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Abstract 
 

In this paper we propose to determinate and to test a set ofstatistical parameters (20)to estimate the predictability 

of the global horizontal irradiation time series and thereby propose a new prospective tool indicating the 

expected error regardlessthe forecasting methodsa modeller can possibly implement. The mean absolute log 

return, which is a tool usually used in econometry, proves to be a very good estimator. Some examples of the use 

of this tool are exposed, showing the interest of this statistical parameter in concrete cases of predictions or 

optimizations. 
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1. Introduction 
 
Solar radiation is one of the principal energy sources for physical, biological and chemical processes, occupying 

the most important role in many engineering applications[1]. The process of converting sunlight to electricity 

without combustion allows creating power without direct pollution. Thereby it is necessary to proposesome 

prediction models [2]to use ideally this technology and in order to integrate solar energy PV production systems 

in the energetic mix[3]. Thus,solar energy forecasting is used to predict the amount of solar energy available in 

near terms[4]. Several methods have been developed by experts around the world and the mathematical 

formalism of Times Series (TS) has often been used[5]. TS is a set of numbers that measures the status of some 

activity over time. It is the historical record of some activity, with measurements taken at equally spaced 

intervals with a consistency in the activity and the method of measurement[6]. Some of the best predictors found 

in literature are Autoregressive and moving average (ARMA) [5,7,8], Bayesian inferences [9,10], Markov chains 

[11], k-Nearest-Neighbors predictors [12] or artificial intelligence techniques as the Artificial Neural Network 

(ANN) [9-11]. Although these methodologies are potentially good in many areas, we observed in our previous 

studies on global radiation prediction [9,13,14] that the simple model based on the persistence of the clear sky 

index gives often very good results with acceptable errors [15] for short term forecasting time horizon (less than 

1 hour).It quite a standard in the solar forecasting community[16]. Indeed, instead of using directly the global 

horizontal irradiation (GHI), up to date forecast models predict the clear sky index at different forecast time 

horizons[17]. The corresponding forecast is obtained through the use of a clear sky model. In addition, forecasts 

based on persistence on the clear sky index exhibit rather good performance for forecast horizons < 1h. Also, the 

clear sky index is very important when one want to characterize the variability of a site[18,19], therefore a key 

component in solar forecasting is the clear sky index or equally the clear sky model. Several statistical 

parameters [18]aim at assessing the variability and consequently the difficulty to forecast the GHI[4,19,20]. The 

goal of this paper is to find a metric that is correlated to the forecasting accuracy (nRMSE; nMAE): 

-Based on sound numerical experiments, we study the aforementioned metrics [18,19] or even simple metric 

(variation coefficient, mean, standard deviation, etc.);  

-Conversely, other parameters related to financial econometric community are studied (return, absolute log 

return, etc.). 

The paper is organized as follow: Section 2 describes the data andthe statistical parameters used. Section 3 

exposesthe prediction methodology comparing the statistical parameters.In the two following sections, the 



comparison result is shown concerning 8 different locations and through 3 illustrations, we show that this new 

metric enables to a priori assess the accuracy of the forecasting methods based on the clear sky index series. 

 

2- Materials and methods 
 

To estimate a time series prediction, a stationary hypothesis is often necessary. This result, originally shown for 

ARMA methods [21], can be also applicable for other estimators [22,23].This condition usually implies a stable 

process [24]. This notion is directly linked to the fact that whether certain feature such as mean or variance 

change over time or remain constant. To make the time series stationary, we used the clear sky index (CSI) 

methodology from a clear sky (CS) estimation done with a numerical model (Solis)[25]. The ratio between the 

GHI (x) and the clear sky model (CS) defines the clear sky index CSI (𝐶𝑆𝐼 𝑡 =
𝑥 𝑡 

𝐶𝑆 𝑡 
). 

 

2.1. Methodology 
 

In order to assess the correlations between the proposed statistical parameters and the forecasting accuracy, we 

employ for each site two years of GHIand a repeated random sub-sampling validationis done in order to 

overcome the specificities of some years (data resampling).  It is a common technique for estimating the 

performance of a classifier improving over the holdout method (corresponding to a 2-fold cross validation). This 

method randomly splits the dataset into training and validation data. For each such split, the model is fit to the 

training data (80% of data), and the predictive accuracy is assessed using the validation data (20% of data). The 

results are then averaged over the splits (mean prediction error). The advantage of this method (over k-fold cross 

validation) is that the proportion of the training/validation split is not dependent on the number of iterations 

(folds)[26]. The disadvantage of this method is that some observations may never be selected in the validation 

subsample, in practice, we have chosen 10 resamples. Note that, when the number of random splits goes to 

infinity, the repeated random sub-sampling validation becomes arbitrary close to the leave-p-out cross-

validation. 

 

2.2. Data 
 

To validate this study, we choose 8 cities distributed around the world: 4 insular cities (2 in northern hemisphere, 

1 in the northern tropical zone and 1 in the southern tropical zone), 3 continental cities in the north hemisphere 



and 1 continental city in the southern hemisphere.All these stations are part of a national measurement network 

and the measurement standards are almost equivalent. The three Islands(4 stations) are: 

-Reunion Island;it exhibits a particular meteorological context dominated by a large diversity of 

microclimates. Two main regimes of cloudiness are superposed: the clouds driven by the synoptic conditions 

over the Indian Ocean and the orographic cloud layer generated by the local reliefs. The data used to build the 

models are measured at the meteorological station of St Pierre (21°20’S ; 55°29’E, 75m a.s.l)located in the 

southern part of Reunion Island. Measurements are available on an hourly basis and two years of data (2011 and 

2012). 

-Guadeloupe Island, we have used a two years database (2011 and 2012) of GHI measured on an hourly 

basis at the Meteo France meteorological station of le Raizet (16°26N, 61°24W, 11m asl) The daily average for 

the solar load on a horizontal surface is around 5 kWh/m². A constant sunshine combined with the thermal 

inertia of the ocean makes the air temperature variation quite weak, between 17°C and 33°C with an average of 

25°C to 26°C. Relative humidity ranges from 70% to 80% and the trade winds are relatively constant all along 

the year. As for Reunion Island, two main regimes of cloudiness are superposed: the clouds driven by the 

synoptic conditions over the Atlantic Ocean and the orographic cloud layer generated by the local reliefs. 

-Corsica Island,the data used to build the models, are GHI measured at the meteorological station of 

Ajaccio (41°55’N, 8°44’E, 4m asl) and Bastia (42°42’N, 9°27’E, 10m asl).They are located near the 

Mediterranean Sea and nearby mountains (1000 m altitude at 40km from the sites). This specific geographical 

configuration makes nebulosity difficult to forecast. Mediterranean climate is characterized by hot summers with 

abundant sunshine and mild, dry and clear winters. The data representing the global horizontal solar radiation 

were measured on an hourly basis from 1998 to 1999 (exactly two years). As for all experimental acquisitions, 

missing values are observed, here, this represents less than 2% of the data. A classical cleaning approach is then 

operated in order to identify and remove this data. 

The four continental stations are: 

-Northern continental cities; the 3 studied cities are Marseille (43°17’N, 5°22’E, 10m asl), Nice 

(42°42’N, 9°27’E, 10m asl) andMontpellier (43°36’N, 3°52’E, 27m asl). These locations (metropolitan France) 

are characterized by the same climate, namely a Mediterranean climate with mild, humid winters and warm to 

hot, mostly dry summers. If concerning the two first cities are near mountains (over 1000m asl) the third is 

located in a flat area. The measures were recorded during the years 2007-2008. 



-Southern city; Melbourne is located in the south-eastern part of mainland Australia (37°48’S, 

144°57’E, 60m asl). It has a moderate oceanic climate and is well known for its changeable weather conditions. 

This is mainly due to Melbourne's location situated on the boundary of the very hot inland areas and the cool 

southern ocean. This temperature difference is more pronounced in the spring and summer months and can cause 

very strong cold fronts to form. These cold fronts can be responsible for all sorts of severe weather from gales to 

severe thunderstorms and hail, large temperature drops, and heavy rain. The measures were recorded during the 

years 2008-2009. 

 

2.3. Clear sky modelling 
 

Among the clear sky models that can be found in literature, for this study, we have choose the simplified “Solis 

clear sky” model based on radiative transfer calculations and the Lambert-Beer relation[27]. In previous studies, 

this model has shown its effectiveness to fit the global radiation of cloudless days. In this case, the clear sky 

global horizontal irradiance (CS) reaching the ground is defined by the equation 1. 

))(sin())).((sin/exp(.)(
0

ththHtCS b        
Equation 1 

Where is the global total atmospheric optical depth, h is the solar elevation angle, b is a fitting parameter and H0 

the global radiation on the top of atmosphere. Concerning the global radiation forecasting, it is a common 

practice to filter out the data in order to remove night hours and to compareobjectively the studied predictors. 

This choice is justified because during these periods there is obviously no significant solar radiation to generate 

electricity (i.e. low potential overnight). We chose to apply a selection criterion based on the solar zenith angle 

(SZA=90°-h): solar radiation data for which the solar zenith angle is greater than 80° have been removed. This 

transformation is equivalent to a filtering related to the solar elevation angle (h) lower than 10°. In addition, this 

filtering process allows to discard data with less precision as measurement uncertainties associated to 

pyranometers are typically much higher than ± 3.0% for SZA > 80°. Note that for the sunrise and sunset, the 

prediction is also very difficult (mainly for the mountainous area) owing to the geographic shield. All the clear 

sky models are linked to the atmospheric parameters [20], in the case of Solis model the aerosol optical depth is 

very important and can dramatically alter the output.  

 

2.4. Statistical parameters 

 
Whether in the field of renewable energy or  financial markets, it is now common to speak of 

"prediction". In fact, the estimated future value of a meteorological variable (such as global irradiation) or of a 



financial product may, under the aspect of time series analysis, be treated in the same way. Generally, in order to 

estimate the future value of a variable, it is essential to have information on its past evolution. A time series of a 

given variable is intuitively defined as an ordered sequence of past values [28]. To use the formalism of the TS, 

it is necessary to consider first some definitions. The current value at t of the time series is noted xt(representing 

in our case the GHI or the CSI) where t, the time index, is between 1 and n, withn is the total number of 

observations. For the horizon 1 (the simplest case; one hour head in our case), the general formalism of the 

prediction will be represented by Equation 2 where ϵ represents the error between the prediction and the 

measurement, fn the model to estimate and tthe time index taking the (n-p) following values: n, n-1,…, p+1, p. 

The variablepis the number of model parameters (it is assumed that n ≫ p). [29] 

x(t+1)=fn (x(t),x(t-1),….,x(t-p+1) )+ϵ(t+1)      Equation 2 

Studies in finance and econometrics have yielded many models more or less sophisticated. These were 

taken in the context of other subjects, including the prediction of global solar radiation.  

In this paper, we want to apply some statistical parameters on different time series and discuss about 

their impact on the error of prediction generated by different prediction models. In financial modelling or 

econometrics, a lot parameters were developed (return, volatility, etc.).In the following, we propose to adapt 

some of these parameters to solar radiation forecasting.The first studied parameter is the simple ratioat the time 

twhich is defined in the equation 3. 

𝑟𝑎𝑡𝑖𝑜 𝑡 =
𝐶𝑆𝐼 𝑡 

𝐶𝑆𝐼(𝑡−1)
         Equation 3 

This new time series (hourly step in our case) represents theincrease (ratio>1) or the decrease (ratio<1) of the 

global radiation at time t. We define also the simple mathematical average of a series of ratio (mean ratio; r) 

generated over a period of time. An average ratio is calculated in the same way, a simple average for any set of 

numbers. Note that mean absolute ratio is equivalent to the mean ratioregarding the global irradiation (all the 

values are positive). From the ratio parameter, it is possible for each step to define the simple return or arithmetic 

return,r=ratio(t)-1. 

One of the benefit of using returns is normalization: measuring all variables in a comparable metric, thus 

enabling evaluation of analytic relationships among two or more variables despite originating from CSI series of 

unequal values (or from different sites). This is a requirement for many multidimensional statistical analysis and 

machine learning techniques. For example, interpreting an equity covariance matrix is made wise when the 

variables are both measured in percentage. Usually it is not the return which is used but the log-return (logr) 

defines by the equation 4. 



𝑙𝑜𝑔𝑟 𝑡 = 𝑙𝑜𝑔
𝐶𝑆𝐼 𝑡 

𝐶𝑆𝐼(𝑡−1)
= log 𝐶𝑆𝐼 𝑡  − log 𝐶𝑆𝐼 𝑡 − 1       Equation 4 

The log return has the nice property oflog-normality.If we assume that CSIis distributed log normally (which, in 

practice, may or may not be true for any given series), then log(ratio) is conveniently normally distributed. 

Unfortunately there are a number of points that initially discourageacceptance of the idea of returns.  

Two other important statistical propertis of the return or log-return are the skewness and kurtosis of the 

distribution. Skewness is the normalized third central moment and it describes the symmetry of the random 

variable with respect to its mean.Kurtosis is the normalized fourth central moment and it describes the behavior 

of the tailof the distribution. It is independent of scale and location parameters and socan be used as a 

comparisoncoefficient between the empirical data and thenormal distribution. Together skewness and kurtosis 

summarize the extentof asymmetry and tail thickness of the distribution.In figure 1 is shown the log-return 

distribution computed in Ajaccio (1128.exp(-((x-0.024)/0.1258)
2
; R²=0.9951) considered as normally 

distributed. 

 

 

Figure 1. Gaussian fit for log-return distribution (line) and measured values (point). 

 

The equation 5 definesthe ih moment about the mean of series logr(where E is the expectation operator). 

𝜇𝑖 = 𝐸  𝑙𝑜𝑔𝑟 𝑡 − 𝐸 𝑙𝑜𝑔𝑟 𝑡   𝑖         Equation 5 

The second central moment μ2 is the variance(this square root represents the standard deviation noted std in the 

next).The third and fourth central moments are used to define the standardized moments which are used to define 

skewness (skew) and kurtosis (kurt), respectively.In statistics, the Jarque–Bera test is a goodness-of-fit test of 



whether sample data have the skewness and kurtosis matching a normal distribution. The test statistic JB is 

defined by the equation 6 in the case of the log-return.The lower is JB and more the series can be described by a 

normal distribution. 

𝐽𝐵 =
𝑛

6
 𝑠𝑘𝑒𝑤 𝑙𝑜𝑔𝑟 𝑡  

2
+

1

4
 𝑘𝑢𝑟𝑡 𝑙𝑜𝑔𝑟 𝑡  − 3 

2
      Equation 6 

In order to better take into account the intermittency in the CSI series (no compensation effect between positive 

and negative values), it is possible to define the absolute value of the ratio, return or log-return. In the case of the 

ratio the mean of the absolute log-return is done by operating a temporal mean on 𝑙𝑜𝑔𝑟 𝐶𝑆𝐼 𝑡    (see equation 

7). 

 𝑙𝑜𝑔𝑟(𝑡) = 𝑎𝑏𝑠 log 𝐶𝑆𝐼 𝑡  − log 𝐶𝑆𝐼 𝑡 − 1         Equation 7 

Note that this parameter doesn’t follow a Gaussian distribution from its construction. If the previous parameters 

allow to consider the noise in the series (high frequency at 1 hour
-1

), we choose also to study a more classical 

parameter allowing to estimate the seasonality of the CSIseries (low frequency at 1 year
-1

): the coefficient of 

variation (CVdefined for the CSI in the equation 8). 

𝐶𝑉 = 𝑠𝑡𝑑(𝐶𝑆𝐼 𝑡 )/𝐸 𝐶𝑆𝐼 𝑡          Equation 8 

The next studied parameter (V) is based on the Marquez formula[19] and is described in the equation 9. It is 

almost equivalent to the  𝑙𝑜𝑔𝑟(𝑡)  with a L²-norm and without the log transformation. 

𝑑𝑖𝑓𝑓 = 𝐶𝑆𝐼 𝑡 − 𝐶𝑆𝐼(𝑡 − 1) and  𝑉 =  𝑚𝑒𝑎𝑛(𝑑𝑖𝑓𝑓2)    Equation 9 

An extension of this metric (calledP) proposed by Perez et al. [18] is based on the dispersion of the quantity 

diffas shown in the next equation (equation 10). Note that if𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓  0 so 𝑉 𝑃. 

𝑃 = 𝑠𝑡𝑑(𝑑𝑖𝑓𝑓)          Equation 10 

One of the other intrinsic characteristics of each time series is the number of lag statistically dependent. In fact to 

predict CSI(t+1), it is often not necessary to know all the previous value of the time series. The order of 

dependency can be computed by two ways: the autocorrelation and the auto-mutual information. In contrast to 

thelineardependence measured by autocorrelation, auto-mutual information supplies a measure 

ofgeneraldependence. Mutual information answers the following question: given theobservation ofCSI(t), how 

accurately can one predictCSI(t+)?Thus, successivedelay coordinates are interpreted as relatively independent 

when the mutualinformation is small. In practice we, the first minimum of the auto-mutual information (AMI) is 

considered as and corresponds(not exactly but this approximation is sufficient in the study context) to 



information dimension (ID).The equation 11 describes the AMI computing  (𝑝 𝐶𝑆𝐼 𝑡 , 𝐶𝑆𝐼 𝑡 − 𝜏  is the joint 

probability and𝑝 𝐶𝑆𝐼 𝑡  the marginal probabilities. 

𝐴𝑀𝐼(𝜏) =  (log⁡
𝑝 𝐶𝑆𝐼 𝑡 ,𝐶𝑆𝐼 𝑡−𝜏  

𝑝 𝐶𝑆𝐼 𝑡   𝑝 𝐶𝑆𝐼 𝑡−𝜏  
)𝑝(𝐶𝑆𝐼(𝑡), 𝐶𝑆𝐼 𝑡 − 𝜏 )     Equation 11 

The interested reader can refer to [30] for more information concerning the Shannon entropy and the mutual 

information. The last studied parameter is the fractal dimension (FD) computed with the Box counting  method. 

A fractal dimension is a ratio providing a statistical index of complexity comparing how detail in a pattern 

(strictly speaking, a fractal pattern) changes with the scale at which it is measured.Box counting is a method of 

gathering data for analyzing complex patterns by breaking a dataset into smaller and smaller pieces, typically 

"box"-shaped, and analyzing the pieces at each smaller scale in order to quantify box-counting dimension and 

fractal scaling. Suppose that N(ε) is the number of boxes of side length ε required to cover the set, the Fractal 

dimension is defined by the equation 12[31]. 

𝐹𝐷 =
log  𝑁 𝜀  

log  
1

𝜀
 

          Equation 12 

The table 1 summarizes the studied statistical parameters. 

 

*Clear sky index defined in the section 2 

 Initial time 

series* 

Ratio 

(Eq 3) 

Log-retrun 

(Eq 4) 

Absolute log-return 

(Eq 7) 

Mean - mean(ratio) mean(logr) Mean(abs_logr) 

Standard deviation - std(ratio) std(logr) std(abs_logr) 

Kurtosis (Eq 5) - kurt(ratio) kurt(logr) kurt(abs_logr) 

Skewness (Eq5) - skew(ratio) skew(logr) skew(abs_logr) 

Jarque-Nera stat (Eq 6) - JB(ratio) JB(logr) JB(abs_logr) 

Marquez parameter (Eq 9) V - - - 

Perez parameter (Eq 10) P - - - 

Coefficient of variation (Eq 8) CV - - - 

Information dimension (Eq 11) ID - - - 

Fractal  dimension (Eq 12) FD - - - 

Table1. List and names of the studied statistical parameters (- means that the parameter is not tested here) 

 

 

Table1. List and names of the studied statistical parameters (- means that the parameter is not tested here) 

 



3- Forecasting methodologies 

 
In this study, we chose to use 3 forecasting methodologies, if the two first related to the persistence (simple and 

scaled) are very easy to use, the third one is a more sophisticated artificial intelligence tool: the artificial neural 

networks. 

The first type of forecasting method studied is the persistence model; the simplest way of producing a forecast. 

The persistence assumes that the conditions at the time of the forecast will not change (Eq 13; 𝑥𝑡 are the global 

radiation time series elements). 

𝑥 (𝑡 + 1)
𝑃
 𝑥(𝑡)          Equation 13 

To take into account the fact that the TS is periodical (due to the solar geometry), it is possible to correct the 

persistence form with a scale term noted 𝑆𝑡   (Eq 14). 

𝑥 (𝑡 + 1)
𝑆𝑃
  𝑥(𝑡). (𝑆(𝑡))         Equation 14 

The last factor of this product can be computed using a clear sky modeling regardless the time t. If the clear sky 

time series is named CS(t), the scaled persistence become: 

𝑥 (𝑡 + 1)
𝑆𝑃
  𝑥(𝑡). (

𝐶𝑆 𝑡+1 

𝐶𝑆 𝑡 
)        Equation 15 

Note that the scaled persistence is in fact a persistence of the ratio 
𝑥 𝑡 

𝐶𝑆 𝑡 
which is also called clear sky index (CSI). 

In the discussion part, a prediction using multilayer perceptron (MLP; particular artificial neural network) is 

presented. To forecast the time series, a fixed number p of past values are set as inputs of the MLP, the output is 

the prediction of the future value. Considering the initial time series equation (Equation 2), we can transform this 

formula to the non-linear case of one hidden layer MPL with b related to the biases, f and g to the activation 

functions of the output and hidden layer, and to the weights (see equation 16). The number of hidden nodes 

(H) and the number of the input nodes (In) allow detailing this transformation[32,33]: 

𝐶𝑆𝐼 (𝑡 + 1)
MLP
   𝑓( 𝑜𝑖

𝐻
𝑖=1 𝜔𝑖

2 + 𝑏2)with𝑜𝑖 = 𝑔( 𝐶𝑆𝐼(𝑡 − 𝑗 + 1)𝐼𝑛
𝑗=1 𝜔𝑖𝑗

1 + 𝑏𝑖
1)  Equation 16 

In the presented study, the MLP has been computed with the Matlab© software and its Neural Network toolbox. 

The optimization of the number of input nodes is done with the automutual information and the number of 

hidden neurons is taken equal to the input nodes number. The results shown in the next are related to the best 

networks among 10 different trainings coupled with a random weight initialization. Interested readers can 

consult previous papers for more details [15]. The error metrics used during these manipulations are the 



nRMSE =
 𝐸  𝐶𝑆𝐼 −𝐶𝑆𝐼 2 

𝐸[𝐶𝑆𝐼]
  and the nMAE ( =

 𝐸  𝐶𝑆𝐼 −𝐶𝑆𝐼  

𝐸[𝐶𝑆𝐼]
 . In this section, we have defined the normal and 

scaled persistence and MLP predictions of the CSI, in the following the correlations are related to this parameter. 

 

 

4- Results and parameters validation 

 
In order to estimate the a priori parameters linked to prediction quality, we expose in the table 2 the Spearman 

and the Pearson correlation factors between nRMSE (and nMAE) versus the 20 statistical parameters mentioned 

above (a p-value<0.05 meaning a statistical dependence between variables). These correlation factors are 

computed over the 8 locations: Ajaccio, Bastia, Saint-Pierre, Melbourne, Marseille, Montpellier, Nice and Le 

Raizet. In this first study, we decide to show only the scaled persistence predictor. In fact, with the simple 

persistence, there is no significant conclusion and no significant correlation and with the MLP. A known 

problem in training ANN is that the training process can be trapped in a local minimum generating sometimes a 

high variance between the 10 runs(see k-fold part in section 2) and so a difficulty of interpretation. Moreover, 

some authors have shown that the global radiation predictions done with a scaled persistence is often better than 

the prediction done with more complicated models[12,16]. Concerning the two correlation coefficient, the 

Spearman coefficient is computed on ranks and so depicts monotonic relationships while the Pearson coefficient 

is on true values and depicts linear relationships. The interpretation of both allows to test if the correlation is 

monotonic and/or linear. 

 

 nRMSE nMAE 

 Pearson Spearman Pearson Spearman 

Parameters  p-value  p-value  p-value  p-value 

mean(ratio  0.305 0.462 0.619 0.115 0.142 0.738 0.548 0.171 

mean( logr) -0.012 0.978 0.190 0.665 0.045 0.916 0.048 0.935 

mean(abs_logr) 0.864 0.006 0.619 0.115 0.848 0.008 0.548 0.171 

std(ratio) 0.302 0.468 0.500 0.216 0.138 0.744 0.286 0.501 

std(logr) 0.551 0.156 0.595 0.132 0.433 0.284 0.524 0.197 

std(abs_logr) 0.436 0.281 0.571 0.151 0.303 0.466 0.500 0.216 

kurt(ratio) 0.478 0.231 0.286 0.501 0.338 0.413 0.000 1.000 

kurt(logr) 0.245 0.559 -0.286 0.501 0.077 0.856 -0.548 0.171 

kurt(abs_logr) 0.277 0.507 0.190 0.665 0.110 0.795 -0.071 0.882 



skew(ratio) 0.419 0.302 0.286 0.501 0.282 0.498 0.000 1.000 

skew(logr) -0.244 0.560 -0.048 0.935 -0.321 0.438 -0.143 0.752 

skew(abs_logr) 0.245 0.558 -0.143 0.752 0.078 0.854 -0.405 0.327 

JB(ratio) 0.440 0.275 0.286 0.501 0.284 0.495 0.000 1.000 

JB(logr) 0.285 0.494 -0.333 0.428 0.120 0.777 -0.571 0.151 

JB(abs_logr) 0.295 0.478 0.190 0.665 0.130 0.759 -0.071 0.882 

V 0.330 0.425 0.238 0.582 0.426 0.293 0.357 0.389 

P 0.330 0.425 0.238 0.582 0.426 0.293 0.357 0.389 

CV 0.469 0.241 0.357 0.389 0.447 0.267 0.357 0.389 

FD -0.177 0.676 0.183 0.657 -0.284 0.496 -0.052 0.914 

ID -0.329 0.427 -0.176 0.679 -0.473 0.236 -0.454 0.261 

 

Table 2. Correlations between 18 statistical parameters computed a priori and the error of prediction done with 

the scaled persistence (nRMSE/nMAE over10 repeated random sub-sampling validations). In bold the 

correlation significantly different from zero (p-value<0.05; i.e. statistical dependence between variables) 

 

In fact, although parameters as Kurtosis or Fractal dimension seem interesting and directly linked to the 

predictability of the time series, the result of this study is that only the mean absolute log-return is linked to the 

error of prediction concerning the two studied metrics. The relationship is monotonic and linear between the two 

compared elements. The spearman factor generates any evidence of this link.In the figure 2 is represented for the 

8 cities the plot between nRMSE/nMAE and the absolute log-return 

 



 

Figure 2. Linear dependence between the prediction error and the mean of the absolute log-return 

 

Although there are a few points in these figures, it is evident that there is a relation (perhaps not linear) between 

these two kinds of parameters.  

In order to increase the number of point we have introduced a phase shiftin the clear sky modeling. To perform 

it, we modify 50 times the solar elevation (see equation 1) generating a delay or an advance of the clear sky 

model relative to measures. The figure 3 shows the results of this new study for the Ajaccio City. 

 

 

Figure 3. Relationship between mean absolute log-return and prediction error in Ajaccio 

 

Previously we proposed that the link between prediction error and mean absolute log-return was linear here, with 

the increase of the number of points, we can easily notice that the relation is exponential.Knowing the mean 

absolute log-return provide an a priori information about the expected error. 

These results also shows the importance of a good clear sky modelling in the performance of a forecasting 

model. Awrong parameterization of the clear sky model raises grossly the error of prediction. Concerning others 

cities, the trend of the curve linking error metric and mean absolute logreturn is also an exponential growth, the 

values of the fit parameters are slightly different but the interpretation is equivalent. For these reasons we choose 

to not show the other cases in this study. 

 

5- Discussion about the interest of an a priori indicator of predictability 
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We will try through three examples to identify the interest of the mean absolute log-return, the first and second 

onerefers to his relative aspect and the thirdto the absolute aspect of it’s use. 

-Example 1: we search to establish the prediction localized in a single location (Guadeloupe; Le 

Raizet)and we have 3 clear sky models available to make the time series stationary (Solis model, Kasten Model 

[] and Bird model []). In this case, we can imagine to compare the mean absolute log-return generated by the 

three clear sky model, we obtain for Solis 0.246, for Kasten 0.276 and for Bird 0.2749. Taking into account what 

we have exposed previously, we decide before to try to forecast the global radiation that the model Solis is the 

more interesting for this study because it generates the lower mean log-return which we consider as a “quality 

index”. For this study only the nRMSE was used and two years of measurements (one year for training and one 

year for the prediction). The result of the MLP prediction are related to 10 runs and the network that induces the 

lower nRMSE is keep. In the next table (table 3) are shown the result of the prediction for Guadeloupe. 

 

 Solis Kasten Bird 

MLP 0.2512 0.2662 0.2627 

Scaled Persistence 0.2673 0.2815 0.2791 

Persistence 0.3760 0.3760 0.3760 

Table 3. nRMSE for the irradiation prediction in Guadeloupe for three clear sky models 

In this example, the anticipated order based on the mean log-return interpretation is exactly similar to the ranking 

obtained after the modeling by MLP or scaled persistence. Concerning the persistence, the a priori parameter is 

not interesting. 

 -Example 2: We search to optimize a clear sky index in order to predict the global radiation in Ajaccio 

via a scaled persistence methodology. The CS chosen is Solis but we have a parameter called aerosol optical 

depth (ADO) taking value between 0 and 1. The purpose of this example is to use an a priori parameter to 

estimate the best value of AOD to consider. If we plot the mean absolute logreturn considering the AOD (see 

figure 4) we observe a minimum valueof  mean(abs_logr) for an AOD between 0.15 and 0.25(exactly 0.18).  



 

 

Figure 4. Relationship between mean absolute log-return and aerosol optical depth 

 

According to our study, we imagine that the best value of AOD (giving the best result of prediction) is close to 

0.18. Note that the AERONET group (http://aeronet.gsfc.nasa.gov/new_web/aerosols.html) proposes a mean 

value of AOD for 500 and 350nm (wavelength) respectively equal to 0.17 and 0.19 (computed during year 2002 

to 2012 in Ajaccio). In the figure 5, we expose now the nMAE (obtained with a scaled persistence estimation 

and the repeated random sub-sampling) versus the AOD and we infer that the optimum value is 0.17 (very close 

to the value determined with the mean absolute logreturn approach). In this case the absolute log return method 

is efficient and allow to optimize a clear sky model,making thus, stationary a global radiation time series without 

having to test predictions related to a myriad of configurations. 
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Figure 5. Relationship between error metric (nMAE) and aerosol optical depth 

 

-Example 3: We search the global radiation prediction error in Reunion island (mean absolute log-

return=0.2195) generated by scaled and simple persistence and want to know if this model is better than a 

prediction done with MLP (nRMSE=0.2054 and nMAE=0.1454). There are two methods, first one is to compute 

the global study and to compute the error of prediction, and second one, we decide to use the curve generated in 

the previous part (figure 3). Knowing the a priori parameter (mean(abs_logr)=0.2195), we can try to apply it on 

the fit equation generated for the Ajaccio case (nRMSE=0.0763exp(4.4486mean(abs_logr)) and 

nMAE=0.0514exp(3.9733mean(abs_logr)) and conclude that nRMSE~0.2042 and nMAE~0.1229 and finally 

that the scaled persistence is better than MLP in this case. The true error metrics computed from a scaled 

persistence modeling are nRMSE=0.2123 and nMAE~0.1325. For the two error metrics, there is a difference 

close to 1 percentage point, modifying the interpretation of the predictor ranking. In this case the mean absolute 

log-return can’t be used and the operator is forced to do all the steps of the prediction whatever the site 

studied.Note that if we use now the equations of the figure 2 which are generated after the study of the 8 cities, 

results and interpretationsare different (nRMSE=0.2207 and a nMAE= 0.1419) but the difference is also close to 

1 percentage point. 

 

6- Conclusion 

In this paper, we have shown that the use of well-chosen statistical parameters could help the modeler and so the 

PV manager to optimize the clear sky index and to establish the ranking related to different clear sky index 

without do the experiences. We have shown that the methodology works for scaled persistence and MLP 

modeling but is not efficient for the simple persistence. One way of generalization could be to extend it to others 

machine learning estimators (SVM, Bayesian neural network, Gaussian process, etc.). Among all the parameter 

tested, only one has proved efficiency (mean absolute log-return), but with others cities or/and more cities the 

result could have been different. It is essential to use and test econometrics tools (log-return, volatility, etc.) to 

estimate simple prediction quality indexes, our predictions would be perhaps better and it would be time saving. 

Concerning the absolute aspect of the log-return and the use of the fit equation linking error metric and absolute 

log-return, we didn’t show the feasibility of it, for us it is too dependent of the location of the study. For the 

same location, the methodology is possible, the determination coefficients are close de 1 for nRMSE and nMAE, 

but transposed a curve generated in a city into an other cities, it is certainly not realistic.  
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