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Diseases transmission in a z-ary tree

P. Debs, T. Haberkorn ∗

July 23, 2015

Abstract

We extend some results of Itai Benjamini and Yuri Lima (see [1]). In this paper they
consider a binary tree Tn of height n, each leaf is either infected by one of k diseases or
not infected at all. In other words, x at generation n is infected by the i-th infection with
probability pi and sane with pk+1. Moreover the infections are independently distributed for
each leaf.
Infections spread along the tree based on specific rules. In their paper they study the limit
distribution of the root of Tn as n goes to infinity.
Here we want to study the more general case of a Galton-Watson tree and a z-ary tree.

1 Introduction

First we recall the definition of a Galton Watson tree (GW) and give a few notations. Assume
that N is a N-valued random variable following a distribution q, in other words P(N = i) = qi for
i ∈ N and to have an interesting problem, we assume that q0 + q1 = 0 (Bötcher case).
Let φ be the root of the tree and Nφ an independent copy of N . Then, we draw Nφ children of
φ: these individuals are the first generation. In the following we write N for Nφ for typographical
simplicity. At the n-th generation, for each individual x we pick Nx an independent copy of N
where Nx is the number of children of x and so on. The set T, consisting of the root and its
descendants, forms a GW of offspring distribution q.
We denote by |x| the generation of x and for n ∈ N, Tn = {x ∈ T, |x| ≤ n} the GW cut at height
n and the leaves of Tn are the elements of Tn\Tn−1.
According to Neveu’s notation ([3]), to each vertex x at generation m ∈ N, we associate a sequence
x1 . . . xm where xi ∈ N and to simplify we write x = x1 . . . xm.
This sequence gives the complete “genealogy” of x: if y = x1 . . . xi with |y| = i < m, y is the
ancestor of x at generation i and we write y < x.
Note that a z-ary tree is just a particular case of a GW with qz = 1.
In [1], Benjamin and Lima consider the spread of an infection in a binary tree denoted Tn of height
n. More precisely, they consider a probability vector p = (p1, . . . ,pk+1) ∈ (R∗

+)
k+1 satisfying

k+1
∑

i=1

pi = 1 (1.1)

and each of the nodes of Tn is infected or not by one of the disease {1, . . . , k} with the following
rules
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• Independently of the others, each leaf is infected according to p

P(leaf is infected by i) = pi, P(the leaf is not infected) = pk+1.

• Nodes at generation n− 1 are infected this way:

(R1) if both children have the same state (infected or not), the ancestor is infected (or not)
by it;

(R2) if both children are infected by different diseases, the ancestor is not infected;

(R3) if only one of the children is infected, the ancestor is infected by it.

• This step is repeated for level n− 2 and so on.

One of their results is the asymptotic behavior of p(n), the distribution of the state of the root of
Tn, i.e. the asymptotic behavior of

∀ 1 ≤ i ≤ k P(root is infected by i) = pi(n), P(root is not infected ) = pk+1(n).

They obtain the following result (0i denotes i successive zeros)

Theorem 1.1 Assume that p1 ≥ p2 ≥ · · · ≥ pk.

1. If p1 = · · · = pk, then p(n) converges to
(

1
2k−1 , . . . ,

1
2k−1 ,

k−1
2k−1

)

.

2. If p1 = · · · = pi > pi+1 for some i ∈ J1, k − 1K, then p(n) converges to
(

1
2i−1 , . . . ,

1
2i−1 , 0k−i,

i−1
2i−1

)

, where the entry 1
2i−1 repeats i times.

The aim of the present paper is to extend, when it can be, the previous results in the case of a
z-ary tree for z > 2 and in a very specific case for a GW. Consider the family of probabilities Pk

define by

Pk :=

{

p = (p1, . . . ,pk+1) ∈ (R∗
+)

k+1 :

k+1
∑

i=1

pi = 1

}

and (Xj)j≥1 i.i.d. random vectors {0, 1}k-valued such that:

P(Xj = ei) = pi,P (Xj = 1) = pk+1

where (ei)
k
i=1 are the canonical vectors of Rk and 1 =

∑k
i=1 ei.

First we have to give the spread rules for the k diseases in a GW Tn:

• Initially each leaf x of Tn is associated to a random variable Xx and is infected as follows:

P(x is infected by i) = P(Xx = ei) = pi,P(x is not infected) = P(Xx = 1) = pk+1.

(Consequently, each leaf is infected i.i.d. according to p.)

• Nodes at generation n− 1 are infected this way:

(R1’) if all the children have the same state (infected or not) the ancestor is infected (or not)
by it;

(R2’) if two children are infected with different diseases, the ancestor is not infected;

(R3’) if some children are infected by a single disease and the others are not infected, the
ancestor is infected by it.
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It can be express this way:

for |x| = n− 1, Xx =

{
⊗Nx

i=1 Xxi if ‖⊗Nx

i=1 Xxi‖ = 1
1 otherwise,

where ⊗ : Rk × R
k → R

k, (x, y) 7→ x⊗ y = (x1y1, x2y2, . . . , xkyk).

• We repeat this step for level n− 2 and so on.

As claimed, we want to determine p(n) the distribution of the state of the root and its asymptotic
behavior, in other words the law of Xφ (or X0) and in the case of Tn:

∀i ∈ J1, kK,P(X0 = ei) = pi(n) and P(X0 = 1) = pk+1(n).

In all of our results we can assume without loss of generality that p1 ≥ p2 ≥ · · · ≥ pk.

Theorem 1.2 1. For p ∈ Pk such that p1 = · · · = pk, if p(n) converges, it does to (x̄, . . . , x̄, 1−
kx̄) where x̄ is the unique fixed point in (0, 1/k] of:

fk(x) := GN (1− (k − 1)x)−GN (1− kx)

where GN is the generating function of N .

2. For p ∈ Pk such that p1 = · · · = pi > pi+1 ≥ pi+1 ≥ · · · ≥ pk, then if p(n) converges, it
does to (x̄, . . . , x̄, 0k−i, 1− ix̄) where x̄ is the unique fixed point of fi in (0, 1/i].

3. If i = 1, p(n) converges to (1, 0k).

Note that the third point says that if there is only one major disease, regardless of the law of
reproduction of N , this disease spreads a.s. to the root (asymptotically).
In what follows, assume that N = z a.s., in other words we have a z-ary tree.

Theorem 1.3 1. If z ∈ {3, 4, 5}, for p ∈ Pk such that p1 = · · · = pk, p(n) converges to
(x̄, . . . , x̄, 1− kx̄) where x̄ is the unique fixed point in (0, 1/k] of:

fz,k(x) := (1− (k − 1)x)z − (1− kx)z . (1.2)

2. For z ∈ {3, 4, 5}, for p ∈ Pk such that p1 = · · · = pi > pi+1 ≥ pi+1 ≥ · · · ≥ pk, p(n)
converges to (x̄, . . . , x̄, 0k−i, 1− ix̄) where x̄ is the unique fixed point of fz,i in (0, 1/i].

3. If z = 6, for p ∈ Pk such that p1 = · · · = pk, x̄ is a repelling point of fz,k.

In section 4, we study completely the case z = 6 and i = 2, where p(n) does not converge
anymore:

Theorem 1.4 For z = 6 and i = 2, denote θ := {x̄ℓ, x̄r} where x̄ℓ and x̄r are the fixed points of
f2
6,2 = f6,2 ◦ f6,2 distinct of x̄. Then for almost all p ∈ Pk such that p1 = p2 > p3 ≥ · · · ≥ pk

lim
n→∞

p(2n) = (x, x, 0k−2, 1− 2x)

where x ∈ θ.

Remark 1.5 This result is not limited to the case z = 6 and i = 2. Indeed, denoting x̂z,i =
argmax[0,1/i]fz,i, the only conditions a case (z, i) has to satisfy are :

1. x̄z,i is such that ∂xfz,i(x̄z,i) < −1.

2. fz,i(x̂z,i) > x̂z,i.

3. fz,i(1/i) < x̂z,i.

The paper is structured as follows: Section 2 gives the discrete dynamical system whose study leads
to our main Theorems. The same section also gives results for the GW case. Section 3 focuses on
z-ary tree and concludes the proof of Theorem 1.3. Section 4 is devoted to the proof of Theorem
1.4. Finally, Section 5 gives some ideas for extensions of this work.
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2 General results for a Galton-Watson tree

A major part of this work consists in the study of discrete dynamical systems: given a function f
and a value x, we study the behavior of the sequence fn(x).
In this section, we give the studied function f and some global results linked to our problem.
To find a recursion formula, assuming that φ is the root of Tn+1, its children φi are root nodes of
N independent GW of height n. Then the distribution p(n+1) of X0, the state of φ, is completely
determined by the distribution of (Xi)

N
i=1, the independent states of its children with distribution

p(n).

Lemma 2.1 For all 1 ≤ i ≤ k + 1 and n ≥ 1:

pi(n+ 1) =

{

GN (pk+1(n) + pi(n))−GN (pk+1(n)), for i 6= k + 1

1−
∑k

j=1 pi(n+ 1), otherwise.
(2.1)

Proof : To simplify our proof denote by Sz := {1 ≤ i ≤ z, Xi = 1}, the non infected sites in
a z-sized population. According to (R1’)-(R3’):

pi(n+ 1) = P





N
⊗

j=1

Xj = ei



 =

∞
∑

z=2

qzP





z
⊗

j=1

Xj = ei



 =

∞
∑

z=2

qz

z−1
∑

ℓ=0

P

(

|Sz| = ℓ,

z
⊗

i=1

Xi = ei

)

=

∞
∑

z=2

qz

z−1
∑

ℓ=0

Cℓ
zp

ℓ
k+1(n)p

z−ℓ
i (n) =

∞
∑

z=2

qz((pk+1(n) + pi(n))
z − pz

k+1(n))

= GN (pk+1(n) + pi(n))−GN (pk+1(n)). �

If we define F : Rk+1 → Rk+1 by :

Fi(x) =

{

GN (xk+1 + xi)−GN (xk+1), for 1 ≤ i ≤ k

1−∑k
i=1 Fi(x1, . . . , xk+1), otherwise.

we see that p(n) = Fn(p).
In fact our problem consists in the study of the fixed points of the function F . Like in [1], we first
consider the uniform case assuming that p1 = · · · = pk. Obviously for all n ≥ 1, p1(n) = · · · =
pk(n) implying that we just have to study:

p1(n+ 1) = GN (1− (k − 1)p1(n))−GN (1− kp1(n)).

For this purpose, define fk : (0, 1/k] → (0, 1/k] by

fk(x) = GN (1− (k − 1)x)−GN (1− kx). (2.2)

We obtain the following

Lemma 2.2 fk admits a unique fixed point in (0, 1/k].

Proof : Properties of generating functions ensure that fk ∈ C∞((0, 1/k]) and on this interval:

f ′
k(x) = kG′

N (1 − kx)− (k − 1)G′
N (1− (k − 1)x)

= kE[N(1− kx)N−1]− (k − 1)E[N(1− (k − 1)x)N−1].

As limx→0+ f ′
k(x) = E[N ] ≥ 2, fk(0) = 0, and

fk(1/k) = GN (1/k)−GN (0) =
∑

k≥2

qzk
−z < 1/k,
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Figure 1: k = 4, q3 = q6 = q10 = 1
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fk admits at least one fixed point x̄k ∈ (0, 1/k]. For x ∈ (0, 1/k]:

fk(x) = x ⇔
∑

z≥2

qz ((1− (k − 1)x)z − (1− kx)z) = x

⇔
∑

z≥2

qzx

z−1
∑

j=0

(1− (k − 1)x)z−1−j(1 − kx)j = x

⇔
∑

z≥2

qz

z−1
∑

j=0

(1− (k − 1)x)z−1−j(1− kx)j = 1. (2.3)

x 7→
∑

z≥2 qz
∑z−1

j=0(1− (k− 1)x)z−1−j(1− kx)j is strictly decreasing on (0, 1/k] and thus bijective.
As a result (2.3) has at most one solution on (0, 1/k] implying the uniqueness of x̄k. �

Lemma 2.3 There exists η > 0 such that

∀n ∈ N,p1(n) ≥ α := min{GN (η),p1}

Proof : Writing GN (1− x) = GN (1)− xG′
N (1) + ε(x) where ε(x)/x −→

x→0
0, there exists η′ > 0

small enough such that if 0 < x ≤ η′ then |ε(x)| ≤ x/2k. Then for x ≤ η′

/k =: η and 0 < y < (k−i)x

GN (1− (i − 1)x− y)−GN (1− ix− y) = xG′
N (1) + ε((i− 1)x+ y)− ε(ix+ y)

≥ xG′
N (1)− ix+ y

k
≥ G′

N (1)− x ≥ 2x− x = x,

as G′
N (1) = E[N ] ≥ 2.

If x > η, using the fact GN (1− (i− 1)x− y)−GN (1− ix− y) is decreasing in y

inf
x∈[η,1/k]

inf
y∈[0,(1−ix)∧(k−i)x]

GN (1− (i− 1)x− y)−GN (1− ix− y)

≥ inf
x∈[η,1/k]

inf
y∈[0,1−ix]

GN (1− (i− 1)x− y)−GN (1− ix− y) = inf
x∈[η,1/k]

GN (x) = GN (η) > 0.

Consequently an obvious recurrence gives p1(n) ≥ α = min{GN (η),p1} for all n ≥ 0. �

Remark 2.1 The two previous lemmas induce that, in the uniform case, if p(n) converges, it does
to (x̄k, . . . , x̄k, 1− kx̄k), which is the first point of Theorem 1.2 .
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The following lemma ensures that the“minor”diseases can not spread to the root asymptotically
and thus the second part or Theorem 1.2:

Lemma 2.4 In the non uniform case with p1 = · · · = pi > pi+1, for all j > i, pj(n) →
n→∞

0.

Proof : Note that we just have to prove that limn→+∞ pi+1(n) = 0. Writing wn = pi+1(n)
p1(n)

:

∀n ≥ 0, wn+1 = wn

∑

z≥2 qz
∑z−1

j=0(pi+1(n) + pk+1(n))
z−1−j(pk+1(n))

j

∑

z≥2 qz
∑z−1

j=0(p1(n) + pk+1(n))z−1−j(pk+1(n))j
≤ wn (2.4)

as p1(n) ≥ pi+1(n). Thus, (wn) is a positive non increasing sequence, and consequently converges.
Denote by ℓ = limn→+∞ wn and as w0 < 1, note that ℓ < 1.
We can find a subsequence nm such that limm→+∞ pj(nm) = aj for all j ≤ k + 1. From lemma
2.3, we have a1 > 0. Now, assume that ai+1 > 0. Since ℓ < 1, we have a1 > ai+1 > 0. Using (2.4)

ℓ = lim
m→+∞

wnm+1 = lim
m→+∞

wnm

∑

z≥2 qz
∑z−1

j=0 (pi+1(nm) + pk+1(nm))z−1−j(pk+1(nm))j

∑

z≥2 qz
∑z−1

j=0(p1(nm) + pk+1(nm))z−1−j(pk+1(nm))j

= ℓ

∑

z≥2 qz
∑z−1

j=0(ai+1 + ak+1)
z−1−j(ak+1)

j

∑

z≥2 qz
∑z−1

j=0 (a1 + ak+1)z−1−j(ak+1)j
< ℓ

which is a contradiction. Then ai+1 = 0 and consequently pi+1(n) →
n→∞

0. �

The two previous lemmas have an important role in the following sections but we can also prove
easily the point 3 of Theorem 1.2. According to lemma 2.3 lim infn→∞ p1(n) > 0 and from lemma
2.4, limn→∞ pj(n) = 0 for all j > 1, then:

p1(n+ 1) = GN



1−
k
∑

j=2

pj(n)



 −GN



1−
k
∑

j=2

pj(n)− p1(n)





lim inf
n→∞

p1(n+ 1) = GN (1)−GN

(

1− lim inf
n→∞

p1(n)
)

= 1−GN

(

1− lim inf
n→∞

p1(n)
)

.

Thus, lim infn→∞ p1(n) is a fixed point of x 7→ 1−GN (1−x) on (0, 1]. This function being strictly
increasing, the solution is 1. As a result lim infn→∞ p1(n) = limn→∞ p1(n) = 1.

3 Results for z-ary tree

In this section, we investigate the special case where the GW is a z-ary tree for z ≥ 3 (z = 2 is the
case studied in [1]). In this case, the function F : Rk+1 → Rk+1 is:

Fi(x) =

{ (

1−
∑k

j=1,j 6=i xj

)z

−
(

1−
∑k

j=1 xj

)z

, for 1 ≤ i ≤ k

1−
∑k

i=1 Fi(x), otherwise.

When studying the asymptotic behavior of p(n), with p1 = · · · = pi > pi+1 ≥ · · · ≥ pk, it
is enough to study the asymptotic behavior of p̃(n) = (p1(n),pi+1(n), . . . ,pk(n)) ∈ [0, 1]k−i+1.

Indeed, we have p1(n) = · · · = pi(n) and pk+1(n) = 1 −∑k
j=1 pj(n), and thus, if p̃(n) tends

toward ¯̃p, then p(n) tends toward p̄ = (¯̃p1, . . . , ¯̃p1, ¯̃p2, . . . , ¯̃pk−i+1, 1− i ¯̃p1 −
∑k−i+1

j=2
¯̃pj).

In the uniform case, where p1(n) = · · · = pk(n), lemma 2.2 applies and states that there
exists a unique fixed point (x̄z,k, . . . , x̄z,k, 1 − kx̄z,k) of F . Furthermore, in the uniform case,
we can restrict our study to the discrete scalar dynamical system whose dynamics is given by
fz,k(x) = Fj(x, · · · , x, 1− kx) for j = 1, · · · , k and x ∈ [0, 1/k], that is

fz,k(x) = (1− (k − 1)x)z − (1 − kx)z (3.1)
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Remark 3.1 In this section, some of the proofs use differentiation with respect to the integers z
or k. This has to understood as a differentiation with respect to a relaxation of z or k in R.

The following lemma gives a lower and upper bound of x̄z,k, the unique fixed point of fz,k in
(0, 1/k].

Lemma 3.1 The unique fixed point x̄z,k of fz,k in (0, 1/k] satisfies

x̃z,k < x̄z,k < x̃z,k−1, ∀z ≥ 2, ∀ k ≥ 2,

where

x̃z,k =
1

k

(

1−
(

1

z

)
1

z−1

)

.

Proof : Recall that according to the proof of lemma 2.2, ∆z,k(x) = fz,k(x) − x only has one
zero x̄z,k in (0, 1/k]. This function is positive on (0, x̄z,k) and negative on (x̄z,k, 1/k] (see Figure 2).

Lower bound: We prove that, for all z ≥ 2, and k ≥ 1, ∆z,k(x̃z,k) > 0 which implies that
x̄z,k > x̃z,k. ∆z,k(x̃z,k) writes as:

∆z,k(x̃z,k) =

(

1− k − 1

k
(1 − az)

)z

− azz −
1

k
(1 − az),

where az = (1/z)1/(z−1), so that x̃z,k = (1 − az)/k. Obviously, ∆z,k(x̃z,k) goes to 0 as k tends to
infinity. Differentiating ∆z,k(x̃z,k) with respect to k:

d∆z,k(x̃z,k)

dk
= z

(

1− k − 1

k
(1− az)

)z−1 (

− 1

k2

)

(1− az) +
1

k2
(1 − az)

=
x̃z,k

k
(1− z(1− (k − 1)x̃z,k)

z−1)

<
x̃z,k

k
(1− z(1− kx̃z,k)

z−1) = 0

where we used the fact that z(1 − kx̃z,k)
z−1 = 1. So ∆z,k(x̃z,k) is decreasing with k and its limit

as k tends towards infinity is zero. It is thus positive for all k ≥ 1 and z ≥ 2. This concludes the
proof that x̄z,k > x̃z,k.

Upper bound: Similarly to the lower bound, we prove that for all z ≥ 2, and k ≥ 2, ∆z,k(x̃z,k−1)
< 0 which implies that x̄z,k < x̃z,k−1. As before, ∆z,k(x̃z,k−1) goes to 0 as k tends to infinity.

Differentiating ∆z,k(x̃z,k−1) with respect to k:

d∆z,k(x̃z,k−1)

dk
= −z

(

1− k

k − 1
(1− az)

z−1

)

(1− az)

(k − 1)2
+

(1 − az)

(k − 1)2

=
(1− az)

(k − 1)2

(

1− z

(

1− k

k − 1
(1 − az)

)z−1
)

>
(1− az)

(k − 1)2
(1− z(1− kx̃z,k)

z−1) = 0.

So ∆z,k(x̃z,k−1) is increasing and its limit, as k tends towards infinity is 0. We conclude that
∆z,k(x̃z,k−1) is negative for all z ≥ 2 and k ≥ 2. And in turn we obtain x̄z,k < x̃z,k−1. �

In addition, to the framing of the fixed point of fz,k, the proof of lemma 2.2 gives that fz,k
has a unique critical point (maximum) in (0, 1/k]. We denote by x̂z,k this maximum, a direct
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computation of the critical point of fz,k in (0, 1/k] yields the value (3.2). Furthermore, another
direct computation of the zeros of ∂2

xfz,k gives the unique inflection point x⋆
z,k of fz,k in (0, 1/k]:

x̂z,k =
k

1
z−1 − (k − 1)

1
z−1

k
z

z−1 − (k − 1)
z

z−1
, x⋆

z,k =
k

2
z−2 − (k − 1)

2
z−2

k
z

z−2 − (k − 1)
z

z−2
(3.2)

Note that x̂z,k < x⋆
z,k.

Now, we show that having x̄x,k as an attracting fixed point of fz,k guaranties that the asymptotic
behavior of the diseases spread is as stated in our main result.

Proposition 3.2 For the uniform case, if x̄z,k is such that |∂xfz,k(x̄z,k)| < 1, then p(n) converges
to (x̄z,k, . . . , x̄z,k, 1− kx̄x,k).

Proof : Since our result does not depend on z and k, we will drop the indexation of f , x̄ and x̂
by those integers.
Note that if x̂ ≥ x̄, necessarily f ′(x̄) ∈ [0, 1) and f((0, 1/k]) ⊂ (0, f(x̂)] ⊂ (0, x̂]. Since f((0, x̄]) =
(0, x̄] and f(x) ≥ x on this interval, fn(x) tends toward x̄. This result is still true if x ∈ [x̄, x̂] with
a similar reasoning.
In the rest of the proof we assume that x̂ < x̄ and it is stuctured as follows. First, we study the
variations of f2 = f ◦ f and then show that f2 only has one fixed point. Finally we conclude on
the convergence of the discrete scalar dynamical system.

Variations and concavity of f2:
First note that as x̂ < x̄, f(x̂) > x̂ and since f is increasing on [0, x̂] there exists a unique x̂ℓ ∈ (0, x̂)
such that f(x̂ℓ) = x̂. Similarly, f is decreasing in [x̂, 1/k], if f(1/k) ≤ x̂ there exists x̂r ∈ (x̂, 1/k]
such that f(x̂r) = x̂ and none otherwise.
Thus, as (f2)′(x) = f ′(f(x))f ′(x) and f([0, 1/k]) = [0, f(x̂)] ⊂ [0, 1/k], the only critical points of f2

are x̂ℓ, x̂ and possibly x̂r. Since f
2(x̂ℓ) = f(x̂), it is a maximum of f2 (in [0, 1/k]), like x̂r in case of

existence, and thus x̂ is a local minimum. To conclude, f2 is increasing on [0, x̂ℓ]∪ [x̂,min(1/k, x̂r)]
and decreasing elsewhere. In particular, f2 is increasing on [x̂, x̄] ⊂ [x̂,min(1/k, x̂r)] (we assume
that if x̂r does not exist in [0, 1/k], we take x̂r = +∞).
Note that this study of the variations of f2 is not restricted to the attracting fixed point case, as
long as we have x̂ < x̄.

A study of the second derivative of f2 gives that it is negative on [0, x̂ℓ] and cancels only once
on [x̂, x̂r]. So f2 is concave on [0, x̂ℓ] and have exactly one inflection point on [x̂, x̂r ] where it is
convex then concave. Note that this study of the inflection points of f2 is inconclusive on [x̂ℓ, x

⋆
ℓ ]

(with x⋆
ℓ the first pre-image of x⋆ by f) and [x⋆, 1/k].

x̄ is the unique fixed point of f2 in (0, 1/k]:
We reason by contradiction with the maximum number of inflection points of f2 in [0, x̂ℓ] and
[x̂, x̂r].

First note that as x̄ is such that f ′(x̄) ∈ (−1, 1), (f2)′(x̄) ∈ (0, 1) and so there exists η > 0 such
that f2(x) > x if x ∈ (x̄− η, x̄) and f2(x) < x if x ∈ (x̄, x̄+ η).

Now, assume x̄1 = sup{x ∈ (0, x̄), f2(x) = x} exists (necessarily x̄1 6= x̄), thus f2(x) > x on
(x̄1, x̄) and (f2)′(x̄1) ≥ 1. We face two cases: either x̄1 > x̂, either x̄1 < x̂ (as x̄1 = x̂ gives directly
a contradiction since (f2)′(x̂) = 0).

Assume x̄1 > x̂: as (f2)′(x̄1) ≥ 1, (f2)′(x̂) = 0 and (f2)′(x̄) < 1, f2 has at least one inflection
point in (x̂, x̄). Since f2(x̄1) = x̄1, then x̄2 = f(x̄1) = inf{x ∈ (x̄, x̄r), f

2(x) = x} is also a fixed
point of f2. Similarly as before, f2 has at least one inflection point in (x̄, x̂r). So f2 has a least 2
inflection points on [x̂, x̂r ] which raises a contradiction.

Since f2 has no fixed point in [x̂, x̄), it has none in [x̂ℓ, x̂] because f2 is decreasing on this
interval. Moreover, f2 is concave on [0, x̂ℓ], f

2(0) = 0 and f2(x̂ℓ) > x̂ℓ so that f2(x) > x on (0, x̂ℓ].
We thus conclude that x̄1 does not exist. If there exists a fixed point x̄2 of f2 in (x̄, 1/k] then

f(x̄2) ∈ (0, x̄) is also a fixed point of f2 which is not possible. So f2 doesn’t have a fixed point in
(x̄, 1/k] either.
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Remark 3.2 Note that a corollary to the uniqueness of the fixed point x̄ is that f2(x̂) > x̂.

x̄ is asymptotically stable for f in (0, 1/k]:
We assume that x̂r exists, otherwise the reasoning is the same with x̂r replaced by 1/k and one less
step: we would not have to consider the interval [x̂r, 1/k].

From the variations of f2, we have that f2([x̂, x̄]) = [f2(x̂), x̄] ⊂ [x̂, x̄]. So if x ∈ [x̂, x̄] then
f2n(x) is an increasing bounded above sequence, and so it tends towards x̄, the unique fixed point
of f2 in [x̂, x̄]. As x̄ is the fixed point of f and f is continuous, f ◦ f2n(x) = f2n+1(x) also tends
towards x̄.

Since f2(x̂r) = f(x̂) < x̂r, we have that f2([x̄, x̂r]) = [x̄, f(x̂)] ⊂ [x̄, x̂r]. So if x ∈ [x̄, x̂r], then
f2n(x) is a decreasing bounded below sequence. As for the [x̂, x̄] case, we conclude that fn(x)
tends toward x̄.

As f2(x̂) > x̂ and f2(x̂ℓ) = f(x̂) < x̂r, we have that f2([x̂ℓ, x̂]) = [f2(x̂), f(x̂)] ⊂ [x̂, x̂r]. And
again, we conclude that if x ∈ [x̂ℓ, x̂], then fn(x) tends towards x̄.

We have that f2((0, x̂ℓ]) = (0, f(x̂)] and if x ∈ (0, x̂ℓ], then f2(x) > x so f2n(x) is an increasing
bounded above sequence so it converges to x̄. Finally, f2([x̂r , 1/k]) = [f2(1/k), f(x̂)] ⊂ (0, f(x̂)] and
the previous case gives the convergence to x̄.

So we have that for all x ∈ (0, 1/k], limn→∞ fn(x) = x̄, which concludes the proof. �

Figure 2 sums-up what we gather of the variations of fz,k when x̄z,k is linearly attracting.

Figure 2: Table of variations of fz,k when x̂z,k < x̄z,k

0 x̂ℓ x̂ x̂rx̄ 1
k

fz,k(x̂)

1
kz

0

f z
,k
(x
)−

x

+ −

fz,k

0

x̄

x̂ x̂

Proposition 3.3 If x̄z,i is a linear attractor for the uniform case with i diseases, then x̄ =
(x̄z,i, . . . , x̄z,i, 0k−i, 1 − ix̄z,i) is a linear attractor for the non uniform case with p1 = · · · = pi >
pi+1 ≥ · · · ≥ pk.

Proof : x̄ is a linear attractor if all the eigenvalues of the matrix A := ∂F̃
∂x (y) are in (−1, 1),

with F̃ = (F̃1, . . . , F̃k−i+1) = (F1, Fi+1, . . . , Fk), a truncated version of F and y = (x̄z,i, 0k−i). F̃
is defined by

F̃ℓ(x) =







(

1− (i− 1)x1 −
∑k−i+1

j=2 xj

)z

−
(

1− ix1 −
∑k−i+1

j=2 xj

)z

if ℓ = 1
(

1− ix1 −
∑k−i+1

j=2,j 6=ℓ xj

)z

−
(

1− ix1 −
∑k−i+1

j=2 xj

)z

otherwise.
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Note that ∂F̃m

∂xℓ
(x) equals to



































−z(i− 1)
(

1− (i− 1)x1 −
∑k−i+1

j=2 xj

)z−1

+ zi
(

1− ix1 −
∑k−i+1

j=2 xj

)z−1

if m = ℓ = 1

−iz
(

1− ix1 −
∑k−i+1

j=2,j 6=ℓ xj

)z−1

+ iz
(

1− ix1 −
∑k−i+1

j=2 xj

)z−1

if m 6= 1, ℓ = 1

z
(

1− ix1 −
∑k−i+1

j=2 xj

)z−1

if m = ℓ > 1

−z
(

1− ix1 −
∑k−i+1

j=2,j 6=ℓ xj

)z−1

+ z
(

1− ix1 −
∑k−i+1

j=2 xj

)z−1

if 1 6= m 6= ℓ 6= 1

implying

∂F̃m

∂xℓ
(y) =















−z(i− 1)(1− (i − 1)x̄z,i)
z−1 + zi(1− ix̄z,i)

z−1 if m = ℓ = 1
0 if m 6= 1, ℓ = 1
z(1− ix̄z,i)

z−1 if m = ℓ > 1
0 if 1 6= m 6= ℓ 6= 1

Thus A is upper triangular and its spectrum is {−z(i− 1)(1− (i− 1)x̄z,i)
z−1+ zi(1− ix̄)z−1, z(1−

ix̄z,i)
z−1}. First note that as x̄z,i is an attracting fixed point for the uniform case then ∂F̃1

∂xℓ
(y) ∈

(−1, 1).
It remains to prove that (for j = 2, . . . , k − i+ 1),

0 ≤ ∂F̃j

∂xj
(x̄z,i, 0k−i) = z(1− ix̄z,i)

z−1 < 1,

and note that positivity is obvious.
From lemma 3.1, x̄z,i > x̃z,i for all z ≥ 2 and i ≥ 1, and

∂F̃j

∂xj
(x̄z,i, 0k−i) <

∂F̃j

∂xj
(x̃z,i, 0k−i) = 1,

which concludes the proof. �

Lemma 3.4 For the uniform case, and z ≥ 2, there exists Kz > 0 such that, for all k ≥ Kz, the
fixed point (x̄z,k, . . . , x̄z,k, 1− kx̄z,k) is attracting if z ≤ 5, repelling otherwise.

Proof : It is enough to study the asymptotic behavior of ∂xfz,k(x̄z,k), the non zero eigenvalue
of the linearized dynamical system.

From lemma 3.1 and the continuity of ∂xfz,k:

lim
k→∞

∂xfz,k(x̄z,k) = lim
k→∞

∂xfz,k(x̃z,k)

Furthermore, the expression of x̃z,k gives us an equivalency as k tends to infinity

∂xfz,k(x̃z,k) = −z(k − 1)(1− (k − 1)x̃z,k)
z−1 + zk(1− kx̃z,k)

z−1

= −z(k − 1)(1− (k − 1)x̃z,k)
z−1 + k

= k(1− z(1− (k − 1)x̃z,k)
z−1) + z(1− (k − 1)x̃z,k)

z−1

∼
k→∞

k

(

1− z(k − kx̃z,k)
z−1

(

1 +
x̃z,k

1− kx̃z,k

))

+ 1

→
k→∞

1− (z − 1)z
1

z−1

(

1−
(

1

z

)
1

z−1

)

And this limit is in (−1, 1) for z ≤ 5 and is less than −1 for z ≥ 6, which concludes the proof. �
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Remark 3.3 If we were able to prove that the eigenvalue ∂xfz,k(x̄z,k) is decreasing with respect
to k, then its asymptotic value would directly give us that for z ≤ 5, the fixed point is a linear
attractor for all k ≥ 1. Even though this monotonicity seems true numerically, we were not able
to prove it, and were reduced to cumbersome computations for z ∈ {5, 6}.

The following result focuses on the fixed points of 3-ary, 4-ary and 5-ary trees:

Lemma 3.5 For the uniform case, if z ∈ {3, 4, 5}, and k ≥ 2 the fixed point x̄z,k is linearly
attracting, that is ∂xfz,k(x̄z,k) ∈ (−1, 1).

Proof : For the upper bound on the derivative, we have, for all z ≥ 2

∂xfz,k(x̄z,k) = −z(k − 1)z(1− (k − 1)x̄z,k)
z−1 + kz(1− kx̄z,k)

z−1

< −z(k − 1)(1− kx̄z,k)
z−1 + kz(1− kx̄z,k)

z−1

< z(1− kx̄z,k)
z−1

< z(1− kx̃z,k)
z−1 = 1,

the last inequality comes from lemma 3.1.
For the lower bound on the derivative, we treat differently the cases z ∈ {3, 4} and z = 5.
Lower bound, case z ∈ {3,4}: noting that the unique inflection point of fz,k is such that

x⋆
z,k > x̂z,k

∂xfz,k(x
⋆
z,k) = min

x∈[0,1/k]
∂xfz,k(x) ≤ ∂xfz,k(x̄z,k)

Direct computations for z = 3 and 4 give

∂xf3,k(x
⋆
3,k) = − 3(k − 1)k

3k2 − 3k + 1
> −1, ∂xf4,k(x

⋆
4,k) = −4(k − 1)k

(1− 2k)2
> −1, ∀ k ≥ 2,

which concludes this case.
Lower bound, case z = 5: here ∂xf5,k(x

⋆
5,k) < −1 for k ≥ 3 so we cannot use the same

argument. Instead, we prove that x̃5,k−1 < x⋆
5,k for k large enough, which give ∂xf5,k(x̃5,k−1) as a

lower bound for ∂xf5,k(x̄5,k). We write

x⋆
5,k =

βk

1 + kβk
, βk =

(

k

k − 1

)
2
3

− 1 > 0

and

x̃5,k−1 =
δ

k − 1
, δ = 1−

(

1

5

)
1
4

> 0

Comparing x⋆
5,k and x̃5,k−1

x⋆
5,k − x̃5,k−1 =

βk(k − 1− δk)− δ

(k − 1)(1 + kβk)

The denominator of which is positive. If k ∈ C is a zero of the numerator then, straightforward
computations give

0 = k2(k − 1− δk)3 − (k − 1)2(δ + (k − 1− δk))3 ∈ R4[X ]

A numerical computation of the roots of this fourth order polynomial gives 2 complex conjugated
roots and 2 real roots. The 2 real roots are approximatively k1 = 0.3079371 and k2 = 3.3623924.
So the numerator has constant sign for k > k2 and in particular for k ≥ 4. Noting that x⋆

5,4 > x̃5,3

we conclude that x⋆
5,k > x̃5,k−1 for all k ≥ 4 and the following lower bound for the eigenvalue

∂xf5,k(x̄5,k) > ∂xf5,k(x̃5,k−1), ∀k ≥ 4
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A straightforward computation gives that ∂xf5,k+27(x̃4,k−1+27) > −1 is equivalent to

(6 − 4 · 51/4)k4 + (634 + 6
√
5− 432 · 51/4)k3 + (25126− 17496 · 51/4486

√
5− 4 · 53/4)k2

+(442634− 314925 · 51/4 + 13122
√
5− 216 · 53/4)k

+2924642− 2125764 · 51/4 + 118098
√
5− 2916 · 53/4 > 0,

which is true for all k ≥ 0. So ∂xf5,k(x̃5,k−1) > −1 for all k ≥ 27.
For k ∈ J1, 26K, a direct numerical computation of the eigenvalues gives that they all belong to

(−1, 0). �

Remark 3.4 It is actually possible to show that ∂xfz,k(x̄z,k) < 0 for z ∈ {3, 4, 5}. To do this,
one can compute ∂xfz,k(x̃z,k) and show that it is decreasing with respect to k ≥ 3 for z = 3
and decreasing for k ≥ 2 for z ∈ {4, 5}. This leads to ∂xfz,k(x̃z,k) < 0 for these (z, k) and as
x̃z,k < x̄z,k, x̄z,k > x̂z,k. So that fz,k is decreasing at x̄z,k.

Lemma 3.6 For the uniform case, z = 6 and k ≥ 2 the fixed point x̄6,k is repelling.

Proof : We prove that ∂xf6,k(x̄6,k) < −1, using the fact that ∂xf6,k(x̄6,k) ≤ max(∂xf6,k(x̃z,k),
∂xf6,k(x̃z,k−1)).

As for the case z = 5, ∂xf6,k+4(x̃6,k+4) < −1 is equivalent to

(7− 5 · 61/5)k5 + (125− 75 · 61/5 − 10 · 62/5)k4 + (900− 450 · 61/5 − 120 · 62/5 − 10 · 63/5)k3

+(3265− 1350 · 61/5 − 540 · 62/5 − 90 · 63/5 − 5 · 64/5)k2

+(5960− 2025 · 61/5 − 1080 · 62/5 − 270 · 63/5 − 30 · 64/5)k
+(4373− 1215 · 61/5 − 810 · 62/5 − 270 · 63/5 − 45 · 64/5) < 0,

which is true for k ≥ 0. So ∂xf6,k(x̃6,k) < −1 for all k ≥ 4.
A similar computation for ∂xf6,k+4(x̃6,k+3) leads to ∂xf6,k(x̃6,k−1) < −1 for all k ≥ 4. So

∂xf6,k(x̄6,k) < −1 for k ≥ 4.
A numerical computation of ∂xf6,k(x̄6,k) for k = 2 and 3 yields values less than −1, which

concludes the proof. �

Remark 3.5 Note that as ∂xf(x
⋆
z,k) > −1 for z ∈ {3, 4}, the fonction fz,k is contracting on

[x̂z,k, 1/k]. This gives the main ingredient to an easier way to prove the convergence of the uniform
case than in Proposition 3.2. However, the given proof of Proposition 3.2 is more general as it only
requires the fixed point to be linearly attracting.

Lemma 3.5 in addition to Proposition 3.2 gives the convergence in the uniform case for z ∈
{3, 4, 5}. The following Proposition extends this result to the non uniform case.

Proposition 3.7 Assume that, for the uniform case of the z-ary tree, p(n) converges to (x̄z,k, . . . ,
x̄z,k, 1 − kx̄z,k). Then, in the non uniform case with p1 = · · · = pi > pi+1 ≥ · · · ≥ pk, p(n)
converges to (x̄z,i, . . . , x̄z,i, 0k−i, 1− ix̄z,i).

Proof : Assume that in the uniform case p(n) converges. Obviously if p1 = · · · = pi and
pj = 0 otherwise, p(n) converges to (x̄z,i, . . . , x̄z,i, 0k−i, 1 − ix̄z,i), where x̄z,i is the fixed point of
fz,i. We want to extend this result to the case p1 = pi > pi+1 ≥ · · · ≥ pk.

We introduce the function F̃ = (F̃1, . . . , F̃k−i+1) = (F1, Fi+1, . . . , Fk) which is a truncated
version of F

F̃ℓ(x) =







(

1− (i− 1)x1 −
∑k−i+1

j=2 xj

)z

−
(

1− ix1 −
∑k−i+1

j=2 xj

)z

if ℓ = 1
(

1− ix1 −
∑k−i+1

j=2,j 6=ℓ xj

)z

−
(

1− ix1 −
∑k−i+1

j=2 xj

)z

if ℓ = 2, · · · , k − i+ 1,
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defined in the set Pk,i := {(x1, . . . , xk−i+1) ∈ Rk−i+1, x1 > x2 ≥ x3 ≥ · · · ≥ xk−i+1 > 0, ix1 +
∑k−i+1

j=2 xj < 1}. So, equivalently to our convergence result, we show that, for x ∈ Pk,i, F̃
n(x)

converges to x̄i = (x̄z,i, 0k−i).
Let ε > 0 and p = (p1, . . . ,pk−i+1) ∈ Pk,i. From lemma 2.3, we have that, for all n ∈ N,

p1(n) ∈ [α, 1/i]. Now, while noting that F̃n(x, 0k−i) = (fn
z,i(x), 0k−i), we define En = {x ∈

[α, 1/i], fn
z,i(x) ∈ B(x̄z,i, ε/2)}. Clearly, from the convergence of the uniform case

[α, 1/i] ⊂ ∪n≥0En.

As the inverse image of an open set by a continuous fonction, En is also an open set for all n ∈ N.
Since ∪n≥0En is a sequence of open sets covering the compact [α, 1/i], there exists N such that

[α, 1/i] ⊂ ∪N
n=0En

implying that ∀x ∈ [α, 1/i], F̃N (x, 0k−i) ∈ B(x̄z,i, ε/2)× {0}k−i ⊂ B(x̄i, ε/2).

On the closed set G := [α, 1/i]×R
k−i
+ ∩Pk,i, F̃

N is uniformly continuous and thus there exists
δ > 0 such that

∀(x, y), (x′, y′) ∈ G , ‖(x, y)− (x′, y′)‖ ≤ δ ⇒ ‖F̃N (x, y)− F̃N (x′, y′)‖ ≤ ε/2

According to lemma 2.4, pj(n) = Fn
j (p) → 0, ∀j > i, and consequently there exists N1 ∈ N such

that if n ≥ N1, ‖(pi+1(n), . . . ,pk(n))‖ ≤ δ implying

‖F̃N(p1(n),pi+1(n), . . . ,pk(n)) − F̃N (p1(n), 0k−i)‖ ≤ ε/2.

Thus, recalling that according to lemma 2.3, p1(n) ∈ [α, 1/i]

‖(p1(n+N),pi+1(n+N), . . . ,pk(n+N))− x̄‖ = ‖F̃N (p1(n),pi+1(n), . . . ,pk(n))− x̄‖
≤ ‖F̃N(p1(n),pi+1(n), . . . ,pk(n))− F̃N (p1(n), 0k−i)‖+ ‖F̃N (p1(n), 0k−i)− x̄‖ ≤ ε/2 + ε/2 = ε.

�

4 A Specific case of Repelling point and attracting orbit

In all this section we study the case of a 6-ary tree with 2 dominant diseases. According to lemma
3.6, the convergence to the fixed point is no longer true and in the present section we prove the
existence and uniqueness of an attracting orbit of prime period 2.
For the sake of clarity, we write x̄ instead of x̄6,2 and likewise for f, F, x⋆, x̂, x̃. Moreover, an easy
fact is the following

Remark 4.1 If y is a fixed of f2 but not of f , then f(y) is a fixed point of f2 distinct of y and

(f2)′(y) = (f2)′(f(y)). (4.1)

Lemma 4.1 All the fixed points of f2 are in (x̂, x̂r) where x̂r := sup{x ∈ [0, 1/2], f(x) = x̂} and
recall that x̂ = argmax[0,1/2]f(x).

Proof : First note that x̂ < x̄ and:

f ′(x) ≥ 0 ⇔ x ≤ x̂. (4.2)

As x̂ = argmaxx∈[0,1/2] f(x), f([0, 1/2]) = [0, f(x̂)] implying that x̄ ∈ [0, f(x̂)] and the existence of
x̂ℓ ∈ [0, x̂) such that f(x̂ℓ) = x̂ and f2(x̂ℓ) = f(x̂) = maxx∈[0,1/2] f

2(x).
Moreover note that

f ′′(x) ≥ 0 ⇔ x ≥ x⋆,
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Figure 3: z = 6, i = 2, f and f2

Figure 4: Table of variations of f2

f 2

0 x̂ℓ x̂ x̄ℓ x̄ x̄r x̂r
1
2

0

+ 0 − + −0 0

f 2
(

1
2

)

f(x̂)f(x̂)

f 2(x̂)

x̄ℓ

x̄

x̄r

f
2 (x

)−
x

x⋆ is the only inflexion point of f implying that f ′ is decreasing on [0, x̂] as x⋆ > x̂.
First we show that there is no fixed point on (0, x̂) and we split this in two cases: (0, x̂ℓ] and [x̂ℓ, x̂).
On (0, x̂ℓ]:
Using (4.2), on this interval:

sgn(f2(x) − f(x))′ = sgn(f ′(x)(f ′(f(x)) − 1)) = sgn(f ′(f(x)) − 1). (4.3)

f ′ being decreasing on [0, x̂], f ′(f(x)) − 1 also on [0, x̂ℓ), and as f ′(f(0)) − 1 = f ′(0)− 1 = 5 and
f ′(f(x̂ℓ))− 1 = f ′(x̂)− 1 = −1, there exists β ∈ (0, x̂ℓ) such that f2− f is non decreasing on (0, β)
and decreasing otherwise. Since f2(0)− f(0) = 0 and f2(x̂ℓ)− f(x̂ℓ) = f(x̂)− x̂ > 0, f2(x) ≥ f(x)
on [0, x̂ℓ]. Thus, as f(x) > x on (0, x̂ℓ), f

2 do not admit a fixed point on this interval.
On (x̂ℓ, x̂):

f ′(x) > 0 and as f(x) ∈ (x̂, f(x̂)), f ′(f(x)) < 0:

(

f2(x)− x
)′

= f ′(x)f ′(f(x)) − 1 < 0.

Thus f2(x)−x is decreasing on (x̂ℓ, x̂) and, as algebraic computations give f2(x̂)−x̂ > 0, f2(x) = x
admits no solution on (x̂ℓ, x̂].
In a second time we make a similar reasoning on [x̂r, 1/2]. The existence of x̂r is clear noting that
f(1/2) = 1/26 < x̂.

14



On [x̂r , 1/2):

f ′(x) < 0 and f([x̂r, 1/2]) = [f(1/2), x̂]. For all y ∈ (f(1/2), x̂), f ′(y) > 0, thus:

∀x ∈ (x̂r , 1/2), (f
2)′(x) < 0.

As a result f2(x)− x is decreasing on [x̂r, 1/2) and as f2(1/2) < 1/2, f2 has a unique fixed point on
this interval if and only if f2(x̂r) ≥ x̂r.
Assume that f(x̂r) ≥ x̂r and denote by y ∈ [x̂r, 1/2) a fixed point of f2. According to remark 4.1,
f(y) is also a fixed point of f2 (not of f) and

(f2)′(f(y)) = (f2)′(y) < 0. (4.4)

But as f2 is increasing on (0, x̂ℓ) ∪ (x̂, x̂r) and not increasing elsewhere, (4.4) implies that f(y) ∈
(x̂ℓ, x̂), which is a contradiction as we have proved that there is no fixed point on this interval.
Consequently all the fixed points of f2 are on (x̂, x̂r). �

Figure 5: z = 6, i = 2 zoom on the fixed points of f2

Lemma 4.2 There exists exactly two fixed points of f2 distinct of x̄. They are both attracting.

Proof : Noting that f ′(x̄) < −1, x̄ is a repelling fixed point of f2 such that

(f2)′(x̄) = (f ′(x̄))2 > 1.

So there exists ε > 0 such that f2(x̄ − ε) < x̄ − ε and x̄ + ε < f2(x̄ + ε). As f2(x̂) > x̂ and
f2(x̂r) < x̂r , there are at least two additional fixed points on (x̂, x̂r). Moreover the fact that f2 is
increasing on this interval ensures the existence of two attracting fixed point from either side of x̄.
We have already seen that the fixed points of f2 are in [x̂, x̂r] and moreover a study of the sign of
(f2)′′ shows that f2 admits exactly one inflection point in [x̂, x̂r]. As a result f2 has three fixed
points in (0, 1/2]. �

Proposition 4.3 In the uniform case, if λ is the Lebesgue measure on R:

λ

({

p1 ∈ [0, 1/2], p(n) −→
n→+∞

{x̄ℓ, x̄r}
})

= 1/2.

Proof : According to the lemmas 4.1 and 4.2, f2 has exactly three fixed points on [x̂, x̂r],
denote x̄ℓ and x̄r respectively the one in (x̂, x̄) and the one in (x̄, x̂r).
On (x̄, x̄r):

15



f2 is increasing, f2((x̄, x̄r)) = (x̄, x̄r) and f2(x) ≥ x then f2(xn) = xn+2 ≥ xn. The sequence
(x2n) is increasing and bounded above by x̄r , thus it tends to a fixed point of f2 in (x̄, x̄r], x̄r.
On [x̄r , x̂r]:

f2([x̄r, x̂r ]) = [x̄r , f(x̂)] ⊂ [x̄r, x̂r). Moreover on this interval, f2(x) ≤ x implying that x2n is
decreasing and bounded below by x̄r, thus convergent to x̄r.
On (x̂, x̄):
the reasoning is the same as the one on (x̄, x̂r), and for all x on this interval x2n → x̄ℓ.
On (x̂ℓ, x̂):

there exists an unique x̄1 such that f(x̄1) = x̄. Note that on this interval f2 is decreasing implying
that

• if x ∈ [x̂ℓ, x̄1), f
2(x) ∈ (x̄, f(x̂)] ⊂ (x̄, x̂r) and x2n → x̄r;

• if x ∈ (x̄1, x̂], f
2(x) ∈ [f2(x̂), x̄) ⊂ (x̂, x̄) and then x2n → x̄ℓ.

On [x̂r , 1/2]:

there exists x̄2 such that f(x̄2) = x̄. On this interval f2 is decreasing and

f2([x̂r, x̄2)) = (x̄, f(x̂)] and f2((x̄2, 1/2]) = [f2(1/2), x̄)

If x ∈ [x̂r, x̄2), f
2(x) ∈ (x̄, f(x̂)] and we are in one of the previous cases. Let us postpone the other

case (x ∈ (x̄2, 1/2]).
On [0, x̂ℓ]:

f2 is increasing implying the existence of γ such that f2(γ) = x̂ℓ. If x ∈ [γ, x̂ℓ], f
2(x) ∈ [x̂ℓ, f(x̂)]

and we are in one of the previous cases.
We can easily show by contradiction that for all x ∈ [0, γ] there exists n such that f2n(x) ∈
[x̂ℓ, f(x̂)]. If it is not the case f2n(x) is an increasing sequence bounded above, and as a conse-
quence it converges to a fixed point of f2 in [0, x̂ℓ]. According to lemma 4.1, there is no such point.
There is however countably many points that converges to x̄ (because f2([0, γ]) ⊂ [0, f(x̂)]).
To conclude if x ∈ (x̄2, 1/2], f

2(x) ∈ [f2(1/2), x̄) and we are in one of the previous cases. �

To obtain results for the non uniform case, we need the following:

Lemma 4.4 {(x̄ℓ, x̄ℓ, 0k−2, 1− 2x̄ℓ), (x̄r , x̄r, 0k−2, 1− 2x̄r)} is an attracting orbit for F in Rk+1.

Proof : Note that it is the same to prove that {(x̄ℓ, 0k−2), (x̄r, 0k−2)} is an attracting orbit
for F̃ = (F̃1, . . . , F̃k−1) where

F̃ℓ(x) =







(

1− x1 −
∑k−1

j=2 xj

)z

−
(

1− 2x1 −
∑k−1

j=2 xj

)z

if ℓ = 1
(

1− 2x1 −
∑k−1

j=2,j 6=ℓ xj

)z

−
(

1− 2x1 −
∑k−1

j=2 xj

)z

otherwise.

Let Bi,j(x) =
(∂F̃ 2)i
∂xj

(x) =
∑k−1

m=1
∂F̃i

∂xm
(F̃ (x))∂F̃m

∂xj
(x) and note that:

Bi,j(x̄ℓ, 0k−2) = Bi,j(x̄r, 0k−2) =

{

0 if i 6= j
∂F̃i

∂xi
(x̄ℓ, 0k−2)

∂F̃i

∂xi
(x̄r, 0k−2) otherwise.

Bi,j(x̄ℓ, 0k−2) is upper triangular and |B1,1(x̄ℓ, 0k−2)| =
∣

∣

∣

∂F̃1

∂x1
(x̄ℓ, 0k−2)

∂F̃1

∂x1
(x̄r, 0k−2)

∣

∣

∣ < 1 accord-

ing to lemma 4.2. It remains to prove that the other eigenvalues of B are (strictly) bounded above
by 1, the positivity being obvious.

With the same notations as the one of the proof of lemma 3.1, recall that if x < x̃, ∂F̃i

∂xi
(x, 0k−2) < 1

and greater than 1 otherwise, and one can easily check that f2(x̃) ≥ x̃. Then, as x̃ < x̄, obviously
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x̃ ≤ x̄ℓ and consequently ∂F̃i

∂xi
(x̄ℓ, 0k−2) < 1 and as x̃ < x̄r ,

∂F̃i

∂xi
(x̄ℓ, 0k−2)

∂F̃i

∂xi
(x̄r , 0k−2) < 1. �

Now we are able to prove Theorem 1.4. The previous lemma ensures the existence of ε > 0
such that if x ∈ B((x̄r , 0k−2), ε) (respectively B((x̄ℓ, 0k−2), ε)), then limn→+∞ F̃ 2n(x) = (x̄r , 0k−2)
(respectively (x̄ℓ, 0k−2)).
According to the stable manifold Theorem, the stable manifold of F̃ , W s(x̄, 0k−2) is a one di-
mensional smooth manifold in a neighborhood of (x̄, 0k−2). So there exists ε′ such that W s

ε′ =
W s(x̄, 0k−2) ∩ B((x̄, 0k−2), ε

′) > 0 is negligible with respect to the Lebesgue measure. In other
words, for almost every x ∈ B((x̄, 0k−2), ε

′), there exists m > 0 such that F̃m(x) /∈ B((x̄, 0k−2), ε
′).

Let En = {x1 ∈ [x̄ + ε′, x̂r], F̃
2n(x1, 0k−2) ∈ B((x̄r , 0k−2), ε/2)}, and according to Proposition 4.3,

we have already seen that [x̄+ε′, x̂r] ⊂ ∪n≥0En. With a similar reasoning as the one of Proposition
3.7, there exists N ≥ 0 such that [x̄ + ε′, x̂r] ⊂ ∪N

n=0En implying that for all x1 ∈ [x̄ + ε′, x̂r],
F̃ 2N ((x1, 0k−2)) ∈ B((x̄r , 0k−2), ε/2).
Using the uniform continuity of F̃ 2N on the compact set H := [x̄ + ε′, x̂r] × Rk−2 ∩ Pk,2, there
exists ν > 0 such that

∀x, y ∈ H , ‖x− y‖ ≤ ν ⇒ ‖F̃ 2N (x)− F̃ 2N (y)‖ ≤ ε/2.

Thus for x = (x1, . . . , xk−1) ∈ [x̄+ ε′, x̂r]×B(0k−2, ν):

‖F̃ 2N (x1, . . . , xk−1)− (x̄r , 0k−2)‖ ≤ ‖F̃ 2N (x1, . . . , xk−1)− F̃ 2N (x1, 0k−2)‖
+‖F̃ 2N(x1, 0k−2)− (x̄r , 0k−2)‖

≤ ε/2 + ε/2 = ε.

Consequently F̃ 2N (x) ∈ B((x̄r , 0k−2), ε) implying that F 2n(x) → x̄r.
Note that we can realize exactly the same reasoning on [x̂, x̄− ε′].
Let x1 ∈ [α, 1/2]\[x̂, x̂r] (see Lemma 2.3 for the definition of α) and according to Proposition 4.3
there exists n such that F̃ 2n(x1, 0k−1) ∈ [x̂, x̂r]× B(0k−2, ν). Using again the uniform continuity
of F̃ 2n, there exists ν′ such that

‖x− y‖ ≤ ν′ ⇒ ‖F̃ 2n(x)− F̃ 2n(y)‖ ≤ δ := min

(

ν,
F̃ 2n
1 (x1, 0k−2)− x̂

2
,
x̂r − F̃ 2n

1 (x1, 0k−2)

2

)

implying that if ‖(x2, . . . , xk−1)‖ ≤ ν′ then

x̂+ F̃ 2n
1 (x1, 0k−2)

2
≤ F̃ 2n

1 (x1, . . . , xk−1) ≤ x̂r + F̃ 2n
1 (x1, 0k−2)

2

0 ≤ F̃ 2n
j (x1, . . . , xk−1) ≤ ν, ∀j > 1

and thus F̃ 2n(x1, . . . , xk−1) ∈ [x̂, x̂r]×B(0k−2, ν).
Note that we write p̃ = (p̃1, . . . , p̃k−1) for (p1,p3,p4, . . . ,pk) and p̃(n) = F̃n(p̃).
According to lemma 2.3, p̃j(n) → 0 for all j ≥ 2 and according to lemma 2.4, p̃1(n) ∈ [α, 1/2] for
all n ≥ 1. There exists N1 such that ∀n ≥ N1, p̃(n) ∈ (0, 1/2] × B(0k−2, ν

′). Then there exists
n ≥ 0 such that

p̃(N1 + 2n) ∈ [x̂, x̂r ]×B(0k−2, ν).

If p̃(N1 + 2n) ∈ [x̂, x̄ − ε′] ∪ [x̄ + ε′, x̂r] × B(0k−2, ν), we have the convergence to (x̄ℓ, 0k−2) or
(x̄r , 0k−2). Otherwise p̃(N1 + 2n) ∈ B(x̄, ε′)×B(0k−2, ν) and

• either limn→+∞ p̃(2n) = (x̄, 0k−2),

• or there exists m > n such that p̃(N1 + 2m) ∈ [x̂, x̄ − ε′] ∪ [x̄ + ε′, x̂r] × B(0k−2, ν) and we
have convergence to (x̄ℓ, 0k−2) or (x̄r, 0k−2).
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If we are in the first case, it means that p̃ ∈ Ws = ∪n>0F̃
−n(W s

ε′ ) and as a countable union of
negligible sets with respect to the Lebesgue measure, Ws is also negligible:

λ

(

p̃ ∈ Pk,2, lim
n→+∞

p̃(2n) /∈ {(x̄ℓ, 0k−2), (x̄r, 0k−2)}
)

= 0 (4.5)

Remark 4.2 This result is not limited to the case z = 6 and i = 2. Indeed, according to our proof,
the only conditions a case (z, i) has to satisfy are :

1. x̄z,i is such that ∂xfz,i(x̄z,i) < −1.

2. fz,i(x̂z,i) > x̂z,i.

3. fz,i(1/i) < x̂z,i.

The last two conditions appear in the proof of lemmas 4.1 and 4.2. While condition 3 seems to be
always satisfied, condition 2 is not. For instance, it is not satisfied for (z, i) = (12, 2) and numerical
simulations show the existence of an orbit of period 4 (see Figure 6) for this case. However, the
aim of the paper is not the study of all non convergent cases.

Figure 6: z = 12, i = 2, f (red), f2 (yellow), f4 (blue)

5 Open questions and variant case

In [1], the authors study a binary tree with the following changes

• k = 2, we have only two diseases;

• (R3) is replaced by (R4): if only one of the leaves is infected, the node is infected by it with
probability α and not infected with probability 1− α.

The authors obtain the following

Theorem 5.1 For all p ∈ P2, p(n) converges and

1. If α > 1/2

lim
n→∞

p(n) =

{

(1, 0, 0) if p1 > p2,
(

2α−1
4α−1 ,

2α−1
4α−1 ,

1
4α−1

)

if p1 = p2.

2. If α = 1/2

lim
n→∞

p(n) =

{

(p1 − p2, 0, 1− p1 + p2) if p1 > p2,
(0, 0, 1) if p1 = p2.
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3. If α < 1/2 limn→∞ p(n) = (0, 0, 1).

In the same spirit, we replace (R3’) by (R4’):

P





z
⊗

j=1

Xj = 1

∣

∣

∣

∣

∣

∣

A
ℓ
i (z)



 = (1− αi)
z−ℓ

where αi is the probability of infection i and A ℓ
i (z) := {Sz = {1, . . . , ℓ}, Xℓ+1 = · · · = Xz = ei}

the event the ℓ firsts children are not sick and the others are infected by disease i.
Recall (R1’): if all the children have the same state (infected or not) the ancestor is infected (or
not) by it (which does not seem natural).

Figure 7: (R4’) for N = 3 a.s.

We obtain the equivalent of lemma 2.1:

Lemma 5.1 For all n ≥ 1:

pi(n+1) =

{

GN (pk+1(n) + pi(n))−GN (pk+1(n) + pi(n)(1 − αi)) +GN ((1− αi)pi(n)), if i ≤ k

1−∑k
j=1 pi(n+ 1) otherwise.

Proof : For i 6= k + 1, the recursion formula obtained here is:

pi(n+ 1) =

∞
∑

z=2

qz

z−1
∑

ℓ=0

P



|Sz| = ℓ,

z
⊗

j=1

Xj = ei





=

∞
∑

z=2

qz

z−1
∑

ℓ=0

(zℓ )p
ℓ
k+1(n)p

z−ℓ
i (n)P





z
⊗

j=1

Xj = ei
∣

∣A
ℓ
i (z)





=

∞
∑

z=2

qz

[

z−1
∑

ℓ=1

(zℓ )p
ℓ
k+1(n)p

z−ℓ
i (n)(1− (1 − αi)

z−ℓ) + pi(n)
z

]

=

∞
∑

z=2

qz ((pk+1(n) + pi(n))
z − (pk+1(n) + pi(n)(1− αi))

z + (1 − αi)
zpi(n)

z)

= GN (pk+1(n) + pi(n)) −GN (pk+1(n) + pi(n)(1− αi)) +GN ((1 − αi)pi(n)). �
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In all the following we assume that

∀i ∈ J1, kK, αi = α > E[N ]−1. (5.1)

Lemma 5.2 There exists η > 0 such that

∀n ∈ N,p1(n) ≥ min{GN (η),p1}

Proof : According to (5.1), there exists δ > 0 such that α = E[N ]−1 + δ. As GN (1 − x) =
GN (1) − xG′

N (1) + ε(x) where ε(x)/x → 0 when x goes to 0, there exists η > 0 small enough such
that if 0 < x ≤ η, |ε(x)| ≤ δxG′

N (1)/k. Then for 0 < x ≤ η/k and 0 < y < (k − i)x:

GN (1− (i − 1)x− y)−GN (1− (i − 1 + α)x− y) ≥ αxG′
N (1)− δxG′

N (1) ≥ x,

and as GN ((1− α)x) ≥ 0:

GN (1 − (i− 1)x− y)−GN (1 − (i− 1 + α)x − y) +GN ((1 − α)x) ≥ x.

The rest of the proof is exactly the same as the one of lemma 2.3. �

Lemma 5.3 For all j > i, pj(n) →
n→∞

0.

Proof : Writing for all 1 ≤ j ≤ k:

pj(n+ 1) = α
∑

z≥2

qzpj(n)

z−1
∑

ℓ=0

(pj(n) + pk+1(n))
z−1−ℓ(pk+1(n) + (1 − α)pj)

ℓ + (1− α)zpi+1(n)
z

it is not difficult to see that the sequence w′
n = pi+1(n)

p1(n)
is positive and decreasing. The rest of the

proof is the same as the one of Lemma 2.4. �

Proposition 5.4 If p1 > p2 ≥ · · · ≥ pk then limn→+∞ p1(n) = 1.

Proof : We have already shown that pj(n) →
n→∞

0 for all j > 1 and according to lemma 5.2

lim infn→∞ p1(n) > 0. Consequently

p1(n+ 1) = GN



1−
k
∑

j=2

pj(n)



−GN



1−
k
∑

j=2

pj(n)− αp1(n)



 +GN ((1 − α)p1(n))

lim inf
n→∞

p1(n+ 1) = GN (1)−GN

(

1− α lim inf
n→∞

p1(n)
)

+GN

(

(1 − α) lim inf
n→∞

p1(n)
)

= 1−GN

(

1− α lim inf
n→∞

p1(n)
)

+GN

(

(1− α) lim inf
n→∞

p1(n)
)

.

Thus, lim infn→∞ p1(n) is a fixed point of x 7→ 1 − GN (1 − αx) + GN ((1 − α)x) on (0, 1]. This
function being increasing, the solution is 1. As a result lim infn→∞ p1(n) = limn→∞ p1(n) = 1.

�

Here we give some open questions that may be interesting to study.

1. What happens if we slightly change (R1’) and (R2’): although all children are sick, we need
at least a disease to be expressed. In a more probabilistic way, for all 0 ≤ ℓ ≤ z − 1

P





z
⊗

j=1

Xj = ei

∣

∣

∣

∣

∣

∣

A
ℓ
i (z)



 =

z−ℓ
∑

w=1

αw
i (1− αi)

z−ℓ−w.
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Assuming that αi < E[N ]−1:
lim

n→+∞
pi(n) = 0. (5.2)

Indeed, we can bound above limn→+∞ pi(n) by the probability that in a GW with repro-
duction law N and percolation probability αi, there is an infinite connected component
containing φ. It is well known that αc = E[N ]−1, is the critical probability for the existence
of such a connected component which gives (5.2)

2. An interesting subject is the link between the law of N and the existence of a fixed point. It
seems obvious that if N is heavy tailed, there is no fixed point but what happens if P(N ≥ 6)
is very low? Is there a critical value for this probability implying the existence or not of a
fixed point?

3. Numerical simulations suggest the existence of a unique attracting orbit for every z and k.
The study of the Schwarzian derivative of f could be a good point of view. Moreover for
every p ∈ N, it seems that we can find z and k such that the attracting orbit has 2p for prime
period. To conclude, can we write a complete classification of the map with topological
conjugacy: Two maps f : A → A and g : B → B are said to be topologically conjugate if
there exists a homeomorphism h : A → B such that f = h−1 ◦ g ◦ h. In this case f and g are
equivalent in terms of their dynamics. For instance if x is a fixed point of f , h(x) is a fixed
point of g.

6 Appendix

In this section, we remind elementary definitions and results on discrete dynamical systems we use
in section 3 and 4. For a more thorough presentation, we refer the reader to [2, 4].

So let M be a metric space and f : M → M a C1 mapping. We are interested in the discrete
dynamical system corresponding to

f0(x) = x, fn(x) = fn−1 ◦ f(x), n ∈ N, x ∈ M (6.1)

Definition 6.1 (fixed and periodic points) A point y ∈ M satisfying y = f(y) is called a fixed
point of f .
A point y ∈ M satisfying y = fp(y) for p ∈ N⋆ and y 6= fn(y) for n ∈ {1, · · · , p − 1} is called a
periodic point of f of prime period p.

Note that a fixed point of f is a periodic point of f of prime period 1.

Definition 6.2 (attracting and repelling periodic points) Let y ∈ M be a periodic point of
f of prime period p.

1. y is an attracting periodic point of f (of prime period p) if there exists an open neighborhood
U of y such that

∀x ∈ U, lim
n→+∞

fnp(x) = y.

2. y is a repelling periodic point of f (of prime period p) if there exists an open neighborhood U
of y such that

∀x ∈ U\{y}, ∃n ∈ N s.t. fnp(x) /∈ U.

Definition 6.3 (hyperbolic periodic point) Let y ∈ M be a periodic point of f of prime period
p, and let A = D(fp)(y) be the Jacobian matrix of fp at y. If A is invertible and has none of its
eigenvalues on the unit circle, we call y a hyperbolic periodic point of f (of prime period p).
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Proposition 6.1 Let y be an hyperbolic periodic point of f of prime period p, and let A = D(fp)(y)
be the Jacobian matrix of fp at y.

1. If all the eigenvalues of A are inside the unit circle, then y is an attracting periodic point of
f . y is said to be linearly attracting.

2. If all the eigenvalues of A are outside the unit circle, then y is a repelling periodic point of
f .

Note that a hyperbolic periodic point which is neither attracting nor repelling is called a saddle
point. In this case, it is of interest to define the stable and unstable sets of the mapping fp.

Definition 6.4 (stable and unstable sets) Let y be a hyperbolic periodic point of f of prime
period p. We define the stable and unstable sets W s(y) and Wu(y) as

W s(y) :=

{

x ∈ M | lim
n→+∞

fnp(x) = y

}

(6.2)

Wu(y) :=

{

x ∈ M | lim
n→−∞

fnp(x) = y

}

. (6.3)

Note that if y is a attracting periodic point of f , then there exists an open neighborhood U of
y such that Wu(y)∩U = {y} and W s(y)∩U = U . Similarly, if y is repelling, then there exists an
open neighborhood U of y such that W s(y) ∩ U = {y} and Wu(y) ∩ U = U .

Theorem 6.5 (Hartman-Grobman Theorem) Let y be a hyperbolic fixed point of f . Then
there exists a neighborhood U of y and a homeomorphism h : U → M such that

f|U = h−1 ◦A ◦ h,

where A is the Jacobian matrix of f at y.

This theorem states that in a neighborhood of a hyperbolic fixed point, f is topologically
conjugated to its linearization. So in this neighborhood, the behavior of the dynamical system is
qualitatively the same as the one of its linearization. This leads to the stable manifold theorem.

Theorem 6.6 Let y be a hyperbolic fixed point of f . Then

1. W s(y) is a smooth manifold and its tangent space at y is the stable space of the linearization
of f at y.

2. Wu(y) is a smooth manifold and its tangent space at y is the unstable space of the linearization
of f at y.
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