On Time Parameterization of a Robot Path

Wael Suleiman 1 Abstract-In this paper, we propose an efficient algorithm to solve the time parameterization problem for a redundant robot such as an upper-body industrial manipulator robot. To cope with the physical limits of the robot while minimizing the execution time, the time parameterization problem is formulated as an optimization problem for which we propose an appropriate solver. The output of the algorithm is a feasible trajectory that can be safely executed by the robot. To assess the proposed method, we conducted a simulation scenario of an upper-body industrial manipulator robot (HIRO robot) executing a trajectory while avoiding the collision with some obstacles. The simulation experiment pointed out that the wellknown ill-conditioning and divergence problems in numerical time parameterization algorithms has been overcome thanks to the analytical computation of the derivative of objective function and the constraints, it also revealed the effectiveness of the proposed method to deal with the challenging problem of time parameterization.

I. INTRODUCTION

Generating a collision-free and feasible trajectory for a robotic system is a complex and challenging problem that has been extensively studied in robotics research that is still an open problem in many complex cases and scenarios. Several algorithms based on optimization [START_REF] Suleiman | Optimization and imitation problems for humanoid robots[END_REF] or dynamic programming [START_REF] Atkeson | Trajectory-based dynamic programming[END_REF] have been proposed to handle at the same time both problems of collision-free and feasibility, however those algorithms mainly suffer from sticking in local minima.

An approach that has been proven to be efficient to handle the above-mentioned problems is time parameterization, which is is an old and well-known problem in robotics research [START_REF] Sciavicco | Modelling and Control of Robot Manipulators[END_REF]. The two keywords in time parameterization are a path and a trajectory.

A path denotes the locus of points in the joint space, or in the operational space, the robot has to follow in the execution of the desired motion, and a trajectory is a path on which a time law is specified [START_REF]Modelling and Control of Robot Manipulators[END_REF].

Generally speaking, the time parameterization of a path is the problem of transforming this path into a trajectory which respects the physical limits of the robot, e.g. velocity, acceleration and torque limits, and minimizes a specific criterion, e.g. the execution time.

In the literature of conventional six-degree of freedom industrial manipulators control, the time parameterization problem has been applied with the objective of reducing the execution time, thus increasing the productivity. Most of those approaches are based on time-optimal control theory [START_REF] Shin | Minimum-time control of robotic manipulators with geometric path constraints[END_REF], [START_REF] Rajan | Minimum Time Trajectory Planning[END_REF], [START_REF] Bobrow | Time-optimal control of robotic manipulators along specified paths[END_REF], [START_REF] Slotine | Improving the efficiency of time optimal path following algorithms[END_REF], [START_REF] Renaud | Time-optimal motions of robot manipulators including dynamics[END_REF]. 
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In the framework of mobile robots, the time parameterization problem also arises to transform a feasible path into a feasible trajectory [START_REF] Lamiraux | From Paths to Trajectories for Multi-body Mobile Robots[END_REF], [START_REF] Jiang | Time-optimal smoothpath motion planning for a mobile robot with kinematic constraints[END_REF]. Similarly to the case of industrial manipulators, the main objective is to reach the goal (position and angle) as fast as possible.

In recent years, several upper-body industrial robots, such as HIRO, Baxter, ABB's FRIDA, Yaskawa's SDA5D and Universal robots' dual arm robots, have been deployed for several industrial applications, this new trend of industrial robots is mainly motivated by replacing the dangerous conventional industrial robots by co-worker robots, which are able to work conjointly with humans instead of replacing them. Those robots are redundant, that means they have more degrees of freedom that necessarily to execute a task in the operational space. The main advantage of redundant robots is that there is an infinity of solutions in the configuration space to solve a task in the operational space, the robot can therefore efficiently avoid singular configurations as well as minimizing some criteria, e.g. energy consumption, while executing the manipulation task.

Although the conventional methods, which are based on the optimal-control theory, have been successfully applied in practice on conventional manipulators and mobile robots, the application of time optimal control theory in the case of a redundant robot is however a difficult and complicated task [START_REF] Suleiman | Time parameterization of humanoid-robot paths[END_REF].

Recently, several approaches have been developed to cope with the problem of redundancy [START_REF] Suleiman | Time parameterization of humanoid-robot paths[END_REF], [START_REF] Pham | Time-optimal path parameterization for critically dynamic motions of humanoid robots[END_REF]. In [START_REF] Suleiman | Time parameterization of humanoid-robot paths[END_REF], we have proposed a method to numerically solve the time parameterization problem of humanoid robots paths using a finite difference approach. The main objective in that method is to generate a stable (balanced) motion for the humanoid robot while minimizing a user-defined criterion.

The main contribution of the present paper is to provide a general framework to solve the problem of time parameterization problem of a given redundant industrial manipulator robot while considering the robot's physical limits. The proposed method is, however, inspired by our method in [START_REF] Suleiman | Time parameterization of humanoid-robot paths[END_REF].

II. TIME PARAMETERIZATION PROBLEM FORMULATION

Generally speaking, the time parameterization problem of a function f (x t ), consists into finding a real function S t ∈ R in such a way f (x St ) verifies some temporal constraints.

Mathematically that means

h(S t ) ≤ f (x St ) ≤ l(S t ) (1) 
In order to obtain a causal and feasible motion, the function S t should be a strictly increasing function, that means dSt dt > 0.

An admissible solution would be to express S t as the integral of a strictly positive function s h > 0

S t = t h=0 s h dh (2) 
In robotics, we are mainly interested in the discrete formulation of time parameterization problem, this is because the control loop of robotic systems is usually executed at a fixed sampling frequency, and the output of most of motion planning algorithms is a discrete function.

In the case of a discrete function {f

(x i ) : i = 1, 2, • • • , N }, the time parameterization problem becomes: h(S i ) ≤f (x Si ) ≤ l(S i ) S i = i k=0 s k s k > 0 s = [s 0 s 1 • • • s N ] T (3) (x 1 , t 1 ) (x 2 , t 2 ) (x i , t i ) x i ∈ R 3 X Y Z Fig. 1.
Time parameterization problem: an example of two spherical degrees of freedom robot An explanatory example of parameterization problem for a two spherical degrees of freedom robot is given in Fig. 1. In that example, the objective is to transform an operational space path into a trajectory, that means associating each point x i to a time instant t i .

It is obvious that transforming a path into a trajectory yields an infinity of solutions, a well known technique to obtain a unique solution is by minimizing a specific criterion. A common criterion in time parameterization problem is minimizing the execution time, in this case the objective function has the following form:

J (S i ) = S N = N i=0 s i (4) 

A. Problem Reformulation

Let us suppose that we have a path that consists of N points. At first, the path is transformed into a trajectory by considering a uniform time distribution function. In other words, we suppose that s i = 1 : ∀i in Eq. [START_REF] Sciavicco | Modelling and Control of Robot Manipulators[END_REF]. By choosing a sampling period of the desired trajectory ∆T , the initial time horizon S N = N × ∆T . The sampling period is usually equal to the robot's control loop sampling period.

The time parameterization problem can be therefore expressed as an optimization problem as follow:

min s J(s) = min s N i=0 s i (5) 
subject to

s i > 0 (6) M (q si ) qsi + C (q si , qsi ) = τ si (7) q-≤ qsi ≤ q+ (8) τ -≤ τ si ≤ τ + (9)
Where the vector qsi and qsi denote, respectively, the joint velocity and acceleration of the robot joints . q+ and qdesign, respectively, the upper and lower limits of the velocity. τ + and τ -design the upper and lower limits of the torques that can be provided by the joints.

The constraints of the optimization problem Eq. ( 5) can be analyzed as follows:

• Constraint ( 7) is the motion equation, where M (q si ) is the mass matrix, C (q si , qsi ) is the Coriolis matrix that includes gravity and other forces . • Constraint [START_REF] Slotine | Improving the efficiency of time optimal path following algorithms[END_REF] guarantees that the obtained trajectory respects the joint velocity limits of the robot. • Constraint (9) guarantees that the obtained trajectory respects the joint torque limits of the robot. By respecting the torque limits, a safe and feasible motion that would not damage the robot is guaranteed. Using finite difference, qsi and qsi can be computed as follows:

qsi = q i -q i-1 s i ∆T ∆q i s i ∆T qsi = ∆qi ∆T s i-1 -∆qi-1 ∆T s i s i 2 s i-1 ∆T (10) 
The main difficulty however relies on expressing the torque vector (τ si ) as a function of s i . As it is well known, the motion equation of a redundant robot is a complicated and highly nonlinear equation.

To solve the optimization problem (5), the derivative of τ si with respect to s should be calculated. This derivative can be expressed as follows

dτ si ds = ∂τ si ∂q si dq si ds + ∂τ si ∂ qsi d qsi ds + ∂τ si ∂ qsi d qsi ds (11) 
As the path of the vector q si is expressed by discrete points in the configuration space, and the time parameterization algorithm will not change the positions of those points, therefore dqs i ds ≈ 0. The quantities d qs i ds and d qs i ds can be easily calculated by using the finite difference approximation Eq. [START_REF] Lamiraux | From Paths to Trajectories for Multi-body Mobile Robots[END_REF].

The problem is transformed into calculating ∂τs i ∂ qs i and ∂τs i ∂ qs i . Although, in principle, these quantities can be numerically approximated by using a finite difference approximation, this approximation however leads to ill-conditioning, and poor convergence behavior. This is because of the high nonlinearity of the motion equation.

From Eq. ( 7), one can easily find:

∂τ si ∂ qsi = M (q si ) ∂τ si ∂ qsi = ∂C (q si , qsi ) ∂ qsi (12) 
It is clear that M (q si ) depends only on q si , and therefore it needs to be calculated only once as a function of the discrete values of the configuration vector q si .

On the other hand,

∂τs i ∂ qs i
can not be expressed by a closed form. However, an analytical formulation can be derived for ∂τs i ∂ qs i by using the recursive dynamic algorithm proposed in [START_REF] Park | A Lie Group Formulation of Robot Dynamics[END_REF], [START_REF] Sohl | A Recursive Multibody Dynamics and Sensitivity Algorithm for Branched Kinematics Chains[END_REF], [START_REF] Suleiman | On Humanoid Motion Optimization[END_REF], which is based on Lie groups and algebras.

The time parameterization problem can be transformed into a classical optimization problem by introducing the following parameters:

A constant ∈ R : 0 < 1 J (s) = N i=1 s i H(s i ) = M (q si ) qsi + C (q si , qsi ) -τ si G(s i ) =   s i qsi τ si   G -=   q- τ -   , G + =   +∞ q+ τ +   (13) 
Thus the optimization problem (5) can be transformed to the following classical form

min s J(s) subject to For all 0 ≤ i ≤ N H(s i ) = 0 G -≤ G(s i ) ≤ G + (14) 
Moreover, the optimization problem can be expressed in a canonical form as follows:

min s J(s) subject to H = 0 G -≤ G ≤ G + (15) 
where:

H =      H(s 0 ) H(s 1 )
. . .

H(s N )      , G =      G(s 0 ) G(s 1 ) . . . G(s N )      G -= G -⊗ 1 G + = G + ⊗ 1 1 = [1 1 • • • 1] T ∈ R N
⊗ denotes Kronecker product. The above optimization problem has been extremely studied in the literature of optimization theory. To solve this optimization problem, one can use, for instance, the augmented Lagrange multiplier method which is a very efficient and reliable method [START_REF] Rockafellar | Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming[END_REF], [START_REF] Lo | Recursive Dynamics and Optimal Control Techniques for Human Motion Planning[END_REF].

Based on the augmented Lagrange multiplier method, the constrained optimization problem ( 15) is transformed into the following unconstrained problem: [START_REF] Suleiman | On Humanoid Motion Optimization[END_REF] where:

min s,λ ψ J(s, λ) = J(s) + λ T ψ ψ + 1 2 σψ T ψ + λ T H H + 1 2 σH T H ( 
λ = λ ψ λ H , ψ = max G, -1 σ λ ψ , σ > 0
It can be proven that there exists λ * such that s * is an unconstrained local minimum of J(s, λ * ) for all σ smaller than some finite σ [START_REF] Rockafellar | Penalty Methods and Augmented Lagrangians in Nonlinear Programming[END_REF], [START_REF] Rockafellar | Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming[END_REF].

To solve the unconstrained optimization problem of J(s, λ) with respect to s, one can use Gauss-Newton or nonlinear conjugate gradient methods.

The function J(s, λ) is differentiable with respect to s because J(s) and G(s) are differentiable.

So in this case we can write

∂ J(s, λ) ∂s = ∂J(s) ∂s + (λ H + σH) T ∂H ∂s + max {0, λ ψ + σG(s)} T ∂G(s) ∂s (17) 
As λ * is unknown, a well-known effective update rule is:

λ k+1 H = λ k H + σH(s k ) λ k+1 ψ = λ k ψ + σψ(s k ) ( 18 
)
where s k is the unconstrained minimum of J(s, λ k ψ ). Such updating rule will generate a sequence λ k that converges to λ * [START_REF] Bertsekas | Nonlinear Programming[END_REF]. In practice, a good schedule is to choose a moderate σ 0 , and increase it as follows:

σ k+1 = ασ k ( 19 
)
where α is between 5 and 10. A threshold σ max is chosen and the update rule of σ stops when σ k becomes higher than σ max . For more details on the algorithm of augmented Lagrange multiplier method refer to [START_REF] Rockafellar | Penalty Methods and Augmented Lagrangians in Nonlinear Programming[END_REF], [START_REF] Rockafellar | Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming[END_REF], [START_REF] Bertsekas | Nonlinear Programming[END_REF].

Once the vector s = [s 0 s 1 • • • s N ]
T is obtained by solving Eq. ( 16), the trajectory is then resampled using a fixed sampling time period as shown in Fig. 2. The resampling procedure is necessary because most of robotic systems use a realtime operating system that ensures a fixed execution frequency rate. 

Time parameterization

B. Implementation

The implementation algorithm can be summarized as follows:

1) Given a path which is collision-free.

2) Choose ∆T , as we have mentioned this value is usually equal to the robot's control loop sampling period.

3) Transform the initial path into a trajectory by considering a uniform time distribution function (s i = 1, ∀i) in Eq. (3). 4) Solve the optimization problem [START_REF] Suleiman | On Humanoid Motion Optimization[END_REF] to obtain s, and thus the optimal trajectory. 5) Uniformly resample the optimal trajectory with a sampling period of ∆T .

III. EXPERIMENTAL RESULTS

In order to assess the proposed approach, we consider a simulation example of motion planning with the HIRO robot [START_REF][END_REF]. HIRO is a new upper-body industrial robot, which is developed, designed and built by National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan and Kawada inc., it has 15 axes (6 for arms × 2, 2 for neck, 1 for waist) the maximum payload is 1.5 kg (one arm) and 3.0 kg (two arms). It can work with conventional robots as well as physically collaborates with humans thanks to the safety measures that have been incorporated into its mechanical design. The considered scenario is a motion planning example in which HIRO robot should generate a collision-free path in order to move a cubic object, this path is computed using OpenRave software [START_REF] Diankov | OpenRAVE: A Planning Architecture for Autonomous Robotics[END_REF], Fig. 3 shows snapshots of the simulated motion. In this experiment, the robot moves a cubic object from its initial position and orientation to a desired position and orientation while avoiding collision with the environment and the other cubics. The manipulated cubic is supposed to have uniform mass distribution and a total mass of 0.5 kg.

Once the collision-free path is available, the proposed time parameterization algorithm is applied on the path to transformed it into a trajectory within the robot's physical limits while minimizing the required execution time.

The sampling time ∆T has been chosen to be equal to 5.0 × 10 -3 s, the duration of the initial trajectory is around 89 s.

As the real torque limits of HIRO robot are confidential parameters, we fixed the torque limits of each joints by considering the mass distribution of the robot and simulating several motions with the maximum velocity of each joint.

In practice, a safe motion is obtained by defining a safety margin from the physical limits of the robot, we used therefore a safety margin of 20 percent of the torque limits.

The left arm joints trajectories before and after time parameterization are presented in Fig. 4. It is important to mention that the shape of these trajectories are exactly the same in the configuration space, therefore the collision-free feature is preserved. The time parameterization function s i is presented in Fig. 5, recall that s i is constant over the interval [i, i + 1[.

The applied torque on the yaw axis of the left shoulder joint is given in Fig. 7. This figure shows that the constraints of the torque limits have been successfully respected.

The velocity trajectory of the yaw axis of the left shoulder joint is given in Fig. 6. This figure points out that the constraints of the velocity limits have been as well fully respected. 

IV. CONCLUSION

Considering the interaction between a robot and its environment, e.g. collision-free, and at the same time the robot's physical limits is a challenging problem in robotics. An efficient approach to solve this problem is the time parameterization method, which consists of the two following stages:

1) Solving the problem geometrically (motion planning) without considering the temporal constrains to obtain a feasible path. 2) Time parameterizing the path to transformed it into a feasible trajectory.

Although the conventional time parameterization methods depend on the robot structure and cannot handle a redundant and complex robotic systems, the proposed method in this paper is general enough to be applied on any robot. A significant application of the proposed method is, however, on modern industrial robots which are redundant and having several end effectors (multiple arms).

The effectiveness of the proposed method has been validated through simulations using HIRO robot [START_REF][END_REF] and Open-Rave software [START_REF] Diankov | OpenRAVE: A Planning Architecture for Autonomous Robotics[END_REF].

How to modify the time parameterization algorithm to cope with external perturbations (unmodeled dynamic effects, imprecise physical parameters, imperfect modeling of the environment, interaction with humans, etc) is a challenging theoretical and practical problem, this will be the subject of our future work. 
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