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MARKET MICROSTRUCTURE, INFORMATION AGGREGATION AND
EQUILIBRIUM UNIQUENESS IN A GLOBAL GAME∗

Edouard Challe† Edouard Chrétien‡

July 16, 2015

Abstract. This paper studies the outcome of a two-stage global game wherein a

market-based asset price determined at the trading stage of the game provides an endogenous

public signal about the fundamental that affects traders’decisions in the coordination stage

of the game. The microstructure of the trading stage is one in which informed traders may

place market orders —rather than full demand schedules— and where a competitive market-

making sector sets the price. Because market-order traders face price execution risk, they trade

less aggressively on their private information than demand-schedule traders, which slows down

information aggregation and limits the informativeness of the asset price. When all traders

place market orders, the precision of the price signal is bounded above and the outcome of the

coordination stage is unique as the noise in the private signals vanishes. More generally, in an

asset market with both market-order and demand-schedule traders, the presence of the former

may drastically limit the range of parameters leading to multiple equilibria. This is especially

true when traders optimise over their type of order, in which case market-order traders tend to

overwhelm the market when the precision of the private signal is large.

Keywords: Market microstructure; Information aggregation; Global game.

JEL Codes: C72, D82, G14.

1. Introduction

In this paper, we study the outcome of a two-stage global game wherein a market-based asset

price determined at the trading stage of the game provides an endogenous public signal about the

fundamental that affects traders’decision in the coordination stage of the game. Our motivation

for doing so is to examine the concern, first raised by Atkeson (2001) and then made formal

by Angeletos and Werning (2006), that a publicly observed market price may aggregate dispersed

information so effectively as to crowd out private signals in traders’assessment of the fundamental,

and in so doing facilitate their coordination on a self-fulfilling outcome. As illustrated by Angeletos

and Werning (2006), this may precisely occur as the noise in the private signal vanishes, a result

that directly challenges Carlsson and van Damme (1993) and Morris and Shin (1998)’s argument

that a small perturbation of the full-information game restores equilibrium uniqueness.

The possibility that a small amount of private noise lead to multiplicity rather than uniqueness

of equilibrium outcomes arises when the precision of the endogenous public signal grows faster than

that of the underlying exogenous private signals at high levels of precision.1 In what follows we

∗Edouard Challe acknowledges the support of chaire FDIR.
†CNRS, Ecole Polytechnique and CREST; Email: edouard.challe@gmail.com.
‡CREST; Email: edouard.chretien.2008@polytechnique.org.
1See also Hellwig et al. (2006). Hellwig (2002) emphasised the role of the relative precison of public versus private

information in determining the outcome of the game. Angeletos et al. (2006) study global games wherein endogenous
public information comes from policy choices rather than an asset price.

1



Market microstructure and equilibrium uniqueness in a global game 2

show that this property crucially depends on the type of market microstructure that one assumes

at the trading stage of the game, and what this microstructure implies for the amount of private

information that is aggregated into the asset price. We substantiate this point by considering

a market microstructure for the trading stage wherein informed traders may place either full

demand schedules or more basic market orders, i.e., order to sell or buy a fixed quantity of assets

unconditional on the execution price.2 All orders (from informed and noise traders) are then

aggregated into an asset price by a competitive market-making sector. This price provides the

endogenous public signal that informed traders may use to coordinate a speculative attack in the

second stage of the game.

To summarise, our results are as follows. In a pure market-order market (see Vives, 1995),

the precision of the endogneous public signal provided by the asset price is bounded above, even

when the precision of the underlying private signals is very (arbitrarily) large. This is due to the

competition of two forces. On the one hand, greater precision leads informed traders to trade more

aggressively on their private information by opening the possiblity of reaping large payoffs from

trading. On the other hand, this very aggressiveness renders the asset price very volatile ex post

(after all market orders have irreversibly been aggregated), which raises the conditional volatility

of the net payoff, i.e., the terminal dividend minus the trading price of the asset. The first effect

makes the informativeness of the price an increasing function of the precision of private signals.

The second effect, however, runs counter the first effect: it deters market-order traders, which are

exposed to price execution risk, from placing large orders. As the precision of private information

increases the strength of the second effect gradually catches up with that of the first effect and the

precision of the price signal increases more and more slowly. This boundedness of the information

conveyed by the price overturns the result in Angeletos and Werning (2006), because (endogenous)

public information can no longer crowd out (exogenous) private information in traders’Bayesian

learning of the fundamental. As a consequence, a high level of precision of private information can

again uniquely pin down the outcome of the coordination game —and we are back to Morris and

Shin (1998). When the share of market-order traders is still exogenous but not necessarily equal

to one, our result must be qualified in the following sense. While it is again true that as private

information becomes infinitely precise then so does public information, just as in the pure demand

schedule/Walrasian auctioneer case of Angeletos and Werning (2006), it is nevertheless the case

that for large range degrees of precision the uniqueness region can be greatly expanded relative to

pure demand schedule case.

We finally examine the case where informed traders can choose their order type ex ante, where

the tradeoff is between placing expensive demand schedules or cheap market orders.3 We notably

study the impact of this choice on the equilibrium share of market-order traders and, by way of

consequence, on the outcome of the coordination stage. We show that as private noise vanishes

2See Brown and Zhang (1997), Wald and Horrigan (2005) and Vives (2008) for further disscussion of the impor-
tance of market orders in actual asset markets. In Challe and Chrétien (2015) we study a market microstructure
with a more general information structure than that in the present paper (by considering correlation of private noise
across traders, which significantly complicates trader’s Bayesian learning), but we do not look at the implications of
market orders for the outcome of a coordination game.

3 In as much as demand schedules allow full conditionality of trades on the realised trading price, they are much
more (in fact, infinitely more) complex that market orders (which are not conditional on the price). Therefore,
demand schedules should be more expensive, as we assume them to be.
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Figure 1: Sequence of events.

the equilibrium is always interior (i.e., market-order and demand-schedule traders are both in

positive measure), but market-order traders ultimately overwhelm the market (i.e., their measure

tends to one). As a result, the rate of convergence of the precision of the public signal under

endogenous order type is half that under exogenous order types. This implies that the endogenous

adjustment of the share of market-order traders further reduces the multiplicity region as private

noise decreases, relative to the case where this share is exogenous.

The rest of the paper is organised as follows. Section 2 presents two stages of the game. Section

3 analyses the outcome of the game when the shares of market-order and demand-schedule traders

are exogenous. Section 4 studies the endogenous determination of those shares, and how this affects

the size of the multiplicity versus uniqueness regions. Section 5 concludes the paper. All the proofs

appear in the Appendix.

2. The model

Following Angeletos and Werning (2006), we consider a two-stage global game wherein a contin-

uum of informed traders i ∈ I = [0, 1] trade an asset in a trading stage before deciding whether

to attack the regime in the coordination stage —see Figure 1. Before the game starts, an unob-

served fundamental θ is drawn from the distribution N
(
θ̄, α−1

θ

)
(which is also the common prior

of informed traders) and affects both asset payoffs in the trading stage and the ability of the gov-

ernment to withstand a speculative attack in the coordination stage. Every informed trader gets

two noisy signals about θ: an exogenous private signal xi = θ+α
−1/2
x ξi, with αx > 0, ξi ∼ N (0, 1)

and cov (θ, ξ) = cov
(
ξi, ξj 6=i

)
= 0, and a public signal z = θ + α

−1/2
z ε̃, with ε̃ ∼ N (0, 1) and

cov (ε̃, θ) = cov (ε̃, ξ) = 0. This public signal is taken as given by informed traders in the coordi-

nation stage but is endogenously determined in the trading stage of the game.

2.1. Coordination stage. In the coordination stage informed trader i chooses action ai ∈
{0, 1}, with ai = 1 (= 0) if the trader is attacking (not attacking) the regime.4 The mass of

attacking traders is thus A =
∫ 1

0 aidi, and it is assumed that the regime collapses whenever

4This section parallels Angeletos and Werning (2006), except for the fact that we consider a nondiffuse prior, as
is required for the asset demands of market-order traders to be well defined. For the sake of comparability we keep
the same notations as theirs whenever this is possible.
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A > θ. Trader i’s payoff at that stage is U (ai, A, θ) = ai (1A>θ − c), where c ∈ (0, 1) is the

cost of attacking the regime. Hence, the payoff for a trader who successfully (unsuccessfully)

attacks the regime is 1 − c > 0 (−c < 0), while one who does not attack earns 0 for sure. In

equilibrium A only depends on the aggregates (θ, z), i.e., A = A (θ, z). Trader i’s policy function

is a (xi, z) = arg maxa∈{0,1} E [U (a,A(θ, z), θ) |xi, z ], with A (θ, z) =
∫
R a (xi, z) f (xi| θ)dxi, where

f (x| θ) is the density of x| θ (∼ N (θ, α−1
x )).

We can restrict our attention to monotone equilibria, in which informed trader i chooses ai = 1

(i.e., to attack) if and only if xi < x∗ (z) (i.e., the trader is suffi ciently pessimistic about θ, given

(xi, z)), where x∗ (z) is a strategy threshold common to all traders, to be determined as part

of the equilibrium.5 In such equilibria the mass of traders attacking the regime is A (θ, z) =

Pr (xi < x∗ (z)| θ) = Φ
(√
αx (x∗ (z)− θ)

)
, where Φ (.) is the c.d.f. of the standard normal. The

regime is abandoned whenever A (θ, z) > θ, or equivalently whenever θ < θ∗ (z), where θ∗ (z) solves

Φ (
√
αx (x∗ (z)− θ∗ (z))) = θ∗ (z) . (1)

It directly follows from the properties of Φ (.) that the latter equation has a unique solution

θ∗ (z) ∈ (0, 1) for all x∗ (z) ∈ R, and that θ∗ (z) is continuous and strictly increasing in x∗ (z).

This has the following interpretation. The threshold x∗ (z) summarises traders’aggressiveness, in

that for any (θ, z) a greater value of x∗ (z) increases the attacking mass A. θ∗ (z) represents the

regime’s fragility, in that for any z a greater value of θ∗ (z) widens the range of realisations of θ

leading to the regime’s collapse. Hence equation (1) summarises the way in which a greater level

of aggressiveness on the part of traders raises the fragility of the regime.

Since the regime collapses if and only if θ ≤ θ∗ (z), trader i’s expected payoff from attacking

the regime is Pr (θ ≤ θ∗ (z)|xi, z) − c. In monotone equilibrium the threshold x∗ (z) corresponds

to the signal received by the marginal trader (i.e. that indifferent between attacking or not) and

hence must satisfy Pr (θ ≤ θ∗ (z)|x∗ (z) , z) = c. Given the assumed information structure, θ| z, x
is normally distributed with variance α−1 ≡ (αx + αz + αθ)

−1 and mean α−1
(
αxx+ αzz + αθθ̄

)
.

Hence, indifference of the marginal trader requires:

Φ

(√
αx + αz + αθ

(
αxx

∗ (z) + αzz + αθθ̄

αx + αz + αθ
− θ∗ (z)

))
= 1− c (2)

The latter equality implicitly defines traders’aggressiveness x∗ (z) ∈ R as a continuous, strictly
increasing function of the regimes’fragility θ∗ (z) ∈ (0, 1) —i.e., a fragile regime makes it safer to

bet on its collapse, thereby inducing a rightward shift in x∗ (z). Solving both (1) and (2) for x∗ (z)

and equating the two gives the equation G (θ∗) = Γ (z), where

G (θ∗) ≡ Φ−1 (θ∗)− αz + αθ√
αx

θ∗, Γ (z) =

√
1 +

αz + αθ
αx

Φ−1 (1− c)− αθ√
αx
θ − αz√

αx
z,

so we have θ∗(z) ∈ G−1(Γ(z)). When G : (0, 1) → R is monotonically increasing, it necessarily

crosses the Γ (z) line exactly once whatever the value of z. When G (.) is non-monotonic there are

values of z such that G (.) crosses the Γ (z) more than once. It then follows from the minimal value

5See, e.g., Morris and Shin (2004, Lemma 1).
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of ∂G/∂θ that there exists a unique Bayesian Nash equilibrium for all z ∈ R if and only if:

√
2παx ≥ αz + αθ. (3)

2.2. Trading stage. Let us now turn to the trading stage, which will determine both the

distribution (ex ante) and the realisation (ex post) of the public signal z. We assume that informed

traders have access to two assets: (i) a riskless bond in perfectly elastic supply and paying out a

constant interest rate; and (ii) a risky asset with trading price p and payoff θ. Aside from informed

traders, noise traders place a net asset demand for the risky asset of ε ∼ N
(
0, α−1

ε

)
. Following

Vives (1995) and Medrano (1996), we consider a market microstructure wherein (a) all or some

traders place market orders (rather than full demand schedules), and (b) a (competitive, risk-

neutral) market-making sector sets the price p. In contrast to a demand schedule, a market order

is conditional on the private signal xi but not on the execution price p; once placed, it is executed

irrevocably at whatever value of p is set by market makers. The market-making sector observes

the order book L (.) emanating from informed and noise traders and sets the price p; competition

among risk-neutral market makers then causes them to undercut each other until p = E (θ|L (.)).

Note that L (.) is itself a function of p whenever a positive mass of informed traders places demand

schedules.

Let us call M ⊂ I the set of market-order traders and I\M the complementary set of demand-

schedules traders, and define ν =
∫
I\Mdi ∈ [0, 1] and 1− ν as the measures of those sets. In what

follows we will consider both the case whereM and I\M are exogenous (Section 3) and that where

they are endogenous (Section 4). All informed traders have zero initial wealth (this is without

loss of generality) and preferences V (wi; γi) = −e−γiwi , where γi and wi = (θ − p) ki are the risk
aversion coeffi cient and end-of-stage wealth of trader i, respectively. Private signals are assumed

to be independent of risk tolerance, i.e.,

∀J ⊂ I,
∫
J

(ξi/γi) di = 0.

An equilibrium of the trading stage is a pair of investment functions for demand-schedule

(kI\M (xi, p; γi)) and market-order (kM (xi; γi)) traders and a price function p (θ, ε) such that:

• kI\M (.) and kM (.) maximise traders’expected utility:

∀i ∈ I\M, kI\M (xi, p; γi) ∈ arg max
k∈R

E[V ((θ − p)k; γi)|xi, p], (4)

∀i ∈M, kM (xi; γi) ∈ arg max
k∈R

E[V ((θ − p)k; γi)|xi]; (5)

• The market-making sector sets p = E[θ|L(.)], where

L (p) =

∫
I\M

kI\M (xi, p; γi)di+

∫
M
kM (xi; γi)di+ ε. (6)

We then have the following lemma.

Lemma 1. The trading stage has a unique linear Bayesian equilibrium, which is characterised by:
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• the investment functions

kI\M (xi, p; γi) =
αx
γi

(xi−p), kM (xi; γi) =
β

γi
(xi−θ), with β =

1

α−1
x + α−1

θ − (αθ +B2αε)
−1 ;

• the price function

p (θ, ε) = (1− λB) θ + λB
(
θ +B−1ε

)
, with λ =

Bαε
B2αε + αθ

. (7)

In those functions B > 0 is the unique real solution to the cubic equation:

B = αx
ν

γI\M
+

1− ν
γM

(
1

αx
+

1

αθ
− 1

αθ + αεB2

)−1

, (8)

where γ−1
I\M and γ−1

M are the average risk tolerance coeffi cients of demand-schedule and market-

order traders:

γ−1
I\M =

1

ν

∫
I\M

γ−1
i di, γ

−1
M =

1

1− ν

∫
M
γ−1
i di.

Equation (7) implies that observing p is equivalent to observing θ+B−1ε. Thus, the endogenous

public signal z about θ is z = θ + B−1ε (i.e., ε̃ = B−1ε) and has precision αz = B2αε. We then

infer from (3) that equilibrium uniqueness in the coordination stage requires

√
2παx ≥ B2αε + αθ. (9)

Note that when αθ → 0 (i.e., the prior is diffuse), ν = 1 and γi = γ ∀i ∈ [0, 1] (i.e., all

informed traders share the same preferences and place demand schedules), then equation (8) gives

B = γ−1αx, so that p = θ + γσ2
xε. Condition (9) then becomes

√
2παx ≥ γ−2α2

xαε, which is

identical to that in Angeletos and Werning (2006).

3. Exogenous trader types

3.1. Markets with a single type. We first consider the case where all informed traders place

market orders in the trading stage (as in Vives, 1995) and that where they all place full demand

schedules. We then have the following proposition.

Proposition 1. If all informed traders place market orders in the trading stage, then the outcome
of the coordination stage is unique as αx → +∞. If all informed traders place demand schedules,
then are multiple equilibrium outcomes in the coordination stage as αx → +∞.

Proposition 1 implies that when the market microstructure of the trading stage is such that

traders place market orders and market makers set the price, then one recovers the original property

in Morris and Shin (1998), according to which the outcome of the coordination stage is unique

as the noise in the private signal vanishes. In contrast, in a pure demand-schedule market one

recovers the basic result in Angeletos and Werning (2006), in which a Walrasian auctioneer (rather

than a market-making sector) sets the price. The intuition for this difference is as follows. In a
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pure demand-schedule market (ν = 1), informed traders are able to condition their trades on the

trading price, so the only source of risk they face concerns the true value of the fundamental. As

the precision of the private signals increases, traders collectively trade more aggressively against

any discrepancy between the observed price p and the fundamental θ. Formally, from Lemma 1

the total asset demand by informed traders in a pure demand-schedule market is given by:

∫
I\M

αx
γi

(θ + α−1/2
x ξi − p)di = αx

(∫
I\M

γ−1
i di

)
(θ − p) =

αx
γI\M

(θ − p),

which implies that B = γ−1
I\Mαx → +∞, and thus p → θ, as αx → +∞. In the limit p becomes

perfectly informative of θ (i.e. αz → +∞); this eventually causes every traders to choose ai based
exclusively on p (rather than xi) in the second stage and thereby facilitates coordination on a

self-fulfilling outcome. In contrast, in a pure market-order market (ν = 0) informed traders do not

condition their trades on p and hence face a residual payoff risk even as the xis get more and more

informative of θ. This payoff risk leads market-order traders to trade less aggressively on the basis

of their private signal, which limits the amount of information that is aggregated into the price.

Formally, from Lemma 1 again the total asset demand by informed traders in a pure market-order

market is: ∫
M

β

γi
(θ + α−1/2

x ξi − θ)di = β

(∫
M
γ−1
i di

)
(θ − θ) =

β

γM
(θ − θ),

In the limit as αx → +∞ we have αz = B2αε < +∞, i.e. the precision of the public signal
is bounded above. In this case private signals ultimately determine actions in the second stage of

the game, which hinders coordination on a self-fulfilling outcome.

3.2. Market with both types. We now consider the case where both M and I\M have

positive measure. For expositional clarity we assume here that traders share the same preferences,

i.e., γi = γ > 0 ∀i ∈ [0, 1], but the result can straightforwardly be extended to the case of

heterogenous γs. We first note that for all ν ∈ [0, 1] it is necessarily the case that 0 < B ≤ αx/γ,

with B = αx/γ when ν = 1 and B < αx/γ when ν < 1.6 Moreover, the uniqueness condition (9)

implies that, for (αx, αε, αθ) given, the uniqueness region expands as B falls. Thus, if for a given

set of parameters we are in the uniqueness region when ν = 1 (i.e., the pure demand-schedule case),

then we are also in the uniqueness region when ν < 1 (and both types coexist). Total differencing

(8) and using the fact that 0 < B ≤ αx/γ, we find that, for any (αx, αε, αθ) given and for all

ν ∈ [0, 1] we have
∂B

∂ν
=

αx − β
γ + 2(1− ν)Bαε (αθ +B2αε)

−2 β2
> 0.

In short, the greater the fraction of market-order traders, the larger the uniqueness region.

Again, this is because market order traders face price risk and hence trade less aggressively on

their private information than demand-schedule traders do. This reduces the amount of private

information that is aggregated into p, thereby reducing its weight in traders’assessment of θ and

impeding traders’coordination.7

6Since αθ +B2αε ≥ αθ, we have α−1
x + α−1

θ −
(
αθ +B2αε

)−1 ≥ σ2
x and hence B ≤ αx/γ.

7Note the total effect of ν on B aggregates two effects. First, as ν increases, traders on average trade more
aggressively and hence prices become more informative. Second, the aggressiveness of demand-schedule traders



Market microstructure and equilibrium uniqueness in a global game 8

Figure 2: Multiplicity and uniqueness regions under exogenous order types. Note: σp ≡ α−1/2
z and

σx ≡ α
−1/2
x denote the noise in the public and private signals, respectively. The bold line is the

uniqueness frontier, while the dotted lines shows how σp depends on σx for different values of ν.

The role of ν in affecting the multiplicity region is illustrated in Figure 2. From the analysis in

Section 2.2 we know that αz = B2αε. Total differencing equation (8), we find that for ∂B/∂αx > 0,

implying that a greater precision of the private signal tends to raise αz. The dotted and dashed

lines shows the monotone response of σp ≡ α
−1/2
z (i.e., the noise in the public price signal) to

changes in σx = α
−1/2
x (i.e., the noise in the price signal) for different values of ν. The bold line

represents the multiplicity versus uniqueness boundary (3), i.e. the
√

2πσ−2
x = σ−2

z + αθ line. A

smaller value of ν is associated with a smaller uniqueness region as σx → 0.

4. Endogenous trader types

The analysis above shows that the presence of market-order traders tends to reduce the indeter-

minacy region by limiting the impact of the price signal on ex post beliefs about the fundamental.

We now analyse a trader’s choice of order type, and solve for the equilibrium shares of demand-

schedule and market-order traders. Essentially, the key tradeoff faced by every informed trader

is as follows. On the one hand, placing a demand schedule insulates the expected net payoff of a

trader from price risk (since effective trades are conditional on the price). On the other hand, it is

more costly than a market order, as it requires to place a large (in fact, infinite) number of limit

orders in order to generate a complete conditionality of the quantity traded on the execution price.

Following Vives (2008), we capture this tradeoff by normalising the cost of a market order to zero

and setting that of a full demand schedule to c > 0. We work out the solution to this problem

under the maintained assumption that the choice of order type must be made before the traders

tends to increase the price risk faced by market-order traders, thereby pushing them to trade less aggressively on
their private information as ν increases. The direct effect always dominate, implying that ∂B/∂ν > 0.
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Figure 3: Multiplicity and uniqueness regions under endogenous order types. Note: σp ≡ α
−1/2
z

and σx ≡ α
−1/2
x denote the noise in the public and private signals, respectively. The bold line is

the uniqueness frontier, while the dotted lines shows how σp depends on σx for different values of
c (the relative cost of demand schedules), taking into acount the endogenous adjustment of ν.

observe their private signal and place their orders—see Figure 1 again.8

We rank informed traders in nondecreasing order of risk aversion, define the nondecreasing

function γ : [0, 1] → R+, and further assume that γ (.) is an increasing homeomorphism and that

γ (0) > 0. We solve for traders’choice of order backwards. First, we compute the expected utility

of a trader of each type conditional on its information set (i.e. (xi, p) ∀i ∈ I\M , and xi ∀i ∈ M).
Second, we compute the unconditional ex ante utility of each type; and third, we compare the two

ex ante utilities for a given risk aversion coeffi cient.

We know from the CARA-Normal framework that the value function associated with the in-

formation set Gi is:

W (Gi; γi) ≡ max
k
E[V (wi − κc)|Gi; γi] = − exp

[
−E[θ − p|Gi]2

2V[θ − p|Gi]
+ κcγi

]
,

where κ = 1 if Gi = (xi, p) (i.e., the trader places a full demand schedule) or κ = 0 if Gi = xi (i.e.,

the trader places a market order). Using the conditional distributions of θ and θ − p for demand-
schedule and market-order traders (see equations (A1)—(A2) in the Appendix A for details), we

8This follows Medrano (1996) and Brown and Zhang (1997). If it were not the case, traders could potentially be
willing to adjust their trades (both in terms of order type and amount of trades) depending on the observed shares
of demand-schedule and market-order traders, and this would make the signal extraction problem intractable.
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find the corresponding value functions to be:

WI\M (xi, p; γi) = − exp

[
−C

2
(xi − p)2

]
, C ≡ α2

x

αx + αθ +B2αε
, (10)

WM (xi; γi) = − exp

[
−D

2
(xi − θ̄)2

]
, D ≡ β2

(
(1− λB)2

αx + αθ
+
λ2

αε

)
, (11)

where β and B are defined in Lemma 1. Let f (x) denote the ex ante (i.e., unconditional) density

of the signal x. From the distributions of θ and ξ we have x ∼ N
(
θ, α−1

θ + α−1
x

)
. Hence, using

(11) and rearranging the ex ante utility from being a market-order trader is found to be

E [WM (xi; γi)] =

∫
R
WM (xi; γi) f (xi)dxi = −

√√√√ α2
θ

αθ+αx
+B2αε

αθ +B2αε
. (12)

The ex ante utility of demand-schedule traders is computed in a similar way, except that

we must first condition their information set (xi, p) on xi before computing the unconditional

expectation ofWI\M (xi, p; γi).
9 Applying the law of iterated expectations and rearranging we get:

E
[
E
[
WI\M (xi; γi)

∣∣xi]] =

∫
R
E
[
WI\M (xi; γi)

∣∣xi] f (xi)dxi

= −ecγ(i)

√
αθ +B2αε

αθ +B2αε + αx
(13)

Trader i chooses chooses to place a full demand schedule if and only if E
[
E
[
WI\M (xi; γi)

∣∣xi]] ≥
E [WM (xi; γi)], i.e., if and only if

γ (i) ≤ γ̄ =
1

c
ln


√(

α2
θ

αθ+αx
+B2αε

)
(αθ +B2αε + αx)

αθ +B2αε

 , (14)

where, from Lemma 1,

B = αx

∫ γ−1(γ̄)

0
γ (i)−1 di+

(
1

αx
+

1

αθ
− 1

αθ + αεB2

)−1 ∫ 1

γ−1(γ̄)
γ (i)−1 di, (15)

with γ−1 (γ̄) = 0 if γ̄ < γ (0) and γ−1 (γ̄) = 1 if γ̄ > γ (1). For (αx, αθ, αε) ∈ R3
+ given, the

properties of the γ (.) function imply that the solution (γ̄, B) to (14)—(15), if it exists, can be of

three types. More specifically, it is either such that γ̄ ∈ [γ (0) , γ (1)], in which case the solution

is interior (i.e., both M and I\M are nonempty); or γ̄ < γ (0), so that the solution is corner and

all traders placing market orders (i.e., (M, I\M) = (I,∅)); or γ̄ > γ (1) and all traders place

9Here the intermediate step is the computation of E [WL (xi, p; γi)|xi]. Using the price function (7) and the fact
that θ|xi ∼ N

(
αxxi+αθ θ̄
αx+αθ

, 1
αx+αθ

)
we find that

WL (xi, p; γi) |xi ∼ N

 αx[αx(1− λB) + αθ](xi − θ)√
2(αx + αθ +B2αε)(αx + αθ)

,

αx
√
(λB)2(αx + αθ)−1 + λ2α−1

ε√
2(αx + αθ +B2αε)

2

.
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full demand schedules (i.e., (M, I\M) = (∅, I)). The intuition for this sorting of informed traders

according to their degree of risk aversion is that a greater risk aversion lowers trading aggressiveness,

and hence the expected benefit from expanding the information set from xi to (xi, p).10

As before we are interested in the outcome of the coordination stage of the game as αx becomes

large (holding (αθ, αε, c) fixed), especially with regard to the way market-order traders alter the

size of the uniqueness region. This is summarised in the proposition 2 below.

Proposition 2. For any (αθ, αε, c) ∈ R3
+, and as αx → +∞, (i) both M and I\M have strictly

positive measure (i.e., the equilibrium is interior); (ii) γ̄ → γ (0) (i.e., market-order traders even-

tually overwhelm the market); (iii) αz ∼
αx→∞

(e2γ(0)c − 1)−1αx, so that αz goes to infinity as the

same rate αx (while it does at the same rate as α2
x when I\M has exogenous, positive measure).

Proposition 2 emphasises several key properties of the equilibrium when αx is large. Note that

the property that the equilibrium is interior as αx → +∞ (point (ii)) is valid for any value of the

cost c; in contrast, when αx is small one can easily construct examples of corner solutions with a

pure market-order (demand-schedule) market when c is suffi ciently high (low). Points (ii) and (iii)

are closely related. As discussed in Section 3, market-order traders tend to slow down information

aggregation. It is precisely because they crowd out demand-schedule traders as αx → +∞ (point

(ii)) that the precision of the endogenous public signal grows at the same rate as αx, instead of

α2
x when market shares are exogenous (point (iii)). To see how this may expand the uniqueness

region, note that under exogenous shares from (8) we have αz ∼
αx→∞

(ν/γI\M )α2
x. Hence for

ν > 0 and αx large enough, since
[
(e2γ(0)c − 1)−1αx

]
/(ν/γI\M )α2

x →
αx→∞

0 it is necessarily the case

that the precision of the price signal is greater under endogenous orders than under exogenous

orders. Hence, whenever the uniqueness condition (3) is satisfied under exogenous shares, it is

also so under endogenous shares, but the converse is not true. Figure 3 illustrates the relationship

between αz and αx when αx is large (i.e., σx = α
−1/2
x is small) and the shares of market-order and

demand-schedules traders are endogenous.

Finally, note from (13) that heterogeneity in the cost c is formally equivalent to heterogeneity

in risk aversion. To encompass both cases, rank traders in nondecreasing orders of c (i) γ (i),

assume that the function g (i) = c (i) γ (i) is continuous, strictly increasing, that its reciprocal is

continuous, and that 0 < g (0) < g (1) < +∞, and solve for the marginal trader exactly in the
same way as in the case where c (i) = c ∀i ∈ I.

5. Concluding remarks

In this paper, we have analysed a two-stage global game wherein a market-based asset price de-

termined at the trading stage of the game provides an endogenous public signal affecting traders’

decisions in the coordination stage of the game. By allowing both market-order and demand-

schedule traders to coexist, and by letting traders choose their preferred order type, the market

microstructure considered here is both richer and more realistic than the usual pure demand sched-

ule/Walrasian auctioneer paradigm. As we have shown, in this context the multiplicity region can

be small even when private information is very precise —and especially so when traders optimise

over their type of order (in addition to their amount of trade). The reason for this is that the

10See Medrano (1996) and Vives (2008) for further discussion.
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presence of market-order traders limits information aggregation and hence the precision of the

endogenous public signal that may serve as a coordination device when deciding whether or not to

attack the regime. In this sense, a lower degree of informational effi ciency (in the trading stage)

may ultimately be stabilising (in the coordination stage). While this conclusion was derived under

a specific barrier to full informational effi ciency —market-order traders’willingness to avoid price

risk—, we conjecture that it would also apply in a variety of contexts where information aggregation

is impeded.11

6. Appendix

A. Proof of Lemma 1 We restrict our attention to equilibrium price functions p(θ, ε) that are

linear in (θ, ε), which implies that p is normally distributed. A trader i with risk aversion coeffi cient

γi and information set Gi has a demand for assets ki(Gi) = γ−1
i E[θ − p|Gi]/V[θ − p|Gi]. We may

thus write the demands by limit- and market-order traders as follows:

∀i ∈ I\M, kiI\M (xi, p) = γ−1
i fI\M (xi, p), with fI\M (xi, p) =

E[θ|xi, p]− p
V[θ|xi, p]

,

∀i ∈ M, kiM (xi) = γ−1
i fM (xi), with fM (xi) =

E[θ − p|xi]
V[θ − p|xi]

,

i.e., within each group asset demands are identical up to a risk tolerance correction γ−1
i . Now

conjecture that fI\M (.) and fM (.) have the form fI\M (xi, p) = a(xi − θ) + ζ(p) and fM (xi) =

c(xi − θ), where a and b are normalised trading intensities (for a trader with γi = 1) and ζ (.)

is linear. Using the convention that the average signal equals θ a.s., and recalling that γi is

independent from ξi, the limit order book is given by

L(p) =

∫
I\M

kiI\M (xi, p)di+

∫
M
kiM (xi)di+ ε = B

[
θ +B−1ε

]
−Bθ + ζ(p)

∫
I\M

γ−1
i di,

where B = aν/γI\M + c (1− ν) /γM . The market making sector observes L(.), a linear function of

p, and sets p = E[θ|L(.)] = E[θ|z], where z = θ+B−1ε is the public signal. From standard normal

theory we infer that p is indeed linear, normal and given by equation (7).

We now need to identify a and c. From the joint distribution of (p, xi, θ) we get:

∀i ∈ I\M,

{
E[θ|p, xi] = B2αεz+αθθ+αxxi

B2αε+αθ+αx
= (B2αε+αθ)p+αxxi

B2αε+αθ+αx
,

V[θ|p, xi] = (B2αε + αθ + αx)−1.
(A1)

∀i ∈ M,

{
E[θ − p|xi] = (1−λB)αx

αx+αθ
(xi − θ),

V[θ − p|xi] = (1− λB)2 V[θ|xi] + λ2

αε
= (1−λB)2

αx+αθ
+ λ2

αε
.

(A2)

Hence, we obtain

kiI\M (xi, p; γi) =
E[θ|p, xi]− p
γiV[θ|p, xi]

=
αx
γi

(xi − p), kiM (xi; γi) =
E[θ − p|xi]
γiV[θ − p|xi]

=
β

γi

(
xi − θ

)
,

where β = (α−1
x + α−1

θ −
(
αθ +B2αε

)−1
)−1. In the special case where γi = γ ∀i ∈ [0, 1], we have

11For example, inasmuch as impefect competition in the asset market slows down information revelation (Kyle,
1989), we expect it to also expand the uniqueness region in the coordination stage.
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kiI\M (xi, p) = γ−1αx (xi − p), kM (xi) = γ−1β(xi − θ) and p = (1 − λB)θ + λBz, where B solves

B = νγ−1αx + (1− ν)γ−1β and λ = Bαε
B2αε+αθ

.

Let us now turn to the parameter B. To establish that B is unique, positive and finite, define

the function f : R→ R as follows:

f : B → B − ναx
γI\M

− 1− ν
γM (α−1

x + α−1
θ − (αθ +B2αε)

−1)
,

so that a root of f (B) is a solution to (8). f is continuous and strictly increasing over [0,+∞) and

such that f (0) = −αx
(

ν
γI\M

+ (1−ν)
γM

)
< 0 and lim

B→+∞
f (B) = +∞. Hence f is a bijection that

admits a unique root B0 > 0 over [0,+∞). Moreover, as B → α−1
x + α−1

θ −
(
αθ +B2αε

)−1
> 0

on R, f (.) is strictly negative on R−. Hence B0 is the unique root of f in R. In the numerical
implementation of the model we use the exact solution for B, which is found using Cardano’s

method and gives:

B =
3

√
1

2
(−(2

a3
2

27
− a1a2

3
+ a0) +

√
4a3

1 + 4a0a3
2 − (a1a2)2

27
− 2

3
a0a1a2 + a2

0)

+
3

√
1

2
(−(2

a3
2

27
− a1a2

3
+ a0)−

√
4a3

1 + 4a0a3
2 − (a1a2)2

27
− 2

3
a0a1a2 + a2

0)− a2

3
,

where

a0 = − αθ

(α−1
x + α−1

θ )αε

(
ν

γI\M
+

(1− ν)

γM

)
, a1 =

α−1
x αθ

(α−1
x + α−1

θ )αε
,

and a2 = −
[ ν
γI\M

+ (1−ν)
γM

+ ν
γI\M

αxα
−1
θ ]

(α−1
x + α−1

θ )
.

B. Proof of Proposition 1 We know from Lemma 1 that B ∈ R∗+ uniquely solves (8). When

ν = 0, B solves 1/(γMx) = α−1
x + α−1

θ −
(
αθ + αεx

2
)−1. In this case limαx→+∞B is finite, hence

the uniqueness condition (9) necessarily holds as αx → +∞. In contrast, when ν = 1 we have

limαx→+∞
B2
√
αx

= +∞, hence the uniqueness condition (9) is necessarily violated as αx → +∞.

C. Proof of Proposition 2 (i) We show that k ≡ γ−1 (γ̄) ∈]0; 1[ for αx suffi ciently high, and

that k is unique. Let us first define the function

f̃ : αx, k → e2γ(k)c −
(

1− αθ
αx + αθ

αx
B(k, αx)2αε + αθ

)(
1 +

αx
B(k, αx)2αε + αθ

)
, (C.1)

where B(k, αx) is the unique solution to

B(k, αx) = αx

∫ k

0
γ(i)−1di+

(
1

αx
+

1

αθ
− 1

αθ +B(k, αx)2αε

)−1 ∫ 1

k
γ(i)−1di. (C.2)

We have f̃ (αx, 1) →
αx→∞

e2γ(1)c−1 > 0 while f̃ (αx, 0) →
αx→∞

−∞ < 0. Hence, by the intermediate

value theorem there exists α ∈ R∗+,such that for all αx ≥ α, 0 ∈]f̃ (αx, 0) , f̃ (αx, 1) [. By continuity,



Market microstructure and equilibrium uniqueness in a global game 14

∀αx ≥ α, ∃k (αx) ∈]0, 1[ such that f̃ (αx, k (αx)) = 0. In this range of parameter, there exists an

interior equilibrium allocation, and the corner solutions are ruled out (otherwise the polar traders

would be better off switching positions).

To establish uniqueness, define α̃ ≡ αθ/ (αx + αθ) and X ≡ αx/
(
B(k(αx), αx)2αε + αθ

)
, and

rewrite f̃ (αx, k (αx)) = 0 as P (X) = α̃X2 − (1 − α̃)X+e2γ(k(αx))c − 1 = 0. This polynomial has

the following two real roots:

s−, s+ =
1

2α̃

[
(1− α̃)∓

√
(1− α̃)2 − 4α̃

(
e2γ(k(αx))c − 1

)]
.

We prove by contradiction that X = s− is the only possible root of P (X) = 0 when αx becomes

large enough. Formally,

∃α1 ≥ α,∀αx ∈ R∗+, ∀k ∈]0; 1[,
αx ≥ α1

f̃ (αx, k) = 0

}
⇒ αx

B(k, αx)2αε + αθ
= s−. (C.3)

To see this, suppose that ∀α1 ≥ α,∃αx ∈ R∗+, ∃k ∈]0; 1[ such that

(
αx ≥ α1

)
∧ (f̃ (αx, k (αx)) = 0) ∧

(
αx

B(k(αx), αx)2αε + αθ
= s+

)
.

In particular, for n ∈ N large enough (say larger than n0 = dαe),

∃αx, ∃k, (αx ≥ n) ∧ (f̃ (αx, k) = 0) ∧ (αx/
(
B(k, αx)2αε + αθ

)
= s+)

For every n ≥ n0 we pick an αx, and an associated k(αx), satisfying (αx ≥ n)∧(f̃ (αx, k (αx)) =

0) ∧ (αx/
(
B(k(αx), αx)2αε + αθ

)
) and denote it αn (resp. k(αn)), thereby constructing the series

(αn)n≥n0
(resp. (k(αn))n≥n0

). As αn →
n→∞

∞, and since k(αn) must belong to [0; 1] we have

4α̃

(1− α̃)2

(
e2γ(k(αn))c − 1

)
=

4αθ
αn + αθ

(
αn + αθ
αn

)2 (
e2γ(k(αn))c − 1

)
→

n→∞
0, (C.4)

and hence
Xα̃

1− α̃ =
1

2

[
1 +

√
1− 4α̃

(1− α̃)2

(
e2γ(k(αn))c − 1

)]
→

n→∞
1.

This in turn implies that

αn
B(k(αn), αn)2αε + αθ

∼
n→∞

αn
αθ
,

that is, B(k(αn), αn)2αε →
n→∞

0. Since for each n ≥ n0, B(k(αn), αn)2 ≥ B(0, αn)2 while(
B(0, αn)2

)
n∈N admits a finite, non-zero limit as n → ∞, we have a contradiction that proves

(C.3). To summarise, for every given set of parameters, the function

k → αx
B(k, αx)2αε + αθ

− 1

2α

[
(1− α̃)−

√
(1− α̃)2 − 4α

(
e2γ(k)c − 1

)]
(C.4)

is strictly decreasing and thus has a unique root. For every αx ≥ α1, we also have that αx ≥ α,
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hence we know that there exists k ∈]0; 1[ such that f̃(αx, k) = 0. Moreover, as αx ≥ α1, we know

that k is the unique root of (C.4). Hence, k ∈]0; 1[ exists and is unique. We will denote it k(αx).

(ii) From above, ∀αx ≥ α1 we have αx/
(
B(k(αx), αx)2αε + αθ

)
= s−. Since k(αx) ∈]0; 1[ we

have

αx
B(k(αx), αx)2αε + αθ

≥
(1− α̃)−

√
(1− α̃)2 − 4α̃

(
e2γ(0)c − 1

)
2α̃

,

or, rearranging,

B(k(αx), αx)2 ≤ 2α̃

(1− α̃)−
√

(1− α̃)2 − 4α̃
(
e2γ(0)c − 1

) αxαε .
Moreover, from (15) we know that

(
k (αx)

γ (1)
αx

)2

≤ α2
x

(∫ k(αx)

0
γ(i)−1di

)2

≤ B(k(αx), αx)2

Hence, ∀αx ≥ α1,

0 ≤ k (αx) ≤ γ (1)

αx

√√√√αx
αε

2α̃

(1− α̃)−
√

(1− α̃)2 − 4α̃
(
e2γ(0)c − 1

)
We know from (C.4) that 4α̃

(1−α̃)2

(
e2γ(0)c − 1

)
→

αx→∞
0. It follows that

(1− α̃)−
√

(1− α̃)2 − 4α̃
(
e2γ(0)c − 1

)
2α̃

=
(1− α̃)− (1− α̃)

√
1− 4α̃

(1−α̃)2

(
e2γ(0)c − 1

)
2α

=
(1− α̃)

4α̃

4α̃

(1− α̃)2

(
e2γ(0)c − 1

)
+ o
αx→∞

(1) =
e2γ(0)c − 1

1− α̃ + o
αx→∞

(1) →
αx→∞

e2γ(0)c − 1,

We infer that

γ (1)

αx

√√√√αx
αε

2α̃

(1− α̃)−
√

(1− α̃)2 − 4α̃
(
e2γ(0)c − 1

) ∼
αx→∞

γ

αx

√
αx/αε

e2γ(0)c − 1
→

αx→∞
0,

Hence k(αx) →
αx→∞

0, and (by the continuity of γ (.)) γ̄ = γ (k(αx)) →
αx→∞

γ (0).

(iii) Using (C.3) above we get

αx
B(k(αx), αx)2αε + αθ

= s− =
e2γ(k(αx))c − 1

1− α̃ + o
αx→∞

(
e2γ(k(αx))c − 1

1− α̃

)
→

αx→∞
e2γ(0)c − 1.

We infer that

B(k(αx), αx)2αε
αx

=
B(k(αx), αx)2αε + αθ

αx
− αθ
αx

→
αx→∞

1

e2γ(0)c − 1
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We conclude that αz = B(k(αx), αx)2αε ∼
αx→∞

(e2γ(0)c − 1)−1αx.
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