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Abstract— In this paper, we tackle the task of symbolic
gesture recognition using inertial MicroElectroMechanicals Sys-
tems (MEMS) present in Smartphones. We propose to build
a non-linear similarity metric based on a Siamese Neural
Network (SNN), trained using a new error function that models
the relations between pairs of similar and dissimilar samples
in order to structure the network output space. Experiments
performed on different datasets regrouping up to 22 individuals
and 18 gesture classes, targeting the most likely real case
applications, show that this structure allows for an improved
classification and a higher rejection quality over the con-
ventional MultiLayer Perceptron (MLP) and Dynamic Time
Warping (DTW) similarity metric.

I. INTRODUCTION

Nowadays, inertial sensors are present in most existing
Smartphones and many other handheld devices. While the
accelerometer keeps track of the linear accelerations of the
device in the 3D space, the gyrometer measures the angular
velocities. These synchronized signals are classically used
in services such as portrait/landscape screen rotation or for
gesture recognition. Three main applications can be then
identified in order to trigger a predetermined functionality:
posture recognition (i.e. flipping, hanging the phone, etc.) ;
activity recognition (i.e. walking, jogging, biking, etc.) ; and
dynamic gesture recognition (i.e. when the user ”draws” a
symbolic gesture in the air, e.g. a circle, a square, etc.). While
posture recognition is relatively straightforward, models used
in gesture and action recognition have to face multiple
challenges. On the one hand, inertial MEMS present inherent
flaws that have to be taken into account, since they can be
deceived by physical phenomena. On the other hand, in a real
open-world application, inertial based gesture recognition
systems have to deal with high variations between users (i.e.
right/left-handed users, dynamic/slow movements, users in
mobility, etc.). To offer more functionality to final users, such
a system should propose a large vocabulary of interaction and
reject all decision uncertainties and parasite motions.

In this paper, we propose a novel gesture classification and
rejection method based on Siamese Neural Networks (SNN).
This method learns simultaneously auto-extracted features in
order to be more robust to physical phenomena and a non-
linear similarity metric for dealing with numerous gesture
categories. Moreover, we investigate two separate kinds of
rejections: the first one consists in rejecting samples from
known classes whose classification is too uncertain, and the
second type of rejection concerns samples from unknown

classes, showing the ability of our model to process unknown
samples in a sensible manner and isolate them.

This paper is organized as follows. Section II presents
related works on gesture recognition and rejection criteria.
In Section III, we quickly sum up the MLP theory and
notations in order to introduce the SNN, with details of our
modified backpropagation algorithm and training strategy.
Section IV describes our experimental setups and results
when comparing our solution to MLP and DTW based
similarity metric. Finally, our conclusions are drawn and
perspectives are presented.

II. RELATED WORK

Inertial gesture recognition has been researched for the
past ten years, and three main strategies can be identified.
The first strategy relies on geometric similarity metrics
combined with a direct classifier which compares the
sample to be recognized to a gallery of references. Its
main representative [1] is a model constructed from the
Dynamic Time Warping (DTW) similarity distance, suited
for time-series, and a K-Nearest Neighbor (K-NN) classifier.
The second strategy [11] consists in a statistical modeling
approach, with the application of Hidden Markov Models
(HMM). Finally, the last strategy implies the use of
kernel-based models learned from features, such as Support
Vector Machines (SVM) [14] or Bayesian Networks [3]. A
more precise description for each approach can be found in
[10]. In our study, we focused on the geometric similarity
metrics and the neural-based strategies, as well as their
rejection criteria. In [4], Choe et al. apply a DTW-based
model to inertial gesture recognition using mobile phones.
The authors test a KNN classifier based on templates
generated from a dataset gathering 4 subjects and 20
gestures for a total of 2000 samples. The use of a limited
number of templates implies a reduced computational cost
for recognition at around 90% precision, similar to the
case where each sample is used as a template. Moreover,
thresholds depending on the average and standard deviation
of intra-class distances are used, allowing for class-specific
rejection. Neural network-based strategies for inertial gesture
recognition are less frequent. In [10], Lefebvre et al. apply
a bi-directional long short term memory (BLSTM) recurrent
neural network on our dataset of 14 classes and 22 users. A
95.18% accuracy is reached for a multi-user configuration,
while Duffner et al. [6] applied a convolutional neural



network to the same dataset, with correct recognition rates
of 97.9% and 93.4% respectively for user-dependent and
user-independent configurations, proving the relevance of
neural networks for gesture classification.

The notion of rejection in classification has been studied in
other areas and applications. Two kinds of rejection criteria
have been proposed in the literature, with the first criterion
based on the actual input signals of the network, and the
second based on decision boundaries for the output space.
Following the first strategy, Vasconcelos et al. [13], tackling
handwritten digit recognition, suggest using ”guard units” for
each class. These units are defined by their weight vector,
which is composed by the means of the features for every
training pattern belonging to the class. Therefore, after the
activation of the network by a new sample, the guard units
check a similarity score between the input sample and each
class, issuing a ”0” output for neurons corresponding to the
classes that do not meet the rejection criterion. For an input
sample I and a weight vector W corresponding to the class
of the sample, the scalar product I.W should be closer to the
norm of W than the inner product for a sample belonging to
a different class. The rejection criterion is then defined by a
threshold ρ where the input is accepted by a class i only if
I.Wi ≥ (Wi.Wi − ρ).

The second strategy is a lot more represented, and can
be subdivided into threshold-based and custom boundaries
determination methods. Fels et al. [7] apply the MLP model
to the ”Data-Glove” to produce a hand-gesture-to-speech
system. Based on the angles between the fingers as well
as the position and orientation of the hand, 5 MLPs are
trained and combined to represent a vocabulary of 203 words,
constructed on 66 ”root words”. Respectively 8912 and 2178
samples were used for the training and testing phases. In
order to preserve the natural aspect of the interaction, a
special interest is devoted to limiting the number of errors.
A thresholding strategy on the value of the highest Softmax
output is adopted, for a final actual error rate of 0.96%, and
a mean rejection rate of 2.25%. In [12], Singh et al. propose
an additional step to improve this rejection method. Applied
to object recognition using a sequence of still images from
the Minerva benchmark, their rejection criterion relies on
generated patterns. For each feature, given µ the mean and
σ the standard deviation of the training samples, random
numbers are drawn between µ − 2.5σ and µ + 2.5σ, and
removed if comprised between min and max. Thus, the
generated patterns represent the outside boundaries of each
class, and are trained to produce outputs close to zero for
every class. Test samples are then classically rejected if all
of their outputs are under a 0.5 threshold. A thresholding
on the maximum output corresponds to a spheric reliability
zone.

In order to define more flexible boudaries, Gasca et al.
[8] propose to estimate hyperplanes emulating the decision
boundaries in the MLP output space in order to identify
”overlap” regions, where the samples are more likely to be
misclassified. The MLP is combined with a K-NN classifi-

cation, based on the outputs of the training samples correctly
classified after training. When recognizing a pattern, from the
two nearest classes, the label is accepted only if the class
given by the network matches the one selected by the K-
NN, given the sample is not in the overlap area between
hyperplanes. Experiments carried out using the databases
from the repository of University of California show a
decrease error of 50% on the test set, which is explained by
the need to select representative samples for the hyperplanes
definition.

In the light of the state-of-the-art, we assessed the rejection
potential of the SNN when building a non linear similarity
metric between pairs of samples. Two classical models were
chosen to compare the performance of this model. The DTW-
based model stood out as the best immediate comparison
with another similarity metric. Finally, we decided to com-
pare the SNN to the MLP to evaluate their performances as
neural networks.

III. PROPOSED MODEL

Inspired by cognitive science, we propose a model based
on SNN to recognize symbolic gestures on Smartphones.
This non-linear learning strategy is crucial to classify our
gesture vocabulary and to reject others gestures and false
alarms. While the MLP is a classifier, the main idea behind
the SNN is to build a non linear similarity metric from
multiple samples. Thus, although the SNN still keeps the
computational parts of the classical MLP, it essentially differs
from it by an original training strategy with a new error
function for backpropagation. An SNN learns to produce
feature vectors from pairs of samples that are discriminative
for the final classification.

A. MultiLayer Perceptron

An MLP is a feed-forward network composed of multiple
computational neural layers whose behavior mirrors our
understanding of brain neurons: the input layer is directly
activated by the gesture sample to be recognized, with one
artificial neuron for each dimension ; the hidden layers hold
the computational power of the network; the output layer is
formed of one neuron for each training class. The output
neuron with the strongest activation determines the winning
class for that sample.

Let xi be the ith dimension of the input sample x, aLi the
activation of the ith neuron ni of the layer L, ILi the input
of the ith neuron of the layer L, ϕ the activation function
for each neuron, and ωji the connection weight between the
neurons from two consecutive layers, of respective indexes
j and i. For the input layer, the activations of the neuron ni
is equal to the ith feature of the input sample. For any other
layer L, we then define :{

ILi =
∑n
j=1 ωjia

L−1
j

aLi = ϕ(ILi )
(1)

The MLP training is performed using the backpropagation
algorithm. Following a gradient descent logic, for each train-
ing sample, the network is activated, then the discrepancy



between the activations of the output layer neurons and the
target output is computed. The main error criterion is based
on the cross-entropy between the estimate and the target
distributions for the model. Let X = {x1, ..., xN} the set of
training samples, K the number of classes, tkn the target for
the neuron k of the sample xn, and ykn the corresponding
network output, then the error EW , with W = {ωji} is
defined as follows:

EW = −
N∑
n=1

K∑
k=1

tknlog(ykn). (2)

Moreover, given the learning rate λ, the set of weights
Wt at the epoch t is then updated following Equation (3).

ωt+1
ji = ωtji − λ

∂E

∂ωji
(ωtji). (3)

This error is propagated backwards in the network in order to
update each connection weight, following the delta rule, with
δLj = ∂E

∂ILj
for a neuron nLj and its input ILj . Classically, the

output layer generally uses a Softmax activation function in
order for its activations to represent estimates of the posterior
probabilities for each class.

B. Siamese Neural Networks

Fig. 1. Architecture of the original Siamese Neural Network

As shown in Figure 1, the principal SNN model was in-
troduced by Bromley et al. [2] for signature verification, and
applied to face verification by Chopra et al. [5]. It contains
two feed-forward neural networks with shared weights that,
given respectively two input vectors X and Y , structure the
output space such that the distance between the two sample
outputs OX and OY reflects a semantic similarity. The SNN
inherits some MLP characteristics. However, the output layer
activations are not considered as posterior probabilities, but
as a feature vector.

The SNN error function originally relies on the cosine
similarity distance. Let C = {C1, .., CK} be the set of
classes represented in the training data, OR(W ) the output
vector of the network for a reference sample xR from class
Ci, OP the output vector of a second positive sample xP
from the same class, and ONl

, l 6= k the output vector
of a negative sample xNl

, l 6= k from a different class.

The goal of the SNN is to maximize inter-class variances
while minimizing intra-class variances, meaning OR and OP
should be collinear while OR and ONl

should be orthogonal.
Consequently, one sample is not enough any longer to define
an estimate of the error, and training pairs have to be selected.
While Bromley et al. in [2] defined separate positive and
negative pairs, whose number was arbitrary, Lefebvre et al.
in [9] proposed an error criterion based on triplets, with one
reference example, one negative and one positive examples.

In order to keep symmetric roles for every class and
optimize the efficiency of every update, we propose here
to minimize an error criterion for training subsets T =
{xR, xP , {xNl

, l = 1..K, l 6= k}} involving one reference
sample, one positive sample and one negative sample from
every other class. The error estimation EW (T ) becomes:

EW (T ) = (1− cos(OR, OP ))2 +
∑
l

(0− cos(OR, ONl
))2.

(4)
For numerical stability reasons, we also propose to replace

the cosine distance for each pair by a combination of multiple
factors. The scalar product O1.O2 between two sample
outputs O1 and O2 was used instead of the cosine, and
additional constraints are added on the norms of both outputs,
forcing them to one. These conditions ensure that the cosine
distance between these outputs is still equal to the original
target, while preventing any saturation of the outputs, given:

cos(O1, O2) =
O1.O2

‖O1‖ . ‖O2‖
. (5)

Thus, we define the final error estimation over all the chosen
training subsets Ts, s ∈ J1, τK EW as:

EW =
∑

s∈J1,τK

EW (Ts), (6)

with

EW (Ts) =(1−OR.OP )2 +
∑
l

(0−OR.ONj )
2

+
∑
k

(1− ‖Ok‖)2.
(7)

The backpropagation algorithm is then modified in order
to take into account the part played by all samples. Thus, we
define, for a neuron ni, δRi

, δPi
, {δNli

}, generalized versions
of the δ defined earlier, in relation to their corresponding
input sample in the training subset. Given the activations of
the neuron ni for all the samples of a training subset, the
error for a weight ωji can then be computed by the following
equation :

∂E

∂ωji
= δRiaRi + δPiaPi +

∑
l

δNli
aNli (8)

Since an SNN is trained to evaluate multiple gesture simi-
larities, our assumption to be experimented is that unknown
samples are projected into a feature space in a coherent
manner with known classes. This hypothesis is then tested
in an SNN rejection strategy, presented in the following
paragraph.



C. Rejection strategies

Once the SNN is trained, the output layer gives a feature
vector representing a similarity measure of a set of samples.
Any classifier can be used on these feature vectors. We
choose a K-NN classification based on the cosine similarity
metric in order to prove the validity and reliability of the
learned SNN projection. Indeed, while the K-NN classifier
does not scale efficiently for larger datasets, it stays relevant
for the domain of gesture recognition. Finally, our rejection
criterion consists in a single threshold, common to all classes,
on the distance to the closest known sample. A similar
thresholding criterion is also applied to a DTW-based model
in order to get a fair comparison and to a MLP rejection
strategy based on the maximum posterior probability. Two
kinds of rejection are then studied. The first kind encom-
passes all incorrect classifications, and tests the ability of
a system to identify samples whose classification is too
uncertain to be accepted. The main challenge for the model
is to isolate the misclassified samples first. The second kind
of rejection concerns the ”rest of the world” paradigm, and
aims at evaluating a model performance in isolating elements
it was not trained for from the rest of the known classes.
This rejection is only rarely taken into account by existing
methods, or is taken care of by another model specifically
trained for this task.

IV. EXPERIMENTS

A. Datasets and preprocess

To our knowledge, no public dataset is available for
3D gesture recognition benchmarks to this date. Thus, we
collected two datasets, using an Android Samsung Nexus S
device, at a sampling rate of 40Hz. The first dataset, DB1,
gathers 40 repetitions of 18 different classes performed by
a single individual, for a total of 720 records. DB1 is the
base for testing personalised models, fitted for a particular
user. The second dataset, DB2, gathers 5 repetitions of 14
different classes performed by 22 individuals, for a total of
1540 records. DB2 allows for a more generalized testing, in
an open-world with multiple users. The 14 classes of DB2 are
formed of linear gestures, with horizontal translations (’flick
North, South, East, West’) and vertical translations (’flick
Up, Down’); curvilinear gestures (’clockwise’ and counter-
clockwise’ circles, ’alpha’, ’heart’, ’N’ and ’Z’ letters, ’pick’
gesture towards the user, and ’throw’ gesture away from the
user). The 4 additional classes in DB1 are the number ’8’,
the symbol ’infinity’ and the letters ’V’ and ’W’.

The accelerometer and gyrometer signals are then prepro-
cessed in 3 steps in order to build a non-temporal vector
for MLP and SNN learning. First, amplitude scaling, where
each component of every sample (3D accelerometer and
3D gyrometer) forming a gesture record is divided by the
maximum norm over all the samples of this gesture, reduces
amplitude variations between different gestures dynamics,
and ensures that input values are between -1 and +1, which is
recommended for an efficient neural network training. Then,
a low-pass filter is applied to increase the signal-noise ratio.

Finally, gestures are normalized over time by forcing the
same fixed size, set to 45 after preliminary experiments, for
every gesture. This is done by computing the curvilinear
distance of the whole gesture, before linearly interpolating
or extrapolating the final samples at fixed coordinates.

Temporal input data are filtered, normalized and vectorized
for the implementation of the DTW based method [15] in our
comparative protocols.

B. Testing protocols

Two types of rejection are studied in this paper. First, we
test the rejection quality for misclassified samples whose
outputs are too far from what the network learned. The
test protocol P1 is based on DB2: all the records from
one individual are used for training, while the other 21
individuals’ records are used for testing. This allows for
testing the generalization potential of the trained model, as
well as its capacity for rejecting samples when variations
with the reference individual are too important. It is the
most challenging representation of an open-world, where
not every user can be taken into account when training the
model. Finally, we test the ability for a model to reject
unknown gestures. The test protocol P2 is based on DB1.
14 gesture classes are used during the training phase, with 5
repetitions per class. The test data comprises 16 repetitions
from each of these classes, as well as every record available
from the 4 additional classes, for a total of respectively 224
and 160 records from known and unknown classes. This
test embodies a realistic personalization paradigm, used in a
natural user interface where the user does not specify when
they make a gesture, and the system has to determine whether
to trigger an event even before selecting the corresponding
event. In our experiments, every protocol is repeated 10 times
in order to get meaningful average classification results.

C. SNN Parameter determination

The following meta parameters have to be tuned to op-
timize the learning sample representation: the learning rate,
the number and sizes of the different layers and the number
of training sets presented to the model at each epoch. The
final parameters were decided to be the same for every
configuration to prevent any specific unrealistic tuning to the
test data. In the first place, the learning rate was set to a low
value of 5.10−5 in order to improve the convergence of our
modified backpropagation algorithm. Then, after preliminary
tests, the number of hidden layers was set to 1, with 45
hidden neurons, which seems coherent with the preprocessed
samples of temporal length equal to 45.

Finally, we studied the influence of the size of the output
layer, since a higher size corresponds to a higher number of
descriptors available for the classifier. In order to evaluate the
performances of each model for every protocol, we consider
the classification rate relative to the rejection rate applied.
The classification rate is defined as the ratio between the
number of samples accepted and correctly classified, and the
total number of accepted samples; and the rejection rate,
as the ratio between the number of rejected samples and



the total number of samples. A higher area under the curve
implies a better rejection and classification quality.

Our evaluations show that increasing the SNN output
size is beneficial to the network discrimination capacity.
A threshold was quickly reached from 10 to 100 for the
single-user configuration (cf. Fig. 2.a), whereas an increased
size of the output layer was beneficial for the multi-user
configuration (cf. Fig. 2.b). The final size was set to 80 for
both protocols. In the case of P2, since 41.6% of the samples
are unknown in the test dataset, no classifier can achieve
a 100% accuracy under a 41.6% rejection rate threshold.
This score limitation is depicted with the filled area, and the
perfect score lines on 2.b and 3.b.

C
la

ss
ifi

ca
tio

n3
ra

te

Rejection3rate

P1(a)
output3size:320
output3size:340
output3size:360
output3size:380
output3size:3100

70

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80 90 100

C
la

ss
ifi

ca
tio

nZ
ra

te

RejectionZrate

P2(b)
outputZsize:Z10
outputZsize:Z20
outputZsize:Z40
outputZsize:Z60
outputZsize:Z80
UnreachableZZone
PerfectZRate

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100

Fig. 2. SNN classification for different outputs size on P1 (a) and P2 (b).

D. Results

In the following, we compare the SNN results obtained
with the final parameter configuration to our best DTW
and MLP performances. P1 shows that, while the SNN
outperforms the MLP for misclassification detection, it is
still less efficient than the DTW based model, which can
be explained by the lack of data necessary for ensuring the
generalization properties of a neural network. For a realistic
10% rejection rate, the DTW correct classification rate is
equal to 84%, while the SNN and the MLP get a respective
score of 82% and 79% (cf. Fig. 3.a). However, P2 shows the

superior capacity of the SNN to isolate unknown samples.
Around the 41.6% landmark, where every unknown sample
can be rejected, the SNN presents a correct classification
rate of 94%, while the DTW and the MLP get lower
respective scores of 92% and 88%. Furthermore, in its best
configurations, depicted by the means of the deviation, the
SNN is the closest to the perfect rate (see the yellow line in
Fig. 3.b) as the rejection rate increases.
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Fig. 3. DTW, MLP, SNN comparison on P1 (a) and P2 (b).

The figure 4 shows the rejection performance for the
three tested methods on P2. The evolution of three types of
rejection is followed as the rejection rate increases. Rejected
misclassifications and samples from unknown classes form
the right rejection, while rejected samples which would
have been correctly classified form the wrong rejection.
It is very interesting to observe then that the SNN-based
method presents the lowest area for the mean wrong rejec-
tion rate, with a steady right rejection rate that only starts
to degrade after the 41.6% landmark, showing its greater
selection ability compared to the other two methods where
the degradation is a lot more spread with the increase of
the rejection rate. The gap with the perfect rejection model,
where the area under the perfect rejection line on 4 would
be dedicated entirely to unknown classes rejection, is also
a lot smaller for the SNN. Thus, we can conclude that our
goal to minimize intra-class distances and maximize inter-



class distances is reached, and in a more efficient way than
the classical geometric or machine learning approaches.

V. CONCLUSIONS AND FUTURE WORKS

We presented an inertial gesture recognition and rejection
approach based on a non-linear similarity metric. Using
different datasets in order to cover realistic challenging
cases, we showed that the suggested modified SNN proves
to be superior for unknown and novel gesture detection
to the main similarity based model used in state-of-the-art
methods. It also outmatches its neural counterpart, the MLP,
both in classification and rejection capabilities. Nevertheless,
the DTW based model still outperforms our model for
misclassifications rejection, which can be explained by the
temporal aspect of the data giving an edge to the DTW. This
is the reason why we aim at developing an improved SNN
model which will be able to handle time series, simplifying
further the preprocess step and increasing the network’s
discrimination capacity.
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Fig. 4. DTW, MLP, SNN rejection details on P2


