence, its execu-
tion time is driven by the number of candidates, and not
by K. Consequently, we were unable to execute RBOBO for
more than 5000 items, as the execution was lasting over 10
minutes.

5. RELATED WORK
To the best of our knowledge, this is the first study focus-

ing on the identification of “representative” composite items
of a heterogeneous set of items. While there is no work that
can be directly compared to ours, there are multiple related
areas. We provide a brief summary of each area.

Photo Summarization. The problem of summarizing
a large collection of homogeneous items has received a lot
of attention in particular, for photo summarization. Differ-
ent metadata was used ranging from location to temporal



(a) m = 2 (b) m = 3 (c) m = 4

Figure 6: CIs generated by KFC with λ = 0.7 and K = 5 on Tourpedia (Berlin)

(a) m = 2 (b) m = 3 (c) m = 4

Figure 7: CIs generated by KFC with λ = 0.7 and K = 5 on Tourpedia (Barcelona)

data to sharing information. In [13], location information
was used to generate photo summaries and visualize them
on a map. In [12], representative photos are generated for
a given time period using patterns in photo-taking habits
(later studied in http://www.hpl.hp.com/techreports/2003/HPL-

2003-165.pdf). In [11], the authors relied on event detection
in personal photo collections (e.g., birthdays) which could
be used for collection summarization. In [13], summaries of
POIs are generated to aid visualization on a map. All cited
approaches provide summaries of homogeneous item collec-
tions as opposed to our work where we are able to summarize
heterogeneous item collections.

Composite Items. Composite retrieval was studied with
different semantics in recent studies [2,3,7,9,10,15,16]. In [2],
different algorithms were explored to build composite items.
In [8], the authors propose a formalization for composite
items (in the case of city tours) that is personalized. Most
existing algorithms rely on a two-stage process that decouple
constraint satisfaction (e.g., a CI must contain one museum
and 2 restaurants) from the optimization goal (e.g., each CI
is a set of closely points of interest in a city). In this paper,
we show that our integrated approach is more effective than
a two-stage approach. The main difference however between
our approach and previous ones on composite items lies in
the objective functions used for the optimization. To our
knowledge, our approach is the first one to fully address the
problem of identifying “representative” composite items of a
set of heterogeneous items. As discussed before (Section 2),
this is achieved by relying on the identification of the cen-
troids of fuzzy clusters that are close to all the items.

Constrained Clustering. We adapt the Fuzzy C-Means
(FCM) Algorithm [5] to formalize our problem. More pre-
cisely, we extend the standard Fuzzy C-Means formulation
with an extra term aiming at “pushing” centroids towards
valid CIs. It is that extra term that integrates the bud-

get constraint, that guarantees the identification of valid
CIs next to representative centroids, these latter ones being
mainly identified as in Fuzzy C-Means. The budget con-
straint is integrated in this extra term via the procedure f
discussed in Section 3 that associates to any given point a
“close” and valid CI.

6. CONCLUSION
We explored the use of valid and cohesive composite items

(CIs) to represent large collections of heterogeneous items
such as POIs in a city or movies with different release dates.
Validity is achieved by summarizing items with different
types into a single CI. Indeed, CIs can naturally express
gluing together items of different types in a budget vector
such as 〈2 drama, 2 action, 1 comedy, $5〉 where each entry
specifies the minimum number of each item type desired in
a CI and an upper-bound of the total cost a user is willing to
pay for that CI. Cohesion and representativity are achieved
by finding the best K valid CIs according to an objective
function. We hence formalized the problem of summarizing
large collections of heterogeneous items as that of building
the K most valid, cohesive and representative CIs. Our for-
malization relies on two commonly-used objective functions:
distance and similarity. Distance is naturally used for POIs
in a city in order to find the K CIs that cover the city best.
Similarity is well-adapted to representing movies in order to
find the K CIs that are reviewed by similar users.

We designed a new integrated algorithm that builds the
K most valid, cohesive and representative CIs of an input
dataset. Our algorithm integrates constraint satisfaction
into fuzzy clustering in order to simultaneously optimize for
validity, cohesion and representativity. Experiments on real
datasets showed that the integrated approach outperforms
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Figure 8: Scalability on BookCrossing

two-stage ones resulting in CIs that achieve very good rep-
resentativity of existing items.

Our immediate future plans include running more exten-
sive experiments with user studies in order to refine our
notions of validity and representativity in different applica-
tions. We are also working on a formalization of our problem
that admits adaptive constraints for validity thereby captur-
ing a wide variety of interests in different item types, and
on an extension in which cohesion is explicitly modeled.
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