
HAL Id: hal-01180011
https://hal.science/hal-01180011v1

Preprint submitted on 24 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variance Modulated Task Prioritization in Whole-Body
Control

Ryan Lober, Vincent Padois, Olivier Sigaud

To cite this version:
Ryan Lober, Vincent Padois, Olivier Sigaud. Variance Modulated Task Prioritization in Whole-Body
Control. 2015. �hal-01180011�

https://hal.science/hal-01180011v1
https://hal.archives-ouvertes.fr

Variance Modulated Task Prioritization in Whole-Body Control

Ryan Lober1, Vincent Padois1 and Olivier Sigaud1

Abstract— Whole-Body Control methods offer the potential
to execute several tasks on highly redundant robots, such as
humanoids. Unfortunately, task combinations often result in
incompatibilities which generate undesirable behaviors. Pri-
oritization techniques can prevent tasks from perturbing one
another but often to the detriment of the lower precedence
tasks. For many tasks, static prioritization is not necessary
or even appropriate because tasks can often be achieved in
variable ways, as in reaching. In this paper, we show that such
task variability can be used to modulate task priorities during
execution, to temporarily deviate certain tasks as needed, in
the presence of incompatibilities. We first present a method
for mapping from task variance to task priority and then
provide an approach for computing task variance. Through
three common conflict scenarios, we demonstrate that mapping
from task variance to priorities reactively solves a number of
task incompatibilities.

I. INTRODUCTION

Highly redundant robots, such as humanoids or anthro-
pomorphic platforms, provide the capability of executing
several tasks simultaneously. Unfortunately, this versatility
comes at the cost of control difficulty due to the high di-
mensionality and undetermined nature of the inverse control
problem. Over the past few decades, Whole-Body Control,
or WBC, techniques have emerged as effective means of
controlling these systems, by allowing multiple tasks to be
specified simultaneously and utilizing their full capacity [1],
[2], [3], [4].

The execution of multiple tasks can induce unwanted
behaviors due to incompatibilities between them. Typically,
priorities are used to ensure that safety-critical tasks, such
as balancing, remain unperturbed by incompatibilities with
uncritical tasks like reaching. These priorities may be strict
[4] or soft [3] hierarchies.

While distinctions between tasks deemed safety-critical
or not are made with relative ease, discriminating between
uncritical tasks is less trivial. In many situations it is im-
possible to analytically justify the prioritization of one task
over another and as a result, tasks priorities are commonly
subject to arbitrary manual tuning. In many cases, such static
prioritization is too restrictive and can engender additional
incompatibilities that could be otherwise avoided. For anthro-
pomorphic or humanoid robots, generating tasks for the end-
effectors (EE) is crucial for manipulation and interaction with
the robot’s environment; however, manipulation tasks are

1 The authors are with - Sorbonne Universités, UPMC Univ Paris 06,
UMR 7222, Institut des Systèmes Intelligents et de Robotique, F-75005,
Paris, France - CNRS, UMR 7222 , Institut des Systèmes Intelligents et de
Robotique, F-75005, Paris, France
e-mail: firstname.lastname@isir.upmc.fr

generally not considered safety-critical and are consequently
difficult to prioritize.

EE tasks generally require that the robot pass through
one or more waypoints, as in goal reaching. These tasks
possess the property of task redundancy [5], which implies
that there exist infinitely many ways of passing from one
waypoint to the next. In practice, trajectories passing through
the waypoints are generated and fed to the controller. How-
ever, these trajectories do not need to be followed with
the same precision as near the waypoints. Works from the
field of imitation learning have approached incompatibility
resolution for single EE tasks, i.e. external perturbations
and poorly formed reference trajectories, by exploiting the
demonstrated task’s redundancy to regulate the task con-
troller’s impedance gains [5]. These studies determine task
redundancy from the variance of the movement demonstra-
tions. The task controller is typically some version of the
Dynamical Movement Primitive, or DMP, [6] and contains
an attractive Proportional-Derivative (PD) term along with a
learned forcing term, for example,

ξdes(t+ δt) = Kpε(t) +Kdε̇(t) + f . (1)

Here ξdes(t+δt) is the desired task-space acceleration term,
ε(t) and ε̇(t) are the current pose error and its derivative, Kp

and Kd, their proportional and derivative gains respectively,
and f , the forcing term learned via regression techniques
from multiple movement demonstrations [6]. Task variance
is measured from the variability of the learned motions and
may be adapted based on new demonstrations [7], [8], [9].
An inverse relationship between the task variance and the
Kp gain is then formed to regulate the attractor term during
the movement. Consequently, when variance is high, the
robot is compliant, and when variance is low, the robot is
stiff. Variable compliance (a.k.a. gain scheduling), allows
the robot to adapt to uncertainties/incompatibilities in its
environment. Unfortunately, these conflicts must often be
directly integrated into the task controller, making variable
compliance, task specific [5]. In addition, the Kp gains
may vary by orders of magnitude for a single task [10].
Nevertheless, there is clearly some relationship between the
variance of a task and its execution [11].

In this paper, we employ task variance to modulate
soft task hierarchies, represented by continuous real valued
weights, within a Whole-Body (WB) controller, rendering
it more robust to incompatibilities, perturbations and poorly
designed reference trajectories. By varying the task weights
during execution, the WB controller can temporarily deviate
high variance tasks in the presence of incompatibilities on an
as-needed basis. This allows the robot to reactively solve a

range of task incompatibilities. We demonstrate how variance
can be mapped to task weights for the individual Degrees
of Freedom (DoF) of a task and develop a method for
computing variance for a task if none is available, as is the
case with typical trajectory planners. Finally, we test our
variable weighting method in three common incompatibility
scenarios on a humanoid robot in simulation.

II. METHODS
In this section, we first give a broad overview of WB

task-based hierarchical control. We then propose a method
of mapping from a task’s variance to its weight in order
to modulate its priority over the course of execution. A
technique for computing variance for a single task is also
developed.

A. Whole-Body Control
WB controllers seek to reactively calculate the joint

torques, τ , necessary to minimize a combination of task
errors using all of the DoF of the given robot. Task errors can
be formulated as the difference between task-space reference
commands and their joint-space representations,

Ti(q, q̇, ξ
∗
i ,X) =

∥∥∥(Ji(q)q̈ + J̇i(q, q̇)q̇ − ξ∗i
)∥∥∥2

. (2)

Here Ti(q, q̇, ξ
∗
i ,X) is an acceleration task error, Ji and

J̇i, the task Jacobian and its derivative, [q, q̇], the joint-
space variable states and ξ∗i the reference task-space accel-
eration to affect for some frame attached to the robot. The
dynamic variable, X = [q̈T ,wT

e , τ
T]T , groups the joint-

space accelerations and torques with the external wrenches,
we. The variable ξ∗i is commonly provided by a task-level
feedforward Proportional-Derivative (PD) controller,

ξ∗i (t+ δt) = ξdesi(t+ δt) +Kpεi(t) +Kdε̇i(t) , (3)

where ξdesi(t + δt) is the feedforward frame acceleration
term. An optimization problem can then be designed to find
the minimum of the weighted sum of nT task errors, subject
to the problem constraints,

argmin
X

1
2

∑nT
i=1 wiTi + w0T0

subject to: GX � h
AX = b.

(4)

The dynamic variable, allows the dynamic equations of
motion to be represented as the equality constraint, AX = b.
Inequality constraints such as GX � h can account for
considerations such as contacts, joint limits, and actuator
limits. The importance of each task is governed by its
weight wi, and a regularization task, T0, is used to ensure
a unique optimization solution with w0 � wi. Varying
the task weights, and consequently their priorities, generates
joint torque commands which favor the minimization of task
errors with higher associated weights1. Equation (4) can
be minimized efficiently using a Linear Quadratic Program.
More details on WBC can be found in [12], [2], [3].

1It is also common to resolve this optimization hierarchically in order of
task priority, projecting the lower priority tasks into the null space of the
higher priority tasks. [4].

B. Task Formalism

Here we look at Cartesian goal reaching tasks, and without
loss of generality, only their translation components are
considered.

Each task follows some trajectory, Υ, which passes
through one or more waypoints. A trajectory has two compo-
nents, its path which consists of a series of vectors of spatial
coordinates, ri = [x, y, z] with {i ∈ N|1 ≤ i ≤ Nr}, where
Nr is the total number of spatial coordinate vectors, and its
temporal evolution, t, which dictates the dynamics of the
movement.

Looking at these tasks in a general probabilistic fashion,
we can use the position vectors ri as the mean, µi, of
our task trajectory. The variance of the movement at each
timestep, σ2

Υ(t) = [σ2
Υx

(t), σ2
Υy

(t), σ2
Υz

(t)], can be obtained
through multiple demonstrations2 as in [5], [7], [8], [9], or
computed from scratch. The concatenation of these position
means and variances, respectively yields MΥ and VΥ for the
given trajectory, Υ.

C. Mapping Variances to Weights

Given a trajectory, Υ, with some variance, VΥ, we can
create a relationship between VΥ and the task’s weight, wi,
at each timestep, t, making the task weights now time and
variance dependent within the WB controller. We would
like to restrict our variable weight evolution to the [0.0, 1.0]
range, therefore all tasks in the WB controller are defined
with a baseline weight of 1.0 and we rescale the trajectory
variance such that {V Υ ∈ R|0 ≤ V Υ ≤ 1},

V Υ =
VΥ

max(VΥ)
. (5)

Equation (5) also ensures that the DoF variances are scaled
relative to one another. The variance of each DoF may not
be the same, so we map a variance to a weight for each.
Therefore, wi(σ2

Υ(t)) becomes the diagonal weight matrix,
Wi(σ

2
Υ(t)), and using a maximum weight factor, β, we can

map from variance to weights using this basic approach,

Wi(σ
2
Υ(t)) =

1−σ2

Υx
(t)

β 0 0

0
1−σ2

Υy
(t)

β 0

0 0
1−σ2

Υz
(t)

β

 . (6)

Where the variance of the movement is high, V Υ is close to
1 and so the weight/importance of the task diminishes. When
the variance is small, V Υ approaches 0 and the importance
of the task is at a maximum. The factor β allows us to scale
the overall importance of the task relative to the other tasks,
while still maintaining variability. For instance, assuming all
tasks have a baseline weight of 1, β < 1 means the variable
weight task is less important than the other tasks, while β >
1 the inverse. This is useful when combining uncritical tasks
with safety-critical tasks such as balancing; however, it does
not guarantee that the safety-critical task will go unperturbed.

2In these works, the covariances of the forcing term basis functions are
used.

Fig. 1: An example of a 3D task trajectory with variance.
This figure shows how variance can be computed given a
trajectory, then mapped to the weights of the individual DoF
of the task.

In practice, if the variance is too close to 1.0, the weight
of the task becomes infinitesimal and the controller no longer
executes it. In order to avoid such behavior, the maximum
V Υ can be bounded at a value just less than 1.0 (e.g., 0.99
is used in this study).

D. Computing Variance

Historically, task variance has been calculated from mul-
tiple demonstrations of the same movement [5], [7]. Unfor-
tunately, demonstration data is not always available, and it
is advantageous to be able to compute task variance when
we only have one example, as is the case with trajectory
generators. Here, we use a covariance function for this
purpose.

Covariance functions are commonly used in the field of
Gaussian Process Regression (GPR) [13] and allow one to
calculate the variance of a new output point in an existing
data set by paving the input data space with kernel functions.
Here we use Gaussian kernels3:

ki(m) = σ2
k exp

(
−(m− ci)2

2l2k

)
. (7)

The variable σ2
k is the maximum allowable covariance, lk is

the length parameter which influences how much adjacent
kernel centers, ci, influence each other and m is the input
value for which we wish to calculate the kernel output.
Typically one kernel is centered on each input datum.

Given some new input, m∗, and Nk total kernels, we can
calculate the variance of its output as [13],

var(m∗) = K∗∗ −K∗K
−1KT

∗ (8)

where,

K =

k1(c1) k2(c1) · · · kNk(c1)
k1(c2) k2(c2) · · · kNk(c2)

...
...

. . .
...

k1(cNλ) k2(cNk) · · · kNk(cNk)

 , (9)

K∗ =
[
k1(m∗) k2(m∗) · · · kNk(m∗)

]
(10)

and
K∗∗ = km∗(m∗) , (11)

3Also referred to as the squared exponential in GPR literature.

with km∗(m∗), a kernel centered and evaluated on the new
input, m∗. In this formulation, the kernel centers are points
of zero variance, and the variance of the intermediate points
is calculated by evaluating (8) between the kernel centers. In
terms of goal reaching tasks, variance should be zero at the
waypoints meaning that kernel centers should be placed on
each one.

Given a single demonstrated trajectory, we can only con-
fidently interpret two waypoints, one at the beginning of the
movement and one at the end, based on the assumptions that
the trajectory was generated from the EE starting state, and
that the final state of the trajectory represents the goal of the
movement. If more waypoints are given, such as in the case
of programmed trajectories, then they too may be used. The
ensemble of waypoints, λj , can be indexed by the order in
which they are to be attained, {j ∈ N|1 ≤ j ≤ Nλ}, where
Nλ is the total number of waypoints.

We define our kernel centers on the indexes j of the way-
points inferred from the trajectory. We can then create m,
our evaluation domain, by resampling the position vectors ri
as rm such that, {m ∈ R|1 ≤ m ≤ Nλ}. Now, to calculate
the variance of some position rm∗ , (8) is evaluated at m∗,
the resampled index of rm∗ .

For each DoF of the movement, x, y and z we must
calculate the kernel parameters, σ2

k and lk. The variance
of the position values for each DoF can be used to calcu-
late their individual maximum allowable variances, σ2

k =
[σ2
kx
, σ2
ky
, σ2
kz

]T using,

σ2
k =

∑Nr
i=1(ri −MΥ)2

Nr − 1
. (12)

Again, Nr is the total number of positions vectors, r, and
MΥ is the mean of each DoF of the movement. The length
parameter, lk, can be set using,

lk =
Nλ
αl

, (13)

where αl is some scaling coefficient; here we use αl = 10.0.
Figure 1 shows a 3D Cartesian trajectory with 4 waypoints
and the variance computed using the aforementioned tech-
niques. Given this variance, we can map to task weights
using (6), for each DoF. This is shown by the DoF plots in
Fig. 1.

III. EXPERIMENTAL SETUP

To test the efficacy of using variable task weights in
a WB controller, three simulated scenarios are presented
to highlight some common issues encountered when com-
bining multiple incompatible tasks. In each scenario, a set
of tasks is hand-coded for a simulation of the humanoid
robot, iCub, which possesses 32 actuated DoF4. The XDE
physics simulator and environment [14], [15] is used in
this study. Successful task combination is characterized as
the proximity of the hand task frames to their respective
goal locations within a margin of 3.0 cm. This margin is

4The real iCub robot has 18 hand DoF and 3 camera DoF that are not
modeled in the simulation.

(a) Constrained Configuration (b) Workspace Violation (c) Balance Perturbation

Fig. 2: Three common multi-task incompatibility scenarios. The desired hand task trajectories are indicated by the green
markers. Medium size spheres represent waypoints, and large transparent spheres represent the final waypoints or goals.

represented by the large transparent spheres at the end of
the hand trajectories in Fig. 2, and has been selected solely
to aid in visualization. More precise margins can be applied
without loss of generality. We present the execution of these
scenarios using both static and variable task weights. The
task variances are computed using (8) with a maximum
allowable scaled variance of 0.99.

A. Constrained Configuration

In this first scenario, Fig. 2(a), three principle tasks are
combined to force the robot into a constrained configuration.
Such configurations commonly occur on highly redundant
systems when multiple tasks require the same DoF. In
humanoids, this often occurs due to solicitation of the torso
DoF. The first standing task maintains the center of the
robot’s waist at a constant height with a static weight of
1.0. The two variable weight tasks are associated with the
left and right hands, specifically the center of the base of
the palms. These tasks are defined by trajectories passing
through waypoints at the beginning, middle and end of the
movements. The task objectives are for them to attain the
final waypoints, or goal positions, while passing through the
other waypoints. The left and right hand tasks last 6.4s and
6.1s respectively, and are executed with β = 1.0.

B. Workspace Violation

The second scenario, Fig. 2(b), combines the same three
primary tasks as in Sec. III-A; however, this time the hand
trajectory goal positions are further apart than the maximum
workspace of the robot (in this standing configuration).
This scenario is designed to represent a typical workspace
conflict during picking procedures. The trajectories pass
through waypoints at the beginning, middle and end of the
movements. The left and right hand tasks last 6.3s and 6.2s
respectively, and are executed with β = 1.0. When one of
the hands attains its goal position, that is, within 3.0 cm of
the final waypoint, that task is deactivated (i.e. the object
has been picked). Task deactivation means that it no longer
contributes to the control solution, or equivalently, that its
weight is set to 0.0.

C. Balance Perturbation

Here we combine Zero Moment Point (ZMP) balancing
[16] with a right hand task (see Fig. 2(c)). The objective of
the ZMP balancing task is to maintain the Center of Pressure,
or CoP, (x, y) coordinates at (0, 0), its initial position. The
right hand follows a sweeping trajectory from the hand’s
starting waypoint to its end waypoint - no intermediary
waypoints are considered. This scenario is meant to replicate
activities similar to wiping surfaces. The right hand task lasts
8.6s and is executed with β = 10.0.

IV. RESULTS

In this section we provide the results of the scenario
simulations described in Sec. III. A video presenting these
experiments and their results can be found in the attachments
of this submission.

A. Constrained Configuration

When the two hand tasks are combined with static weights,
we can see in Fig. 3(a) that the left hand task achieves its
goal location, contrary to the right hand task. This occurs
because individually, the hand tasks require the torso to
rotate left and right; therefore, when they are combined this
DoF is constrained between the two. The arm DoF attempt
to compensate for this reduction in redundancy by moving
to their limits, and forcing the robot into a constrained
configuration. This is shown in the left arm DoF plots in
Fig. 3(c). Consequently, the right hand task is no longer
feasible and incurs high task errors at both the middle and
goal waypoints due to its combination with the left hand task.
This can be observed in the task error plot of Fig. 3(c). The
waypoints along the trajectory are indicated by the peaks in
the task weight curves in Fig. 3(c).

In Fig. 3(b) the robot has successfully accomplished its
tasks through the use of variable weights. By looking at the
left arm DoF plots in Fig. 3(c) we can see that the right
hand task weight increases approximately 0.25s prior to the
left hand weight, forcing the robot to dedicate more DoF to
its execution and causing the left arm elbow pitch, shoulder
pitch and shoulder roll to deviate. These deviations pull the
left arm DoF away from their limit values, freeing these

(a) static

(b) variable (c)

Fig. 3: The constrained configuration scenario. Figures (a)
and (b) show the task combination results using static and
variable weights respectively. The plots in (c) provide the
simultaneous evolution of various task parameters.

articulations for the left hand movement when its weight
increases.

B. Workspace Violation

Figure 4(a) shows the static execution of the two hand
tasks and although the hands seem to reach their goal
positions, close inspection of the distance to goal plot in
4(c) shows that they never attain the 3.0cm error threshold
limit. As a result, they rest in a local minimum between their
two objectives.

When variable weights are applied to the simultaneous
execution of the two hand tasks, the robot achieves its right
hand goal first, thereby deactivating the right hand task, and
then proceeds to finish the left hand task; this is shown in
Fig. 4(b). The instants that the hand tasks are deactivated can
be seen in the task error and distance to goal plots, and are
indicated by circular markers.

In both the right and left hand movements, the y di-
rectional component develops large errors near the goal
locations. The errors are roughly equivalent (see Fig. 4(c)
static task error plot) and therefore whichever task has the
largest wyi dominates in the WB controller output - the
right hand task in this case (see Fig. 4(c) hand task weight

(a) static

(b) variable (c)

Fig. 4: The workspace violation scenario. See Fig. 3 descrip-
tion for layout details.

plots). Once the right hand task is deactivated, all conflicts
are removed and the left hand task is able to recuperate its
accumulated error and be deactivated as well.

C. Balance Perturbation

Figures 5(a) and 5(b), show the balance perturbation
results. Using static weights for the right hand task results
in a loss of balance and ultimately a failure for both tasks;
this can be seen in Fig. 5(a). We can confirm this loss of
balance by observing that the CoP moves outside of the
Polygon of Support, or PoS, in Fig. 5(c). Despite the ZMP
balancing being 10x more important than the right hand task,
it still fails because the accumulated error at the apex of the
sweeping movement generates large enough accelerations in
the y direction to perturb the ZMP balancing.

In the variable weight case, we can see in Fig. 5(b)
that the robot successfully attains the goal position of the
hand task while remaining balanced. The task error plot
shows that, the right hand task incurs a large amount of
error as in the static case, but because this occurs during
a period of high variance, this error only partially perturbs
the ZMP balancing. The CoP is deviated somewhat from its
goal location in order to compensate for some of the right
hand error but it remains safely within the PoS as shown in
Fig. 5(c).

0.0− 4.0s

(a) static

0.0− 9.0s

(b) variable (c)

Fig. 5: The balance perturbation scenario. See Fig. 3 descrip-
tion for layout details.

V. CONCLUSION

Regulating task weights based on their variance is a
powerful concept, which when coupled with WBC methods,
can solve difficult control problems on-line. The use of
variable weights diminishes the need for manual tuning of
task priorities, and provides WB behaviors which are more
robust to incompatibilities, perturbations and poorly designed
reference trajectories.

In this paper, we presented a simple technique for utilizing
task variance as a means of modulating task weights automat-
ically in a WB controller. These variable weights permit the
WB controller to temporarily deviate high variance tasks in
the presence of incompatibilities. Through three emblematic
scenarios, we showed how variable task weights resolve a
broad set of issues encountered in multi-task execution with
minimal tuning and in a reactive manner. In addition to
the variance to weights mapping, we developed a method
of computing variance for a single trajectory demonstration
using a covariance function (8). This tool is essential in cases
where only one trajectory has been provided for the task, as
in trajectory generation.

High task variance allows one to handle conflicts between
tasks but provides no guarantee that the tasks will be accom-
plished. If an incompatibility occurs when all tasks require
low variance, or high priority, then our method will not work

and some form of planning must occur. In [17], we show that
by optimizing tasks over their entire execution, we can ensure
task completion; however, this method is time consuming. In
the future, we will investigate how to combine such global
optimization methods with variance modulated weighting, to
provide a fast and robust task control framework which can
assure task realization.

ACKNOWLEDGMENTS
This work was partially supported by the European

Commission, within the CoDyCo project (FP7-ICT-2011-
9, No.600716) and by the RTE company through the
RTE/UPMC chair Robotics Systems for field intervention in
constrained environments held by Vincent Padois.

REFERENCES

[1] M. de Lasa and A. Hertzmann, “Prioritized optimization for task-
space control,” IEEE International Conference on Intelligent Robots
and Systems, vol. 3, no. 2, pp. 5755–5762, Oct 2009.

[2] L. Saab, N. Mansard, F. Keith, J.-Y. Fourquet, and P. Souères,
“Generation of dynamic motion for anthropomorphic system under
prioritized equality and inequality constraints,” in IEEE International
Conference on Robotics and Automation, Shangai, China, May 2011.

[3] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: a focus on sequencing and tasks transitions,” in
IEEE International Conference on Robotics and Automation, 2011.

[4] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, 2014.

[5] S. Calinon, I. Sardellitti, and D. G. Caldwell, “Learning-based control
strategy for safe human-robot interaction exploiting task and robot
redundancies,” in IEEE International Conference on Intelligent Robots
and Systems, Oct 2010, pp. 249–254.

[6] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors.” Neural computation, vol. 25, no. 2, pp. 328–73, Feb 2013.

[7] P. Kormushev, S. Calinon, and D. G. Caldwell, “Approaches for
learning human-like motor skills which require variable stiffness
during execution,” in IEEE International Conference on Humanoid
Robots, 2010.

[8] F. Stulp, J. Buchli, E. Theodorou, and S. Schaal, “Reinforcement
learning of full-body humanoid motor skills,” IEEE-RAS International
Conference on Humanoid Robots, pp. 405–410, Dec 2010.

[9] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 820–833, April 2011.

[10] S. Calinon, D. Bruno, and D. G. Caldwell, “A task-parameterized
probabilistic model with minimal intervention control,” in IEEE In-
ternational Conference on Robotics and Automation, May 2014.

[11] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory of
motor coordination,” Nature neuroscience, vol. 5, no. 11, pp. 1226–35,
Nov 2002.

[12] O. Kanoun, F. Lamiraux, P.-B. Wieber, F. Kanehiro, E. Yoshida, and
J.-P. Laumond, “Prioritizing linear equality and inequality systems:
application to local motion planning for redundant robots,” in IEEE
International Conference on Robotics and Automation, 2009.

[13] C. E. Rasmussen and C. Williams, Gaussian processes for machine
learning. MIT Press, 2006.

[14] X. Merlhiot, J. L. Garrec, G. Saupin, and C. Andriot, “The xde
mechanical kernel: Efficient and robust simulation of multibody dy-
namics with intermittent nonsmooth contacts,” in Joint International
Conference on Multibody System Dynamics, 2012.

[15] H. Sovannara. (2013, Dec) Xde-isir wiki. [Online]. Available:
http://pages.isir.upmc.fr/∼hak/xdewiki/doku.php?id=start

[16] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE International Conference on
Robotics and Automation, vol. 2. IEEE, 2003, pp. 1620–1626.

[17] R. Lober, V. Padois, and O. Sigaud, “Multiple task optimization using
dynamical movement primitives for whole-body reactive control,” in
IEEE International Conference on Humanoid Robots, 2014, pp. 1–6.

