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ABSTRACT 
In this work we have presented an approach for calculating the 
hysteresis loop of Jiles-Atherton model using the magnetic 
inductance as the independent variable is proposed to be used 
directly in the calculation time step finite volume applied to the 
numerical analysis of nonlinear magnetic fields. This model is 
characterized by five parameters that must be identified and 
optimized for better representation of the measured characteristics. 
The parameters set of the Jiles–Atherton hysteresis model 
identified by using a real coded genetic algorithm. The parameters 
identification performed by minimizing the mean squared error 
between experimental and simulated magnetic field curves. The 
method verified by applying it to an axi-symmetrical 
ferromagnetic system. The calculated results validated by 
experiences performed in a Single Sheet Tester’s frame (SST). In 
this work, we are interested to develop a model based on feed-
forward neural networks of which can describe magnetic 
hysteresis by taking account the influence of some external sizes.   
 

Keywords 
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1. INTRODUCTION 
Numerical electromagnetic is the theory and practice of solving 
electromagnetic field problems on digital computers. It reflects the 
general trend in science and engineering to formulate the laws of 
nature as computer algorithms and to simulate physical processes 
on digital computers. While theory and experiment remain the two 
traditional pillars of science and engineering, numerical modeling 
and simulation represent a third pillar that supports, complements, 
and sometimes replaces them. For this reason, the objective of this 
work is therefore to study for modeling, magnetic hysteresis, to 
integrate it into a computer code field. Modeling of magnetic 
hysteresis opens the way for the implementation of the hysteretic 
behavior of magnetic materials in the numerical analysis of 
nonlinear magnetic fields often encountered in the problems and 
engineering applications. Currently, several models are used such 
as the Preisach model, the Stoner-Wohlfarth model, the Jiles-
Atherton model and some new approach built on the theory of 
artificial neural networks (ANN's) ... etc.. In our work we will be 
interested in a model that has the characteristics micro and 

macroscopic and it is answered in the literature. This is indeed the 
model of Jiles-Atherton. The latter model is characterized by 
parameters which must be identified and optimized for better 
representation of measured characteristics. The model attributes 
hysteresis J-A including the level of precision for many practical 
documents, ease of implementation in the finite volume method 
(MFV), and computational efficiency make it a viable choice for 
development work in a two-dimensional finite-volume [1], [2]. 
This study will choose the model best suited from the standpoint 
accuracy, processing speed and ease of implementation. The 
working hypotheses are restricted to the case of static regime and 
the equation that we solve axi-symmetrical in two dimensions 2-
D, is the non-linear magnetodynamic. Thus, the finite element 
method has proved it self as an effective tool in solving 
differential equations, it allows another to take into account 
complex geometries and non-linearity’s possible, only its 
implementation is against a fairly complicated. So we choose in 
our study for the finite volume method, which is less difficult to 
achieve and simple design. However, taking into account the 
problems of saturation, or nonlinearity parameter, remains difficult 
because of the requirement that the iterative calculation is needed 
then. This burden is particularly felt if duty structures or 
remeshing for problems involving very large matrices, or a dense 
network to account for skin effects, for example. 
The advantage of the search for alternative methods that can 
relieve the burden of numerical standard becomes obvious. We 
then present an application of multilayer neural networks for 
modeling the hysteresis loop, and the integration of this model in a 
computer code by finite volume. 
 

2. FINITE VOLUME FORMULATION 
INCLUDING MAGNETIC HYSTERESIS 
2.1 Basic Field Axi-Symmetrical Equations 
The Writing equations (PDE’s) describing electromagnetic 
phenomena is obtained from the fundamental equations of physics 
and properties of materials that make up the systems to be studied. 
The derivation of the finite volume equations begins with 
Maxwell’s field equations: 

0 B                    (1) 

JH               (2) 
Where J is the total current density which is the sum of the 
conductive current density Jc and the displacement current density 
Jd. 
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The equations of Maxwell field are expanded to allow for the 
processing of magnetic hysteresis including the constitutive 
equation for magnetic materials. The general equation for a 
ferromagnetic material can be expressed as 
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Where M is the magnetization nonlinear function, and 0  is the 

permeability in space [1]. In contrast to the use of scalar 
potentials, by choosing the potential A, the condition 0 B  
Is now identically satisfied, and the application of Maxwell’s 
second equation JH  leads to the following equation to 
solve 
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where  tt A ,  tt J  and  tt M are, respectively, the 

magnetic vector potential, the current density, and the 
magnetization vectors at time  tt  , Δt is the time step. 

As it stands, this equation would not yield a unique solution, since 
it is always possible to add a function to A and satisfy the above 

equation. For now we will assume the condition 0.  A to 
guarantee a unique solution. 
We will assume there is no variation in one direction, such that a 2 
dimensional analysis will be sufficient. In particular, we will 
assume that the currents in the problem are normal to a plane, such 
that only a single component of A (Aφ) will be necessary to obtain 
a solution over this plane (r-z plans). In this case, it can be seen 

that the gauge condition 0.  A is satisfied (since 0 zA by 
definition). 
With no variation in the azimuth direction, we can also state 

that 0 zV , such that the governing equation can now be 

written in the 2-dimentional form (where the  equation 
reduces to the simpler Laplacian operator)  
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2.2 Jiles-Atherton Model of Hysteresis 
The model presented in original J-A [3], [4] gives the 
magnetization M with respect to the magnetic field external 
excitation H. This model is based on the response of magnetic 
material without hysteresis losses. This is the behavior which the 
curve where anhysteretic Man (H) can be described by a Langevin 
equation modified 
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Where Ms is the spontaneous magnetization (saturation) of the 
material corresponds to the alignment of the following times and 
the applied field H has a parameter equivalent to a magnetic field 
coupled to the thermal agitation energy according Boltzmann's 
statistics. Weiss discovered that the field acting on the time is not 
the external field applied, but an effective field He expressed by: 
He = H + α M, H is the external field of application the term α M 
is the field interaction and α the correction factor representing the 
coupling between Weiss domains and can be determined 
experimentally. The constant a is an increasing function of 

temperature. To describe the hysteresis in magnetic materials, 
Jiles and Atherton [3], [5] have decomposed the magnetization 
into two components, the first is the reversible component and the 
second component is the irreversible 

revirr MMM                       (7) 

The relationship between these two components and the 
anhysteretic magnetization Man is obtained from physical 
considerations of the magnetization process is given by 
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Model Jiles-Atherton can also be adapted for the determination of 
law behavior M (B) [2]. Thus, as for the previous model and using 
the fact that Be=µ0He, The expression of the total magnetization 
(7) is derived with respect to B: 
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In this case, five parameters a, α, c, k and Ms must be determined 
from experimental measurements. It is important to note that the 
parameters of the Jiles-Atherton model are theoretically the same 
regardless of the model used (M (H) or M (B)). 
 

3. OPTIMIZATION BY ARTIFICIAL 
NEURAL-GENETICS 
3.1 Introduction 
The development of algorithms, originally dedicated to the 
problems of artificial intelligence (AI), such as artificial neural 
networks (ANN), or genetic algorithms (GA), allow their 
extrapolation to the problems of electromagnetic methods to 
relieve conventional calculation (finite element, finite volume, for 
example), which become very heavy when it comes to take into 
account phenomena such as movement or saturation. 
Our aim in the following paragraphs is to show how it is possible 
to use the learning ability of neural networks to model the 
hysteresis loop, taking into account the different parameters 
affecting the relation B (H) is invest its generalization 
characteristics to deal with problems of modelling without the 
need to restart the finite volume numerical computing, or the 
application of genetic techniques to deal with optimization 
problems, especially for the determination of electrical parameters 
and magnetic materials studied 
 

3.2 Genetic Algorithms 
3.2.1 Introduction 
Genetic algorithms are developed for optimization purposes. They 
allow the search for a global extremism. These algorithms are 
based on mechanisms of natural selection (Darwin) and 
evolutionary genetics. A genetic algorithm evolved a population of 
genes using these mechanisms. It uses a cost function based on a 
performance criterion to calculate a "quality of adequacy" 
(fitness). Those most "strong" will be able to reproduce and have 
more offspring than others. Each chromosome consists of a set of 
elements called features or genes [6], [7]. The goal is to find the 
optimal combination of these elements gives a "fitness" maximum. 
At each iteration (generation of population), a new population is 
created from the previous population. Originally, the coding of 



individuals made by transcribing the binary parameters to be 
optimized to form a gene. These genes are then put together to 
form the chromosome. However, there is an approach called actual 
encoding, where the functions of mutation and crossover are 
written to apply directly to the vector of parameters without using 
the binary form. These algorithms lend themselves well to give 
birth to hybrid methods that combine conventional methods and 
genetic algorithms. We selected an actual encoding, more flexible 
and more accurate. This avoids problems caused by the binary 
encoding. The actual coding also provides a direct view of the 
parameters throughout the evolution of the population. These 
operators are used genetic modification in this document as well 
as improvement tools presented in [8]. 
The implementation of the Jiles-Atherton model hysteresis of a 
magnetic material in a computer code requires the generation of 
the hysteresis loop each time it is necessary to calculate the 
magnetization from the applied magnetic field. This generation 
requires an exact knowledge of model parameters. We must then 
determine from experimental data obtained by measurement or 
supplied by the manufacturer of the material. The experimental 
test presented in this article allowed us to obtain the magnetic 
characteristics of soft ferromagnetic material (FeSi 3%). In this 
work we will use these experimental results to identify the 
parameters of the Jiles-Atherton model using stochastic 
optimization by genetic algorithms [9]. 

 

3.2.2 Parameters Identification Procedure 
The schematic representation of the parameters identification 
procedure is shown in [7], [9], the first step is the characterization 
of the individuals that will form the population. The individuals θ 
are composed by the five parameters of the J-A model (in real 
coding, it is not necessary to code the variables in binary 
representation) [7], [10]. We consider the case where the 
population is given by 
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Where each line represents an individual (a point in the 
optimization space), n is the generation, and np is the population 
size. The initial values assigned to the population are random 
values in the allowable range, as shown in Table 1. Each 
individual of the population is evaluated using the fitness between 
calculated and experimental results. That minimizes the fitness 
function given by [11]  
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Where )( is tM and ),( is tM


 represent the measured and 

estimated magnetization, respectively. The optimal parameter 

vector is obtained solving  ))((min  ff
n

GA 


 and also on a 

maximum allowed number of generations. Figure 1 shows the 
variation of the function of adaptation (fitness) according to the 
number generations, and table 1 give the final results of the 
genetic algorithm. 
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Figure  1.  Evolution of the total error 
 
 

TABLE 1 
MATERIAL PARAMETERS 

 

Parameter 
 

Design Variable 
Range 

Optimized Values 

Ms 0.5×106 – 2.5×106 1.2865×106 

k 75 - 450 195.68 

c 0.15 – 0.65 495×10-3 

a 120 - 750 195.2 

α 1×10-4 – 3×10-4 1.75×10-4 

 

3.3 Artificial Neural Networks 

3.3.1 Introduction 

An artificial neural network is a directed graph (Figure 2) which is 
based on the organization of neurons in the human brain, in which 
many processors called cells or neurons, are able to perform basic 
calculations [13], [17]. These neurons are organized in layers that 
can exchange information via connections (synapses) between 
them. 
 

3.3.2 Modeling of Hysteresis Loop by Multilayer 
Neural Networks 
Our multi-layer neural network used is composed of three layers 
and driven by the Levenberg-Marquard algorithm, is implemented 
in Matlab to model the hysteretic behavior of a device formed of a 
ferromagnetic core inductor surrounding a non-linear. This 
algorithm is more efficient in terms of computation time than the 
simple gradient descent of the classical backpropagation. 

 



 
 

Figure 2. Structure of a proposed neural network 
 
 

The first layer of the neural network consists of three units with a 
sigmoid activation function, the second layer consists of six units 
with a sigmoid activation function, and the third layer consists of a 
single unit with a function linear activation. The inputs of the 
network are the magnetic field H and the frequency or 
temperature, the third unit is a simple indicator of the evolution of 
the magnetic field, it takes the value 1 for an ascending field and 
the value 2 for a field down. However, the network returns the 
value of the magnetic induction B. 
The third unit in the input layer can particularize the hysteresis 
loop in each rectangle of the mesh taking into account the extreme 
values of the magnetic field. The maximum values of the magnetic 
field in each rectangle, necessary for learning of the neural 
network are calculated during the transient associated with the 
initial magnetization curve. The coefficient of relaxation ω 
ensuring the convergence is 10-4. Numerical simulation (step by 
step in time) of the magnetic behavior is used to calculate the 
magnetic induction in each rectangle. 
For validation of the parameters obtained, was superimposed on 
the figure 3 the experimental cycle obtained by § 4.1 and the cycle 
simulation obtained from the identified parameters. This overlay 
shows the accuracy of the cycle identified by genetic algorithm. 
We note that the difference between the measured and the 
simulated cycle is shown, which is reflected by value of the LSE 
error (Figure 3). It can also be noted that the cycle is symmetric. 
This slight increase in the gap between simulation and experiment 
with refining the mesh can be explained by the existence of two 
sources of error inherent in the numerical model used for this 
study  
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Figure  3. Validation of the hysteresis loop obtained by genetic 
algorithm and neural network 

 
 

- The modelling error which is the difference between the real 
system and mathematical model 
- The numerical error which is the difference between the 
numerical model and the mathematical model. 
The simulation results show that a neural network can accurately 
identify stable, non-linear relationship linking the variables 
together. The intrinsic characteristics of the latter have allowed us 
to have a very general model that can take into account all the 
factors that can affect the hysteresis cycle. Another advantage of 
this model is that it is designed from the experimental curves very 
near to reality. 
 

3.4 The Solution Procedure 
3.4.1 Introduction 
Since their introduction in the sixties and early work on them, 
finite volume methods have continued to be a strong interest in 
several sub-disciplines of physics (thermodynamics, fluid 
mechanics ...). In fact, this method has been an important step not 
only for the modeling of fluid mechanics, but also for modeling 
other branches of engineering science: electromagnetic, heat 
transfer... etc [14]. The finite volume method is to integrate, on 
elementary volumes, the equations written in integral form. This 
method is particularly well adapted to the spatial discretization of 
conservation laws, in contrast to finite element, and is thus 
applicable in electromagnetism. Its implementation is simple if the 
elementary volumes or "control volumes" are rectangles in 2D or 
3D parallelepipeds. However, the finite volume method allows the 
use of volumes of any shape and therefore to treat complex 
geometries, in contrast to finite differences. The computational 
domain is divided into a number of non-overlapping control 
volumes such that each volume around each point of the mesh (see 
figure 4). 
 

Input 
Layer 

Output 
Layer 

Hidden 
Layer 

 
 Synapse 

 
Neuron 

H 

 

f 

 

k 

 

B 

 



r 

z

r 

r = idr 

z = jdz 

N 

P 

E 

W 

S 

AN 

AP 

AE 

AS 

AW 

 

 
 

Figure  4.  Control volume in axi-symmetrical cylindrical 
coordinates 

 

3.4.2 Proposed Resolution Algorithm 
The differential equation is integrated for each control volume of 
arbitrary expressions is chosen to express the variation of A 
between different points of the mesh and allow integration. The 
result of this integration gives the equation expressed using 
discrete values of the function A for a set of points of the mesh. 
The discrete equation obtained expresses the conservation 
principle for A on the volume control in the same way that the 
differential equation expresses it for an infinitesimal control 
volume. 
For this purpose let us multiply the equation magnetodynamic 
(equation 5) by the projection function βi and integrate the 
resulting equation on the domain Ω [15] [16], we obtain: 
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With Β i is function of selected projection 1/r. 
One can write (14) as 
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After integration, the equation (15) discretized once is written as 
follows  
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The equation (16) discretized once is written as follows  
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The indices  P,  W,  N,  E  and  S  refer to the values of the nodes 
and indices  p,  w,  n,  e  and  s  refer to the values of the faces of 
volumes of control  (See figure. 4).  
The coefficients aW, aN, aE, aS and d0 is given by 
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Once the various formulations including finite volume model of 
hysteresis are established, a method for solving the nonlinear 
problem must be chosen. In the literature, several algorithms are 
proposed to solve the nonlinear problem such as the Newton-
Raphson method or the direct method called fixed point method 
(FPM). 

Finally, the partial differential equation (5) becomes  

FPFP McurlJAcurlcurl          (19) 

The discretization with nodal shape functions for the potential 

vector of (19) using the finite volume method leads to the matrix 

system 

      FPFP MJAS          (20)
 
 

Where the vector [A] represents the nodal values of vector 
potential. [SFP] a square matrix called stiffness matrix, [MFP] 
and [J] the vectors which take into account the magnetization 
MFP and the current density J. a vector [D] is introduced such 
that [J] = [D] i. Then, we obtain the matrix system [17]: 
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In this work, we used the so-called fixed point method described 
by the direct algorithm of Table 2 in below. This is motivated by 
the major advantage offered by this algorithm, avoiding the 
calculation of derivatives. 
The fixed point method using the model of hysteresis in its 
forward or reverse is distinguished by its ease of implementation. 
As the reversal of the model has an additional cost in terms of 
computation time, we opted for the use of fixed-point method with 
the direct model of hysteresis associated with a new algorithm for 
solving the problems of convergence. This algorithm will be 
presented with the study of the choice of relaxation factor and 
verification of convergence at critical points of the hysteresis loop 
[16] [17]. 

TABLE 2: Iterative Steps Algorithm 
 

 

4. RESULTS 
4.1 Measured Curves 
The determination of the magnetic quality of materials rests 
primarily on the nature of the systems of measurement used. The 
evolution of the standard in the field of the characterization of 
material is a significant factor for the taking into account of the 
physical nature of magnetic materials and the conditions of their 
uses. The reproducibility of measurement and the facility of 
handling are also factors which make it possible to choose the type 
of magnetic circuit to implement. Accordingly our choice is 
related to the realization of framework SST (Single Sheet Tester) 
500 mm*500 mm (See figure 5) [18], [19]. 
The device planned for characterization of sheets with not oriented 
grains must make it possible to take measurements by a simple 
introduction of the sample, iron silicon 3% not oriented inside a 
sleeve, with a perfect positioning and without deterioration of the 
polar faces of the magnetic circuit of closing of flux. The 
characterization of materials studied done by determining the 

following quantities expressed in terms of characterization of the 
frame and measuring output voltages measured by an 
oscilloscope: V2, VH1, and VH2.  
The excitation peak field, which is submitted the sample is 
obtained by interpolation from tensions measured at the terminals 
of two coils tangential H1 and H2 located at distances different 
from the sample 
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The magnetic induction is obtained by time integration of the V2 
(t) voltage in secondary coil measuring B by 
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Where  
 
d1, d2: Distance to sample the coil Field 1, 2 (m).  
N2: Number of turns of the coil measuring B.  
n1, n2: Number of turns of the coil Field No 1, No 2.  
S: Section of the sample (m2).  
S1, S2: Surface of the coil H1, H2 (m2).  
VH1, VH2: power output of the coil H1, H2 (V). 
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Figure  5. Single sheet Tester (SST), 500mm*500 mm 
 

It is important to note that the use of inverse model of J-A for the 
identification of parameters in an additional advantage over the 
original model: the input of the inverse model is the form of 
magnetic induction wave. Since the magnetic induction is obtained 
from the integration, it is naturally filtered with fewer oscillations 
than the waveform of the magnetic field. The noise in the 
waveform on the ground brings additional difficulties for 
parameters identification procedure. All parameters obtained are 
valid for models, original and reverse, allowing a good agreement 
between measured and calculated data. 
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s

i
s

i
s HHH   relaxation coefficient 

2.6.  i
s

i
s HfM     from Jiles-Atherton hysteresis model 

2.7. Calculate the  direction of i
sM  

2.8. Calculate the precision   

2.9. If    convergence : 1 tt  et 1 ii  go to                                                                                                       

2.1, else 1 ii  go to  2.2 

3. Results 



4.2 Comparison with Simulation  
4.4.1 Introduction 
We propose in this section a validation of the computer code and 
the integration algorithm of the hysteresis model. In the work 
carried out within our laboratory, a device has been proposed in 
order to compare results from different platforms simulation. This 
device consists of a sheet of FeSi 3% characterized in the 
following paragraph. The dimensions of this device are given in 
figure 6. 
 

4.4.2 Validation of Results 
The test consists of a cylinder ferromagnetic with a length of 40 
cm and 10 cm diameter characterized by a cycle of hysteresis 
(Ms=1.2865×106, k=195.68, c=495×10-3, a=195.2, α=1.75×10-4), 
the cylinder is surrounded by a coil of the same length traversed 
by a stream of density J =  105 A/m2. The drivers which constitute 
the inductor have a diameter D = 1 cm and 50 cm length. The gap 
is E = 2 cm. The geometry of the system studied, it presents two 
symmetries, the first axially (oz) and the second according to the 
plan (or). We can then consider magnetic problem in a cylindrical 
coordinate system, a quarter of domain. For a numerical modelling 
the theoretical limits (with infinite, A = 0) are brought back to a 
finite distance which can vary according to the desired precision. 
In this study, these limits were fixed at a distance L = 50 cm of the 
studied device.  
The boundary conditions associated with the magnetic equation 

are the conditions of Neumann 0 nA  and the conditions of 

the Dirichlet A=0 of representing in figure 6.   
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Figure  6.  Field of study of the axi-symmetrical problem with 

boundary conditions 
 
We have defined in this geometry three reference points on which 
we will determine the waveform of the field, the magnetic 
induction, the hysteresis loop and the magnetic vector potential 
driven. Based on the system axis (r, z) defined in figure 6, the 
coordinates of these points are defined as P1 (6, 10) cm, P2 (5, 5) 
cm, and P3 (3, 7) cm. 
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Figure  7. Flux density variations  
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Figure  8. Simulated field versus time curve 
 

Numerical simulation (step by step in time) of the magnetic 
behavior of the device study reveals that the magnetic flux density 
is nearly sinusoidal at all points of figure 7 of ferromagnetic 
sample. Unlike the magnetic induction, the magnetic field is 
greatly distorted. In figure 8 we can distinguish this distortion and 
the delay introduced by the hysteresis between the field and the 
magnetic induction. The hysteresis loops described previously 
defined points are shown in figure 9. 
The hysteresis loops (each mesh element), described in previously 
defined points exhibit better consistency and thus the good 
modeling of the measured hysteresis neural-genetic approach. The 
saturation magnetization should be different because of the 
location of benchmarks by the heart of the inductor report. 
Comparing these results with other previous work [20] [21], we 
find that we made a big improvement on the accuracy of the 



identified parameters, and therefore we can say that these results 
are good and acceptable. 
For an operation frequency of 50 Hz, the experimental and 
simulated field curves of this material FeSi 3% when submitted to 
a 1.98 T peak value sinusoidal induction (See figure 3). 
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Figure  9. Hysteresis loops calculated 
 

Additional resultants are given in figure 10, where the axial 
variations of potential vector magnetic A. One notices well that the 
value of A is maximal on the level of the center of the inductor 
then decreases gradually until being cancelled in extreme cases of 
the field of study. 
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Figure  10. Axial variation of the magnetic potential vector A 
 

5. CONCLUSION 
Through this work, we tried to implement the means to 
incorporate the hysteresis phenomenon in a two-dimensional 
modeling of the magnetic field in static electrical devices. The 
Jiles-Atherton model is a physical model of magnetic hysteresis. It 

is valid for the characterization of soft ferromagnetic materials 
such as steels used in electrical construction. The hysteresis loop 
of the Jiles-Atherton model is very sensitive to the variation of its 
parameters. The identification of parameters of Jiles-Atherton 
model is a difficult process to achieve, but the use of optimization 
techniques (genetic algorithm) is used to free this difficulty. 
In this paper, we tried to introduce new techniques in the 
calculation for economy of electromagnetic computation time and 
the development of realistic models and the exact determination of 
the parameters appear as major criteria. So, we proposed a neural 
model for modeling the hysteresis loop, this model has allowed us 
to introduce the different behaviors of the influential external 
hysteresis loop (frequency, temperature…). The results of these 
variations given by our neural model are more near to realty that 
the learning cycle was performed on the basis of reported 
experimental. As such, this model has been integrated in finite 
volume coded.  
The objective of our work is the application of alternative methods 
(neuro-genetic) to relieve the heavy digital calculated based on the 
standard mesh each time the hysteresis model. 
All results obtained by applying our model to axisymmetric 
magneto device based on a Jiles-Atherton inverse model and 
differential reluctivité to good performance for digital 
convergence and give very satisfactory results with SST data 
frame. 
In near work, using a dynamic model of the magnetic hysteresis to 
study the material behavior in systems with high frequency, 
integrate the model into a finite element computer coded coupling 
the resolution of Maxwell's equations to those equations of heat 
and power (inclusion of a power supply) and application to other 
devices will be provided. 
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