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MODAL REDUCTION OF AN ADVECTION-DIFFUSION MODEL
USING A BRANCH BASIS

F. Joly, O. Quéméner, and A. Neveu
Laboratoire de Mécanique et d’Energétique d’Evry, Courcouronnes, Evry, France

We propose an original method to reduce an advection-diffusion model in which parameters, as well as 
boundary conditions, are time-dependent. This modal method uses a branch basis, which differs from the 
Fourier one by a Steklov boundary condition. The treated application is a disk rotating at a variable velocity, 
with time-dependent volume and superficial thermal inputs. Comparison between the detailed model and the 
reduced one gives a gain in compu-tational time of 24 times with a maximal error of less than 10%, 
opening the way to real-time simulation.

1. INTRODUCTION

Numerical resolution of advection-diffusion equations is an active field of
research, for thermal engineering of course, but also for other, less usual topics such
as financial analysis (see, for example, [1]). There are several ways to solve these equa-
tions. For some simple configurations, such as a rotating disk, analytical solutions
exist [2]. Analytical solutions present the advantage of being fast and exact, but, unfor-
tunately, they have disadvantage of being nonexistent for 99% of configurations!

Direct numerical simulation consists of discretizing the computation domain on a
grid, and searching for the solution TðMÞ on the nodes of this grid. To have the appro-
priate precision, the mesh has to be refined, leading to a very large number of
unknowns, i.e., a very large computation time. For real-time process command or para-
metric study, these techniques seem inappropriate, and one has to think about a way to
reduce the number of unknown while keeping the main dynamics of the system.

Among the ways to reduce the number of unknowns are modal methods (see,
for instance, [3]). Originally used by Fourier himself to solve the 1-D transient
conduction equation [4], modal methods consist of searching for the solution as a
superposition of elementary functions: TðM; tÞ ¼ R1

i¼0aiðtÞViðMÞ. The functions
ViðMÞ are called modes, the set of the functions a base, and the unknown coefficients
aiðtÞ the states. Of course, in practice, the sum does not go to infinity, but to a num-
ber Nred. If the number Nred of modes necessary to approach the solution with the
needed precision is small, then this last method is an appropriate candidate for the
above-mentioned applications. The choice of the base is a determinant parameter
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for the quality of the approximation. The modal identification method has been used
by Petit et al. [5] to build a modal base using experimental data, and Giraud et al. [6]
used such a base to identify a heat flux in a convective 2-D plane channel. Recently,
Balima et al. [7] modified the reduced model formulation to build a reduced model for
heat conduction with radiative (i.e., nonlinear) boundary conditions. The Karhunen-
Loéve expansion (also known as POD) is also an interesting alternative to obtain a
basis for high-order systems and can be applied to nonlinear systems. This technique
has been widely used in fluid mechanics (see, for example, [8]), but has also been used
to build reduced models for thermal systems [9]. However, these two techniques need
a knowledge of a detailed model, experimental or numerical, to extract the modes,
which is not always feasible.

Another way to build the base is to rely on the heat equation to obtain a gen-
eralized eigenvalue problem. ‘‘Classical’’ eigenvalue problems are Dirichlet (the
eigenfunction’s value is set to zero on the boundary), or Fourier (the ratio between
the eigenfunction and its gradient on the boundary is fixed). The eigenmodes satisfy-
ing these problems form a base [10] on the domain, but not on the boundary. Unfor-
tunately, the solutions cannot always be decomposed on such a base, especially if the
boundary conditions are not homogeneous. This problem has been so far overcome
by considering that the temperature field is the sum of two contributions: one
‘‘dynamic,’’ satisfying the homogeneous boundary conditions, and thus expandable
in terms of the eigenfunctions, and its complement, called the ‘‘sliding’’ contribution.
However, only linear problems having the same kind of boundary conditions can
be solved using this approach [13]. El Khoury and Neveu [11] applied this technique
to the advection-diffusion problem, and showed that the transport term leads to a
non-self-adjoint problem. Quéméner et al. [12] successfully used Fourier modes to
identify the heat flux obtained by the dry sliding of a pin to the periphery of a rotat-
ing disk. In order to solve self-adjoint nonlinear problems associated with nonlinear
boundary conditions, Neveu et al. [14] successfully used ‘‘branch modes.’’ The
originality of the branch modes (named after their first utilization in mechanical
engineering) is that the ‘‘branch eigenvalue problem’’ uses a Steklov boundary con-
dition, a boundary condition that depends on the eigenvalue. The Steklov boundary
condition yields a basis on the domain and on the boundary. Quéméner et al. [16]

NOMENCLATURE

Bi Biot number [Eq. (2)]

C0 volumic capacity

EðMÞ branch eigenspace

h convective exchange coefficient

k0 conductivity

Pe Péclet number [Eq. (2)]

Pv heat source

R disk radius

TðMÞ temperature field

U velocity

VðMÞ branch eigenmode

WðMÞ modified branch mode

a branch mode state

Emax maximum error

Emean averaged-in-space error

f Steklov number

k branch eigenvalue

p dimensionless volume heat source

r eigenvalue real part

- eigenvalue imaginary part

Superscripts

? adjoint

– complex conjugate
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used these modes to solve a conduction problem in which parameters and boundary
conditions were highly nonlinear.

In the present article, the same technique is used, but applied to an advection-
diffusion problem. The advection term leads to a non-auto-adjoint system in which
the operators are not symmetric, which leads to complex eigenmodes. This article
is organized as follow. In a first part, the branch problem for a non-self-adjoint prob-
lem is defined and its main properties are described. The numerical methods used to
solve the problem are then presented. An example of application is given. This simple
example admits an analytical solution which gives useful information regarding the
branch modes, and a full analysis is given. Finally, the branch modes are used to solve
a time-dependent problem, and this reduced model is compared to the detailed one.

2. THE BRANCH MODES OF A THERMAL PROBLEM WITH ADVECTION

Let X be a closed domain, solid or fluid, of volumic capacity C0 and conductivity
k0, delimited by its closed boundary C, and animated by a macroscopic movement of
velocity ~UU . X is heated by its boundary according to a convective coefficient h0 and an
external temperature Tf , and by a heat source Pv inside its boundary. Characteristic
scales being DT for temperature, L for length, jj~UU jj for velocity, c0L

2=k0 for time,
and k0DT=L2 for heat source, the dimensionless heat equation is expressed as

8M 2 X �r2T þ Pe~UU � ~rrT ¼ � qT

qt
þ p ðaÞ

8M 2 C ~rrT �~nn ¼ BiðTf � TÞ ðbÞ

8

<

:

ð1Þ

This equation is governed by three dimensionless control parameters, the Péclet num-
ber, the Biot number, and the volume dimensionless heat source, given by

Pe ¼ C0jj~UU jjL
k0

Bi ¼ Lh0

k0
p ¼ PvL

2

k0 DT
ð2Þ

respectively.
The definition of the branch modal eigenvalue problem with advection is

8M 2 X �r2V þ Pe~UU � ~rrV ¼ kV ðaÞ
8M 2 C ~rrV �~nn ¼ kfV ðbÞ

�

ð3Þ

where k and V are, respectively, the eigenvalues and the eigenfunctions of the branch
modal basis. The parameter f is a numerical parameter called the dimensionless Steklov
number. In the dimensional form, the Steklov number ensures that the eigenvalue k
has the same dimension in Eqs. (3a) and (3b).

As this model is non-self-adjoint, its eigenmodes do not form an orthogonal
set, and the adjoint branch modal basis has to be defined:

8M 2 X �r2V? � Pe~UU � ~rrV? ¼ kV ? ðaÞ
8M 2 C ~rrV? �~nn ¼ kfV ? ðbÞ

�

ð4Þ
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The set of functions ðVi;V
?
i Þ forms a biorthogonal system, and verifies the following

orthogonality property:

hV?

i ;Vji ¼
Z

X

V
?

i ðMÞVjðMÞdXþ
Z

C

fV
?

i ðMÞVjðMÞ dC ¼ dij ð5Þ

The subscript denotes the order of the eigenmode, di;j ¼ 1 if i ¼ j and di; j ¼ 0
otherwise, h:; :i is the inner product, and V

?

i is the complex conjugate of V?
i . Any

function can be decomposed as

TðM; tÞ ¼
X

1

i¼0

aiðtÞViðMÞ ð6Þ

where ViðMÞ are the branch modes defined by Eq. (3), and ai are the unknown coef-
ficients named hereafter states.

Equation (3b) represents the main particularity of the branch modal basis. For
a classical modal method, the boundary condition corresponds to the associated
physical problem [Eq. (1b)], and a Fourier boundary condition is obtained:

8M 2 X �r2V þ Pe~UU � ~rrV ¼ kV ðaÞ
8M 2 C ~rrV �~nn ¼ Bi0V ðbÞ

�

ð7Þ

This classical modal basis imposes the convective coefficient value Bi0 in the
boundary condition. For a physical problem characterized by a time-dependent
boundary condition, BiðtÞ 6¼ Bi0 [Eq. (1b)], it is impossible to rebuild the thermal
flux density at the boundary [15]. Such a modal basis is then not adapted to time-
dependent boundary conditions or nonlinear thermal problem. On the other hand,
the branch modal basis defined by Eq. (3) is not linked to a specific physical bound-
ary condition. Because of the k eigenvalue presence, such a boundary condition
allows one to rebuild temperature and thermal flux density for all Bi convective coef-
ficient. This basis is then adapted to nonstationary and nonlinear thermal problems.

3. NUMERICAL METHODS

3.1. Spatial Discretization

The usual weak formulation of Eq. (1) yields

Z

X

~rrT � ~rrgdXþPe

Z

X

~UU � ~rrTgdXþBi

Z

C

TgdC¼
Z

X

�qT

qt
þp

� �

gdXþBi

Z

C

Tf gdC

ð8Þ

Temperature is defined in the space H1ðXÞ, and g are test functions defined in
H1ðXÞ. The eigenspace H1ðXÞ is defined by H1ðXÞ � H1

0 ðXÞ �H1=2ðCÞ.
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The weak formulation of the eigenvalue problem and its adjoint reads

Z

X

~rrVi � ~rrg dXþ
Z

X

Pe~UU � ~rrVig dX ¼ �ki

Z

X

Vi gdXþ
Z

C

fVig dC

� �

Z

X

~rrV�
i � ~rrg dX�

Z

X

Pe~UU � ~rrV �
i g dX ¼ �ki

Z

X

V �
i g dXþ

Z

C

fV�
i g dC

� �

8

>

>

>

<

>

>

>

:

ð9Þ

The term
R

X
Vig dX refers to the Dirichlet modes, i.e., volume modes, while the term

R

C
fVig dC refers to the Steklov modes, i.e., superficial modes. The Steklov para-

meter balances these two terms: f ¼ 0 gives the Dirichlet modes, while f ! 1 gives
the Steklov modes. In order to have a similar contribution of both families, and to
have a basis with volume and superficial modes, f � 1. Furthermore, it has been
proven in the self-adjoint case that f ¼ 1 is effectively the best value [16].

The following operators are then defined:

K ¼
R

X
~rr � ~rrg dX FO ¼

R

C
Bi � g dC

Ssurf ¼
R

C
BiTf g dC Svol ¼

R

X
pg dX

Csurf ¼
R

C
f � g dC Cvol ¼

R

X
g dX

T ¼
R

X
Pe ~UU � ~rr � g dX

8

>

>

>

<

>

>

>

:

ð10Þ

They are discretized on an order 1 finite-element basis, leading to unsymmetrical
matrices. For large Péclet numbers (i.e., Pe� 5,000), the convection operator T is
regularized using SUPG regularization [17]. The velocity field is computed separately
and is a datum of the problem.

3.2. Numerical Resolution of the Branch Problem

With the operators defined in Eq. (10), the branch problem and its adjoint are
respectively defined by

½KþT�Vi ¼ �kiðCvol þCsurfÞVi

½K�T�V �
i ¼ �kiðCvol þCsurfÞV�

i

�

ð11Þ

Those generalized eigenvalue problems are solved after spatial discretization
via a slight modification of routine dndrv6.f of the Arpack package. This software
is based on an algorithmic variant of the Arnoldi process called the Implicitly
Restarted Arnoldi Method (IRAM)(for more information about Arpack, see [18]).
The spatial discretization leads to a finite number of modes Nmesh equal to the
number of mesh nodes, and eigenfunctions become eigenvectors of dimension Nmesh.

As the operators are non-self-adjoint, the eigenmodes are complex, and the
corresponding states ai are complex too. The manipulation of complex eigenmodes
is not a fundamental difficulty. Nevertheless, the numerical treatment could become
painful, and the physical explanation of the eigenvectors is more delicate. Moreover,
the temperature field is real, and so this ‘‘real’’ property should be exploited in order
to simplify the computations. The eigenvectors come by couple (Vk;Vk), where Vk is
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the conjugate of Vk. Each couple generates a subeigenspace Ek, associated to the
eigenvalue kk. This subeigenspace is of dimension 2 if kk is complex and of dimen-
sion 1 otherwise. Subeigenspaces are orthogonal (8i; k 2 N Ei ? Ek). A new basis
is introduced with vectors defined by

W<
k ¼ 2

ffiffiffi

2
p <ðVkÞ W=

k ¼ � 2
ffiffiffi

2
p =ðVkÞ ð12Þ

Of course, a real eigenvector is not modified. It is important to notice that these
new vectors are not eigenvectors, as they do not verify the eigenvalue problem
(11), but

½KþT�W@1
i ¼ riðCvol þCsurfÞW@1

i þ ð�1Þd@1<-iðCvol þCsurfÞW@2
i

with ki ¼ ri þ j-i, and if @1 ¼ = (or <), @2 ¼ < (or =).
However, as a linear combination of (Vk;Vk), ðW<

k ;W
=
k Þ also generates a basis

for Ek, and the couples fðW<
k ;W

=
k Þ; ðW<�

k ;W=�
k Þg still form a biorthonormal basis

verifying the following orthogonality property:

hW@1
i ;W �@2

j i ¼ dijd@1@2
ð13Þ

In the old formulation, an eigenvector Vi ¼ <ðViÞ þ i=ðViÞ is followed by its
conjugate Viþ1 ¼ V i ¼ <ðViÞ � i=ðViÞ. For reasons of simplicity, in the new formu-
lation, W<

i will be noted Wi, W
=
i being noted Wiþ1. This way, the temperature field

will still be decomposed as TðMÞ ¼ RN
i¼0aiWiðMÞ, but this time with ai and Wi real.

However, the eigenvalues kk associated to the subeigenspaces Ek are still complex.

3.3. Numerical Resolution of the Evolution Equation

3.3.1. The detailed model. With the notations defined in Eq. (10), Eq. (8)
becomes

ðKþ FO þTÞT ¼ �Cvol
qT

qt
þ ðSvol þ SsurfÞ ð14Þ

Temperature is evolved after spatial discretization in time via an implicit first-order
Euler scheme with adaptive time steps. The resulting linear system is solved by a pre-
conditioned BICGSTAB algorithm designed for sparse matrices [19].

3.3.2. The reduced model. In Eq. (8), the temperature field is replaced by its
modal decomposition [Eq. (6)], while the test functions g are the adjoint branch
problem eigenmodes:

X

1

j¼0

W �
j ðKþ FO þTÞWiai ¼ �

X

1

j¼0

W �
j CvolWi

qai

qt
þ
X

1

j¼0

W �
j ðSvol þ SsurfÞ ð15Þ
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As the eigenproblem is discretized on a mesh with Nmesh nodes, only Nmesh eigen-
modes are accessible. The above equation should then be written as

X

Nmesh

j¼0

W �
j ðKþ FO þTÞWiai ¼ �

X

Nmesh

j¼0

W �
j CvolWi

qai

qt
þ

X

Nmesh

j¼0

W �
j ðSvol þ SsurfÞ ð16Þ

This equation is the complete modal state equation, and is not reduced. The matrices
RNmesh

j¼0 W �
j CvolWi and RNmesh

j¼0 W �
j ðKþ FO þTÞWi are square matrices of order Nmesh,

i.e., of the same dimension as the detailed model. More than that, from a numerical
point of view, this equation is more difficult to solve than the detailed model: the
matrices of the detailed model are sparse, and designed algorithms exist to exploit
this property. On the other hand, matrices of a modal system are full. It is then
mandatory to reduce the number of unknown (i.e., eigenmodes) to solve this equa-
tion and to save computation time as well as memory. The reduction consists of find-
ing (and keeping) the Nred most important modes, allowing one to reproduce the
dynamics of the system. To be efficient in terms of computation time and memory,
one must have Nred << Nmesh. The key of the problem is to find a criterion able to
determine which are the most important modes. To do so, several algorithms exist.
The algorithm we use to reduce the model is described in detail later. Finally, the
system to solve is

X

Nred

j¼0

W �
j ðKþ FO þTÞWiai ¼ �

X

Nred

j¼0

W �
j CvolWi

qai

qt
þ
X

Nred

j¼0

W �
j ðSvol þ SsurfÞ ð17Þ

The states are also evolved in time via an implicit first-order Euler scheme with
adaptive time steps, but the linear system is solved by a LU algorithm.

4. EXAMPLE OF APPLICATION: THE ROTATING DISK

The chosen configuration to illustrate the branch modes reduction is a disk of
radius R, volume capacity C0, and conductivity k0, rotating around its axis at an
angular velocity x. This disk can be heated by a heat flux Pv on its subdomain X2

and exchange heat by its boundaries (see Figure 1a). With the characteristic scales
for length and velocity being R and xR, respectively, the evolution equation and
boundary conditions are given by

8M 2 X1;2
qT
qt

¼ r2T � Pe ~UU � ~rrT þ p1;2
p1 ¼ 0 p2 ¼ 100f1ðtÞ Pe ¼ 105f2ðtÞ

�

ð18Þ

8M 2 C1;3
~rrT ¼ 0

8M 2 C2
~rrT ¼ BiðTf 2 � TÞ Bi ¼ 10½1þ f2ðtÞ� Tf 1 ¼ 1

8M 2 C4
~rrT ¼ BiðTf 1 � TÞ Bi ¼ 10½1þ f2ðtÞ� Tf 2 ¼ �1

8

>

<

>

:

ð19Þ

the functions f1;2ðtÞ being described in Figure 1b.
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4.1. Mesh Size

As the domain can be subjected to superficial and volume thermal inputs, the
choice of a uniform mesh has been made. In this article two aspects are compared:

1. Computation time between the detailed and reduced models. In order not to fals-
ify results, care must be taken not to have an unnecessary large mesh.

2. Temperature field of the detailed and reduced models, and the loss of precision
that occurs from using the reduced models. For this comparison to make sense,
the detailed model has to be precise enough to be a reference.

A compromise has then to be made between a refined grid with good precision but a
computation time forbidding comparison with the reduced model, and a small grid
leading to imprecise results. A sensitivity analysis has been carried out. Table 1
shows the relative error of the temperature maximum between the current mesh
and a mesh with 14,945 nodes for different meshes,

E ¼ TmaxðNmeshÞ � TmaxðNmesh ¼ 14;945Þ
TmaxðNmesh ¼ 14;945Þ � TminðNmesh ¼ 14;945Þ

The test case is Pe ¼ 105, Bi ¼ 10, Tmax ¼ 1, and Tmin ¼ �1. Table 1 shows
that to have a converged result (error less than 1%), a mesh with 9,498 nodes is
required. However, this level of refinement is not necessary, and this grid leads to
a computation time too large to be honestly compared with the reduced models.
On the other hand, a grid with Nmesh ¼ 1;079 nodes leads to as error of 25%, which

Figure 1. Physical model (a) and temporal evolution of the thermal inputs (b).

Table 1. Relative error of the temperature field maximum as a function of the mesh size

N 1,079 3,134 4,785 9,498

Eð%Þ 24.2 4.5 2.6 0.2

8



forbids any comparison with the reduced models. The grid 4,785 is an acceptable
compromise, and all computations have been done on this grid.

In order to validate our code, the detailed model has been compared with
computations done by COMSOL Multiphysics [20], for different meshes and various
Péeclet and Biot numbers. The maximum difference between our code and
COMSOL Multiphysics was 1:6%.

5. THE BASIS MAIN PROPERTIES

For this problem an analytical solution can be sought of (details are given in
the Appendix). This analysis reveals that the main structure of the base does not
depend on the Péclet number. The eigenmodes depend on two integers n and m,
and a more natural notation appears:

kn;m ¼ �ða2n;m � b2n;mÞ þ jð2jan;m � bn;mj � nPeÞ
Vn;mðq; hÞ ¼ An;m � Jnðan;m � qÞ � ej�n�ðhþ/n;mÞ

(

ð20Þ

kn;m ¼ �kk�n;m are the eigenvalues and are depicted on the left side of Figure 2 in the
ð<ðkiÞ;=ðkiÞÞ plane for a basis computed at Pe ¼ 10. Vn;m ¼ V�n;m are the eigenvec-
tors and are defined by n, the azimuthal periodicity, andm, the radial one.We proceed
to a change of basis as described in Section 3.2, and redefine Wn;m ¼ ð2=

ffiffiffi

2
p

Þ<ðVn;mÞ
and W�n;m ¼ �ð2=

ffiffiffi

2
p

Þ=ðVn;mÞ. Wn;m and W�n;m have the same radial and azimuthal
periodicities and differ only by a rotation. It is important to notice that any eigenvector

Figure 2. Eigenvalues spectrum for Pe ¼ 10.
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Wn;m is definedmodulo a rotation, and only the subspace En;m ¼ ðWn;m;W�n;mÞ is fully
defined. Following this notation, the following properties arise.

It is readily seen that axisymmetric modes, with n ¼ 0, are real and define subspaces
of dimension 1 E0;m. Because of their configuration, these modes cannot take
into account any transport effect, and are therefore completely independent
of the Péclet number. The insert at the top of Figure 2 shows W0;1, W0;2,
W0;3, W0;4. Their eigenvalues are, of course, on the <ðkiÞ axis, and are depicted
by black circles. E0;0 is completely flat in the domain and on the border.

En;0 are subspaces for superficial modes. These modes are flat on the domain except
near the border and have no radial periodicity. The superficial mode existence
is the main property of a branch basis. Such modes, which do not appear in a
classical Fourier basis, allow the reconstitution of any boundary condition.
Typical examples are given by the insert at the bottom of Figure 2, where
W1;0, W2;0, W5;0, W18;0 are depicted. The superficial mode eigenvalues are
depicted by black crosses.

En;m with n 6¼ 0 and m 6¼ 0 correspond to the volume and nonaxisymmetric eigen-
spaces. Their shape and eigenvalue desend on the Péclet number, and their
eigenvalue imaginary part behaves as n � Pe, as seen at the left of Figure 2,
where their eigenvalues are represented by black squares. W1;1, W1;2, W2;1,
W2;2 are represented on the right side of Figure 2.

6. REDUCTION STRATEGY

6.1. Basis Selection

Equation (3) shows that for each Péclet number there corresponds a basis. For
a problem in which the Péclet number varies strongly, what basis should be used?
Following Eq. (6), are all bases equivalent? A criterion to answer this question is
to compute the number of modes NE necessary to approach the detailed solution with
an error smaller than E; the smaller NE, the better the basis. Several bases at different
Péclet number were computed, as well as detailed and static temperature fields.
These temperature fields were projected on each basis, and we looked at the number
of modes necessary to approach the detailed solution with a mean difference between
the detailed model and the reduced one of less than 1%. Results are presented in
Table 2. As E0;0 fixes the mean temperature and is always present in the decompo-
sition, it will not be explicitly specified.

Table 2. Number ofmodes to approach the detailed model with amean difference less than 1%

Detailed model

Basis Pe ¼ 0 Pe ¼ 1 Pe ¼ 10 Pe ¼ 100 Pe ¼ 103 Pe ¼ 105

Pe ¼ 0 31 31 38 35 34 3

Pe ¼ 10 29 31 34 33 30 3

Pe ¼ 104 195 253 203 87 21 3

10



It is readily seen that the bases are not equivalent. A basis computed at a low
Péclet number (even at Pe ¼ 0) is able to rebuild a solution at Pe >> 1, while a basis
computed at a large Péclet number is inefficient to rebuild low-Péclet-number tem-
perature fields. For a problem in which the Péclet number varies strongly, the opti-
mum basis appears to be at Pe � 10. However, computing a basis at high Péclet
number is not useless. A basis is optimally designed to be used at the Péclet at which
it has been computed. So, for a problem in which the disk always turns at high speed,
it is best to use a large Péclet basis.

6.2. Hierarchy Criterion

Any temperature field T(M) can be decomposed on a branch basis. The order
of importance of the subspaces needed to rebuild T(M) is determined as follows.
Using the orthogonal property [Eq.(5)], the states are computed by

ai ¼ W
�

i ðCvol þCsurfÞTðMÞ ð21Þ

The larger ai is, the more the corresponding mode is necessary, yielding a hierarchy
criterion more relevant than the time-constant one. Table 3 presents the order
of importance of the 10 first subspaces [determined following Eq. (21)] needed
to approach the solution Pe ¼ 10 for different bases. A black cell means that the
subspace is not among the 10 more important subspaces. The main subspaces are
present independent of the chosen basis, and adaptations are due to mode shape,
which is modified by the velocity. As a matter of fact, any temperature field solution
of an advection-diffusion equation submitted to superficial thermal inputs is charac-
terized by a boundary-layer thickness dT ðPeÞ, a function of the Péclet number. Com-
plex volume modes are also characterized by a boundary-layer thickness dBðPeÞ, as
clearly illustrated by Figure 3, where mode W2;1 is depicted for a base computed at
Pe ¼ 0 (a) and Pe ¼ 104 (b). The difficulty is then to rebuild a temperature field char-
acterized by dT with modes characterized by dB. For dT 6¼ dB, complex volume
modes characterized by dB have to be coupled with modes with a higher periodicity
in r in order to rebuild a temperature field characterized by dT . This is illustrated in
Table 3 for the Pe ¼ 104 base, where subspaces E1,2 and E1,3 are coupled with E1,1 to
reconstitute the temperature field at Pe=10.

Table 3. Order of importance of the 10 first subspaces needed to approach the solution Pe ¼ 10 for

different bases

Subspaces

Superficial Volume Real

Basis (1,0) (2,0) (3,0) (4,0) (6,0) (1,1) (2,1) (3,1) (4,1) (1,2) (1,3) (0,1) (0,2)

Pe ¼ 0 2 1 6 7 4 9 8 10 3 5

Pe ¼ 10 2 1 6 10 9 4 5 8 3 7

Pe ¼ 100 1 2 8 7 4 5 10 9 3 6

Pe ¼ 104 2 1 10 6 4 5 8 9 3 7
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6.3. Mode Selection Inside the Selected Basis

The computed basis order being the mesh order, it has to be reduced in order to
reduce computation time. The main question is, once the basis is computed, how the
relevant modes are selected. The most intuitive way to reduce the base is to use the
Marshall truncation [21], e.g., to select modes with the largest time constant. If this
method is very simple to write, there is little chance that the resulting reduced basis
will be optimized, and a simple look at Figure 2 shows that superficial modes will be
overrepresented. We have developed another method, inspired by the snapshot
methods (see, for example, [22]). This method has the advantage of being intuitive,
easy to write, and almost costless in term of computation time.

A static solution at a given Péclet number is computed (referred to as snapshot).
The resulting temperature field is projected on the basis.
The Nfirst more important subspaces are selected [Eq. (21)]. It is crucial to select the

complete subeigenspace; to select a mode without its complex conjugate would
lead to an instability.

These three steps are repeated for different value of the Péclet number.
The reduced basis will be the reunion of the different sets of modes, yielding a set of

Nred modes.

Table 4 shows the more relevant subspaces for snapshots computed at different
Péclet numbers. Different types of subspaces appear, depending on the snapshot
Péclet number. For small and moderate Péclet numbers, volume and superficial
subspaces are necessary for thermal reconstruction. On the other hand, for a large
Péclet number (Pe ¼ 105), velocity homogenizes the thermal azimuthal evolution,
explaining why on the 10 more influent subspaces, six are axisymmetric and only
two are superficial. This proves that the different snapshots should contain enough
information to be pertinent, and have to cover the range of parameters considered
in the physical problem. For the treated application, six snapshots have been
considered at Pe ¼ 10n, with n ¼ 0–5.

Figure 3. Mode W2;1 computed at Pe ¼ 0 (a) and Pe ¼ 104 (b).
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7. REDUCED-MODEL UTILIZATION

In this section the detailed model is compared with different reduced models
for the temporal simulation described in section 4. Table 5 shows various errors,
the computation times for various reduced models, as well as an indication about
the memory used by the computer.

The number of modes is investigated first. An eigensubspace can be of dimen-
sion 1 or 2, and it is impossible to determine the number of unknowns and the
memory requirements from the number of subspaces selected. That is why the
number of modes is given instead of the number of subspaces. The number of sub-
spaces kept by snapshot is imposed, as well as the number of snapshots. However,
one or several subspaces can appear in the Nfirst most important subspaces of several
snapshots, as shown by Table 4, where subspaces (1,0), (2,0), (1,1), and (0,1) appear
for every snapshot, leading to a final number of subspaces different from Nfirst�
Nsnapshot. However, it is seen that the total number of modes (and not subspaces)
tends to 2Nfirst when Nfirst is large; i.e., the number of total subspaces is almost
the number of subspaces kept by snapshot. This tends to indicate that if Nfirst is large
enough (�50), the Nfirst most important modes are the same whatever the value of
the Péclet number used to compute the snapshot, and only their order of appearance
changes in this subspace. The number of modes allows computing the size of the
operators, and thus gives an indication about the memory used by the computer.

Table 4. Order of importance of the 10 more important subspaces for a basis computed at Pe ¼ 10 for

different snapshots

Subspaces

Superficial Volume Real

snapshot (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (1,1) (2,1) (3,1) (1,2) (1,3) (0,1) (0,2) (0,3) (0,4) (0,6) (0,7)

Pe ¼ 0 2 1 6 8 10 9 3 5 7 4

Pe ¼ 10 2 1 6 10 9 4 5 8 3 7

Pe ¼ 103 2 4 7 10 5 6 9 1 3 8

Pe ¼ 105 4 10 8 9 1 2 7 3 5 6

Table 5. Comparisons between the detailed model and the reduced ones

Detailed model Reduced models

Nfirst 5 10 20 30 40 50 60 80

Nred 10 22 47 74 88 104 120 160

Emax ð%Þ 25 15 17 12 11 9 7 5

hEmaxið%Þ 4.5 4.3 3.3 2.7 2.7 2.5 2.4 2.4

Emeanð%Þ 3.9 2.7 1.4 1.1 1.0 1.0 1.0 1.0

hEmeanið%Þ 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.4

tCPUðsÞ 27,160.6 37 55 175 492 743 1,143 1,760 5,040

Gain in time 1 730 490 155 55 37 24 15 5

Operator size 33,105 100 484 2,209 5,476 7,744 10,816 14,400 25,600

Gain in memory 1 331 69 15 6 4.3 3 2.3 1.3
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The size of the operators is the number of nonzero values in each matrix representing
an operator. In the detailed model, those matrices are sparse, and the number of
nonzero coefficients is not Nmesh�Nmesh but around 7Nmesh, while the matrices
representing the operators of modal model are full, thus of size Nred�Nred, explain-
ing why, although the number of unknown is decreased from 4,785 to 160, there is
almost no reduction in terms of used memory.

The lost of accuracy generated by the use of a modal model is now studied.
Emax is the maximum of the error during the simulation, defined by

Emax ¼
max8t½max8x jTdðx; tÞ � Trðx; tÞj�
max8t;x½Tdðx; tÞ �min8t;x Tdðx; tÞ�

ð22Þ

where Td is the temperature field given by the detailed model and Tr is the tempera-
ture given by the reduced one. hEmaxi is the temporal mean of Emax, Emean is the
maximum during the simulation of the spatially averaged error, while hEmeani is
the error averaged in time and space.

We notice first that to have a maximal error Emax < 10% during the entire simu-
lation, 104 modes are needed, leading to a computation-time gain of 24 times and a
gain of 3 times in term of computer memory. This gain takes into account the
computational time to select the modes. Figure 4 shows the maximal error during
the simulation for different reduced models. Independent of the number of modes,
the errors are located near t ¼ 0.8 and t ¼ 1.6, when the thermal input variations

Figure 4. Maximal error evolution of different reduced models.
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are very stiff and discontinuous. It is important to notice that the only major differ-
ence between the Nred ¼ 104 model and Nred ¼ 160 is at t ¼ 0.8 and t ¼ 1.6, where
the error stays below 5% for Nred ¼ 160 while it goes to 9% for Nred ¼ 104. The fact
that the error is located in time is also shown by the low value of hEmaxi, which is
2.5% for Nred ¼ 104 and a computation-time gain of 24, and of 2.4% for Nred ¼ 160
160 and computation-time gain of 5. Moreover, the error is located in space, as is
proven by Emean, the maximum of the spatially averaged error, which is of the order
of 1% for a computation-time gain of 24.

This last point is clearly illustrated by Figure 5, showing the temperature fields
at t ¼ 1.6, i.e., when the error is maximum. Figure 5a represents the exact solution,
while Figure 5b represents the reduced model with Nred ¼ 104. Despite the
complexity of this temperature field, the reduced model catches the volume and
superficial thermal loads and rebuilds the temperature correctly.

Figure 6 depicts temperature fields computed by the detailed model (left) and by
the Nred ¼ 104 reduced one (right) just after t ¼ 1:6 change of slope of the thermal
inputs, that is, t ¼ 1:600 (a and b), t ¼ 1:604 (c and d), and t ¼ 1:606 (e and f ). This
exemplifies that the reduced model can respond to stiff inputs, and that even at a very
small time scale, hot-spot dynamics are conserved, as well as superficial dynamics.

8. CONCLUSION

In this article, branch modes for an advection-diffusion problem have been
computed and have been used to build a reduced model. The branch basis structure
in a simple geometry has been fully analyzed, revealing more general properties such
as the existence of volume and superficial modes. The existence of superficial modes
allows one to rebuild any superficial thermal input, especially time-dependent
thermal input. The performance of several bases at different Péclet numbers have
been compared. The most general-purpose basis is at Pe ¼ 10, i.e., for a moderate
velocity. This basis has been used to build a reduced model for a very stiff advection-
diffusion problem characterized by time-dependent high speed and time-dependent
boundary conditions. The present study showed that for a maximum error always

Figure 5. Temperature fields at t ¼ 1.60 for (a) the detailed model and (b) the reduced one with

Nred ¼ 104.
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less than 10% and an averaged error of 1%, the reduced model is 24 times faster
than the complete one. This proves the interest of such methods for identification
or real-time command problems. As the superficial thermal inputs for the treated
problem are on purpose stiffer than most physical inputs, this work also opens
interesting perspectives for industrial applications characterized by high velocity,
such as braking or machining problems.

Figure 6. Temperature fields at t ¼ 1.600 for (a) the detailed model and (b) the reduced one with

Nred ¼ 104, t ¼ 1.604 for (c) the detailed model and (d) the reduced one with Nred ¼ 104, t ¼ 1.606 for

(e) the detailed model and (f ) the reduced one with Nred ¼ 104.
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régime variable: décomposion sur les modes de branches, Int. J. Thermal Sci., vol. 38,
pp. 289–304, 1999.

15. E. Videcoq, M. Girault, A. Neveu, O. Quéméner, and D. Petit, Comparison of Two
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APPENDIX. BRANCH MODES FOR A DISK IN ROTATION:

ANALYTICAL ANALYSIS

The studied geometry is a disk of radius 1, defined in a 2-D cylindrical coordi-
nate system ðq; hÞ. The dimensionless Branch eigenvalues problem is

8q 2 ½0; 1�; 8h 2 ½0; 2p�; q
2V

qq2
þ 1

q

qV

qq
þ 1

q2
q
2V

qh2
� Pe

qV

qh
¼ kV ð23Þ

Two boundary conditions arise. The first corresponds to the periodicity condition:

8q 2 ½0; 1�; 8h 2 ½0; 2p�; Vðq; hÞ ¼ Vðq; hþ 2pÞ ð24Þ
The second is the Steklov condition for which the Steklov parameter is f ¼ 1:

8h 2 ½0; 2p�; q ¼ 1;
qV

qq
¼ �kV ð25Þ

Assuming

Vðq; hÞ ¼ wðqÞ � vðhÞ ð26Þ
Eq. (23) becomes

8q 2 ½0; 1�; 8h 2 ½0; 2p�; 1

q2
q
2v

qh2
� Pe

qv

qh
þ ½k� f ðqÞ�v ¼ 0 ð27Þ

where

f ðqÞ ¼ 1

w

q
2w

qq2
þ 1

q

qw

qq

!

ð28Þ

The solution of Eq. (27) follows the form

vðhÞ ¼ ep½hþ/� p 2 C; / 2 R ð29Þ
for which the periodicity condition (24) leads to

p ¼ jn n 2 Z ð30Þ
Introducing the solution form (29) in Eq. (27) yields

q
q

qq
q
q

qq
wðqÞ

� �

þ ð�k� jnPeÞq2 � n2
� �

wðqÞ ¼ 0 ð31Þ
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It is a Bessel equation whose solution is

wðqÞ ¼ AJnðq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�k� jnPe
p

Þ ð32Þ
From expressions of v (29) and w (32), the Steklov condition (25) becomes

�aJnþ1ðaÞ þ ðn� a2 � jnPeÞJnðaÞ ¼ 0 ð33Þ
with

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�k� jnPe
p

ð34Þ
Equation (33) is defined in C, and its numerical resolution is not easy. For n

fixed, Figure 7 represents the complex root an;m ¼ an;m þ jbn;m of (34). When n is
large enough, asymptotic analysis shows that roots are localized in 1=8 of the com-
plex domain C defined by an;m < 0; an;m

	

	

	

	 > bn;m
	

	

	

	 and by an;m � bn;m < 0. Numerical
resolution of (33) leads to two sorts of roots:

A unique root near the bisector, which corresponds to one superficial mode (i.e., flat
in the domain except near the border)

An infinite number of roots near the real axis, which correspond to volume modes
(flat on the border)

From a value an;m, we obtain at the end from Eqs. (26), (29), (32), and (34),

The eigenvalue whose spectrum is presented in Figure 2 in the body of this article,

kn;m ¼ �a2n;m � jnPe

kn;m ¼ �ða2n;m � b2n;mÞ þ jð2jan;m � bn;mj � nPeÞ
ð35Þ

Figure 7. an;m roots localization in C.
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The eigenfunction

Vn;mðq; hÞ ¼ An;m � Jnðan;m � qÞ � e j�n�ðhþ/n;mÞ ð36Þ

For n fixed, Eq. (36) shows that each eigenfunction is characterized by a con-
stant azimuthal periodicity equal to n. The first mode kn;0 is the superficial mode cor-
responding to an;0. Others are volume modes, with a radial periodicity equal tom. For
m large enough, their imaginary values tend to nPe. These analytical observations
correspond to numerical results.
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