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The shear layer instability in the flow between two counter-rotating disks enclosed by
a cylinder is investigated experimentally and numerically, for radius-to-height ratio
Γ = R/h between 2 and 21. For sufficiently large rotation ratio, the internal shear layer
that separates two regions of opposite azimuthal velocities is prone to an azimuthal
symmetry breaking, which is investigated experimentally by means of visualization
and particle image velocimetry. The associated pattern is a combination of a sharp-
cornered polygonal pattern, as observed by Lopez et al. (2002) for low aspect ratio,
surrounded by a set of spiral arms, first described by Gauthier et al. (2002) for high
aspect ratio. The spiral arms result from the interaction of the shear layer instability
with the Ekman boundary layer over the faster rotating disk. Stability curves and
critical modes are experimentally measured for the whole range of aspect ratios, and
are found to compare well with numerical simulations of the three-dimensional time-
dependent Navier–Stokes equations over an extensive range of parameters. Measure-
ments of a local Reynolds number based on the shear layer thickness confirm that a
shear layer instability, with only weak curvature effect, is responsible for the observed
patterns. This scenario is supported by the observed onset modes, which scale as the
shear layer radius, and by the measured phase velocities.

1. Introduction

The stability of the flows between rotating disks, or von Kármán (1921) swirling
flows, has been addressed for a long time, mostly in the rotor–stator configuration,
i.e. between one rotating and one stationary disks (Zandbergen & Dijkstra 1987).
Of practical interest for laboratory experiments is the case of finite disks, for which
no similarity solutions exist. The nature and the stability of the flow then strongly
depends on the radius-to-height ratio, Γ = R/h, and the rotation ratio, s = Ωb/Ωt

(t and b refer to the top and bottom disks respectively). Most of the studies deal with
the rotor–stator configuration, s = 0, and it is only recently that the intermediate cases,
−1 < s < 1, have been addressed experimentally and numerically (Lopez 1998; Lopez
et al. 2002; Gauthier et al. 2002; Nore et al. 2003, 2004). Other parameters may also
be taken into account, such as the presence of a central hub or the end condition of
the sidewall; these extra parameters are of practical importance, for instance in hard
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disk systems, for which Γ ∼ O(10) and s = 1 (Humphrey, Schuler & Webster 1995),
or turbomachines. The quasi-solid-body rotation limit, s ≈ 1, is of great importance
in geophysical flows (Stewartson 1953; Hide & Titman 1967; Früh & Read 1999).

The investigation of the flow in rotor–stator Γ ∼ O(1) cavities has been mainly
motivated by the experimental observation of vortex breakdown in the form of
recirculatory bubble by Escudier (1984). The axisymmetry breaking of the base flow
gives rise to rotating waves, analysed in detail by Gelfgat, Bar-Yoseph & Solan (2001),
Blackburn & Lopez (2002) and Serre & Bontoux (2002) for Γ < 1. For flatter cavities,
Γ ∼ O(10), the recent experimental studies have mainly focused on the boundary layer
instabilities in the rotor–stator case (Gauthier, Gondret & Rabaud 1999; Schouveiler,
Le Gal & Chauve 2001), further characterized numerically by Serre, Crespo del Arco
& Bontoux (2001). Two classes of instability are observed: axisymmetric propagating
vortices and positive spirals. These studies have been extended to differential rotation
of the disks by Gauthier et al. (2002) for Γ = 20.9. It was shown that co-rotating and
weak counter-rotating flows only weakly affect the properties of the boundary layer
instabilities, like linearly shifting the instability thresholds or the onset modes.

The flow between counter-rotating disks appears to be much richer: in addition to
the boundary layer instabilities, free shear layer instabilities also take place, which have
been the subject of much recent experimental and numerical effort. In the simplest
flow configuration, with exact counter-rotating disks and a stationary sidewall, the
axisymmetric base flow becomes unstable through a Kelvin–Helmholtz instability of
the equatorial free shear layer, giving rise to radial co-rotating vortices. The complete
scenario of bifurcations in this configuration, for aspect ratios Γ between 1/2 and 3,
has been numerically investigated by Nore et al. (2003, 2004).

In the less symmetric case of counter-rotating disks with a rotating sidewall and
arbitrary rotation ratio, the instability mechanism basically remains the same, al-
though the geometry of the internal shear layer becomes more complex. The main
difference is that a sufficiently large rotation ratio is needed for the transition layer to
detach from the slower rotating disk and give rise to a free shear layer. The reason is
that for sufficiently large rotation ratio, the structure of the meridional flow drastically
changes, evolving from a one-cell to a two-cell recirculation flow, with a stagnation
circle on the slower disk, which is responsible for the detachment of the shear layer
into the bulk of the flow. This property was first described experimentally and numeri-
cally by Dijkstra & van Heijst (1983) for Γ = 14.3, and further characterized by Lopez
(1998) for 2 � Γ � 8 from axisymmetric numerical simulations.

Detailed investigation of the instability of this internal shear layer by means of dye
visualization and three-dimensional numerical simulations, restricted to Γ =2 and
Ωth

2/ν = 250, has been performed by Lopez et al. (2002) and Marques, Gelfgat &
Lopez (2003). These authors observed patterns of wavenumber 4 and 5, in the form
of funnel-like vortices. At the same time, for a very different aspect ratio Γ =20.9,
Gauthier et al. (2002) reported a new instability pattern of wavenumber 9 to 11,
in the form of a set of spiral arms. This pattern was given the name of ‘negative’
spirals, because they roll up to the centre in the direction of the slower disk. Although
the morphology of the funnel-like vortices and the negative spirals patterns strongly
differs, the issue of a possible continuity between them was first raised by Gauthier
et al. (2002) and Moisy, Pasutto & Rabaud (2003). The purpose of this paper is to
address this issue from a detailed analysis of the instability patterns for a wide range
of aspect ratio Γ , between 2 and 21.

The influence of the curvature and rotation on the stability of internal shear layers
has received considerable interest (Dolzhanskii, Krymov & Manin 1990). In addition

2

https://doi.org/10.1017/S0022112004008833


h

R

Figure 1. Experimental cell. The cylinder (hatched regions), made of transparent Plexiglas,
rotates with angular velocity Ωt , while the bottom disk (black) rotates in the opposite sense
with angular velocity Ωb .

to the classical Kelvin–Helmholtz instability, centrifugal effects may also occur, which
are stabilizing or destabilizing (Yanase et al. 1993; Liou 1994). The extreme case where
rotation dominates the dynamics plays a central role in geophysical flows. After the
pioneering study of Hide & Titman (1967), laboratory experiments focused on weak
shear compared to the background rotation, showing patterns in the form of circular
chains of eddies, with complex nonlinear mode selection and eddy clustering (Niino &
Misawa 1984; Konijnenberg et al. 1999; Früh & Read 1999). Closer to our experi-
ment, Rabaud & Couder (1983) have investigated the stability of a two-dimensional
forced circular shear layer in a split-annulus tank without background rotation, further
studied numerically by Chomaz et al. (1988) and Bergeron et al. (2000). Although in
these experiments the rotation only weakly affects the shear layer instability, patterns
in the form of circular chains of eddies are observed as well, the number of which
decreases as the Reynolds number is increased.

The outline of the paper is as follows: § 2 briefly presents the experimental set-up,
and § 3 summarizes the numerical methods. The steady axisymmetric base flow is
described in § 4, with special attention paid to the existence domain of the two-cell
recirculating flow. Instability patterns and onset curves are described in § 5 from
particle image velocimetry (PIV) measurements and numerical simulations. In § 6 the
instability is characterized in terms of a local Reynolds number based on the internal
shear layer. Systematic measurements of the onset modes and phase velocities are
presented, and are shown to compare well with a classical Kelvin–Helmholtz instability
mechanism. Some concluding remarks are finally offered in § 7.

2. Experimental set-up

2.1. Experimental cell

The experimental cell, sketched in figure 1, is adapted from that of Gauthier et al.
(2002) to allow lateral visualization and lighting. It consists of a rotating cylinder
of radius R = 140 mm, in which a disk of the same radius located at the bottom of the
cavity rotates at a different speed. The cylinder and its upper cover (top disk) are made
of Plexiglas, to allow visualizations from above and from the side, while the bottom
disk is made of black painted brass to improve the visualization contrast. The thickness
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of the cell h can be varied from a few millimetres to 7 cm, using wedges between the
upper disk and the cylinder rim.

The angular velocities of the top and bottom disks, Ωt and Ωb, can be set indepen-
dently, from 0 to 10 rad s−1. Since we are only concerned with the counter-rotation
flow in the present paper, there is no ambiguity in the sign of the angular velocities,
which are taken positive. The upper disk is the faster one, Ωt � Ωb, throughout the
paper, except in § 5.2 where the influence of the rotating sidewall is investigated. For
both experimental and numerical visualizations, the flow is seen from above, the
upper disk rotates anticlockwise while the bottom one rotates clockwise.

Water–glycerol mixture and silicone oils have been used as working fluids, allow-
ing the spanning of a range of kinematic viscosity ν between 1.0 × 10−6 and 50 ×
10−6 m2 s−1 at 20 ◦C. Viscosity changes due to temperature drift during experiments
(about 2% per degree for both glycerol and silicone oils) were controlled, and all the
uncertainties finally lead to an accuracy of 3% in the determination of the Reynolds
numbers.

2.2. Dimensionless numbers

The flow is characterized by three dimensionless numbers: two Reynolds numbers
based on each disk velocity and the aspect ratio Γ = R/h. Since two lengthscales, R

and h, are present in this geometry, freedom exists in the definition of the Reynolds
numbers. The basic Reynolds numbers are here based on the cell thickness h,

Rei = Ωih
2/ν, (2.1)

where i = b, t denotes the bottom and top disks. In the limit of very large Γ , the cell
radius R has a vanishingly small influence on the flow and these Reynolds numbers
Rei are expected to be the relevant control parameters. In particular they allow one to
distinguish between separated and merged boundary layers situations. On the other
hand, for a flatter cavity Γ ≈ O(1), both R and h are relevant, so that the Reynolds
numbers based on the thickness and the peripheral velocities, Γ Rei = ΩiRh/ν, are
also of interest. In the present study, the Reynolds numbers Rei are of order 10–2000,
and the aspect ratio Γ has been varied between 2 and 20.9.

In some cases, the set of parameters (Γ , Ret , s), where s =Ωb/Ωt =Reb/Ret is the
counter-rotation ratio, is more convenient than (Γ , Ret , Reb). Since we are only con-
cerned with the counter-rotation case here, the ratio s is taken always positive. Note
that this definition contrasts with the one adopted by Gauthier et al. (2002), where
s < 0 was taken for the counter-rotating regime and s > 0 for the co-rotating regime.

2.3. Measurement techniques

Qualitative insight into the flow structure is obtained from visualization of the light
reflected by anisotropic flakes seeding the flow. We make use of Kalliroscope† when
the working fluid is water–glycerol mixture, and Iriodin‡ when it is silicone oil. The
flow is illuminated by a concentric circular light source, and pictures are obtained
using a CCD camera located above, along the disk axis.

More quantitative measurements have been performed using a particle image
velocimetry (PIV) apparatus¶. Small borosilicate particles, 11 µm in diameter, seeding
the flow are used as tracer, illuminated by a laser sheet of thickness 0.5 mm produced

† Kalliroscope Corporation, 264 Main Street, Box 60, Groton, MA 01450, USA.
‡ Iriodin: Pigments sold by Merck Corporation.

¶ Flowmaster 3, LaVision GmbH, Anna-Vandenhoeck-Ring 19, D-37081 Goettingen, Germany.

4

https://doi.org/10.1017/S0022112004008833


by a double-pulsed Nd:Yag (25 mJ/pulse) and a cylindrical lens. Images are acquired
with a double-buffer high-resolution camera (12 bits, 1280 × 1024 pixels), synchronized
with the laser at a rate of 4 frame pairs per second. The velocity fields are averaged over
four successive individual fields, i.e. for 1 s, a value much lower than the characteristic
timescale of the flow.

The structure of the axisymmetric base flow in the meridional plane is obtained
with a vertical laser sheet lighting. The cylindrical wall allows undistorted pictures in
the central part of the cell, r � 0.7R. The important out-of-plane azimuthal velocity
component strongly constrains the time delay between two succesive frames, of
order 4 ms. A resolution of 0.5 mm can be achieved, except near the disks where the
important vertical gradient and out-of-plane velocity component prevent resolution
of the boundary layers. The bifurcated patterns are investigated using horizontal laser
sheet lighting between the two disks and the camera above. For these measurements, a
sufficiently large disk separation h and a perfectly horizontal laser sheet are required
due to the important vertical gradients. For these reasons, systematic measurements
were only possible for low aspect ratio, Γ = 3 and 7. Another important constraint
arises from the important variability in the velocity, from mm s−1 near the centre up
to 10 cm s−1 in periphery, making difficult the choice of a unique time delay between
the frames and window size for the PIV computations. Typical time delays of order
of 30 ms were chosen for measurements near the centre, where the instability patterns
essentially occur.

3. Numerical method

The numerical simulations of the three-dimensional flow between counter-rotating
disks for various aspect ratios have been carried out by solving the time-dependent
Navier–Stokes equations. In addition, a linear stability analysis of the steady
axisymmetric base flow has also been performed. These calculations were performed
along the lines of the general methodology developed in Gadoin, Le Quéré & Daube
(2001), Daube & Le Quéré (2002) and Nore et al. (2003), to numerically investigate
flow instabilities. For this purpose, several computational tools have been used, which
are based upon the use of the same spatial discretization; details may be found in
Barbosa & Daube (2001).

3.1. Spatial discretization

The different unknowns are first expanded in truncated Fourier series over N modes in
the azimuthal direction. The coefficients of this expansion are then discretized in the
(r, z)-planes by means of mimetic finite difference operators (Hyman & Shashkov
1997):

(i) A staggered, uniform or non-uniform, grid in cylindrical coordinates (r, θ, z) is
used. The only unknown located on the axis r = 0 is the axial component ωz of the
vorticity, therefore avoiding the singularity at r = 0, since no terms containing 1/r

have to be considered on the axis.
(ii) The first-order divergence and curl differential operators are discretized by

means of the Gauss and Stokes theorems written on elementary cells and the second-
order differential operators are constructed as compounds of these first-order discrete
operators.

(iii) The nonlinear terms are written as (∇ × v) × v and discretized such that they
do not contribute to energy production, as in the continuum case. They are classically
computed in the physical space with the usual 3/2 rule.

5

https://doi.org/10.1017/S0022112004008833


3.2. Computation of the base flow

Since the computation of the steady axisymmetric base flow is needed, even when
it is unstable, the usual procedure, which consists of obtaining steady-state solutions
by letting t → ∞ in a time-stepping code, must be rejected in favour of a Newton–
Raphston method. The main drawback of this approach is that the Jacobian matrix of
the Navier–Stokes operator is huge and ill-conditioned. To overcome these difficulties,
we have used the Stokes preconditioned Newton method proposed by Tuckerman
(1989) and Mamum & Tuckerman (1995).

3.3. Time discretization

Since we are primarily interested in the transition to unsteadiness, the temporal
scheme is of great importance. We use a second-order time-marching procedure with
an implicit discretization of the linear terms and an explicit Adams–Bashforth-type
extrapolation of the nonlinear terms. This procedure is used for both the full nonlinear
and the linearized computations. The computation of each time step therefore amounts
to the resolution of a so-called generalized Stokes problem for (vn+1, pn+1), the values
of the velocity and of the pressure at time (n + 1)�t:

(

3Re

2�t
I − ∇2

)

v
n+1 + ∇pn+1 = S

n,n−1,

∇ · v
n+1 = 0.











(3.1)

The source terms S
n,n−1 contain all the quantities which were evaluated at the previous

time steps. In this time-discretized problem, the velocity–pressure coupling is handled
by means of an incremental projection method (Goda 1979; Daube & Le Quéré
2002).

3.4. Computational features

Both uniform and non-uniform grids are used, depending on the aspect ratio Γ = R/h.
For moderate aspect ratio, Γ � 10, a uniform grid is found to be sufficient. For
instance, the computations for Γ = 7 have been carried out on a uniform grid (r, θ, z),
with a resolution of 401 × 32 × 101.

For larger aspect ratio, a non-uniform grid is used. The meshes in the z-direction are
defined by means of a double hyperbolic tangent function, allowing refinement both
in the boundary layers along the disks and in the sheared region at mid-height of the
cavity. In the r-direction, the grid is uniform up to r = 3R/4 and then geometrically
refined up to the sidewall. A maximum resolution of 513 × 78 × 97 has been used in
the case Γ = 21.

The time steps are chosen with respect to stability considerations, yielding a number
of time steps per revolution within the range 500–1000. Noteworthy is the fact that
using a second-order time stepping ensures the independence of the results with
respect to the time step.

4. Base flow

4.1. Structure of the meridional flow

We first focus on the steady axisymmetric base flow in the counter-rotating regime, by
means of PIV measurements and numerical simulation of the axisymmetric Navier–
Stokes equations.

Superimposed on the essentially azimuthal velocity field, each disk tends to impose
a meridional recirculation flow. The outward flow induced by the faster disk (here
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Figure 2. Experimental velocity field of the base flow in the meridional plane, and azimuthal
vorticity field ωθ (grey scale), for Γ = 7, Ret = 130 and s = 0.154. Note that only the region
0.14 � r/R � 0.68 is shown.
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Figure 3. (a) Vorticity profiles from axisymmetric simulations, illustrating the definitions of
the stagnation radius, rst , and the shear layer radius, R0. —, Azimuthal vorticity ωθ on the
bottom disk z =0; – –, vertical vorticity ωz at mid-height z =h/2. Γ =7, Ret = 250, s = 0.164
(Reb = 41). (b) —, Stagnation radius rst/R; – –, location R0/R of the maxium of the vertical
vorticity at mid-height, as functions of the rotation ratio s, for Γ = 7, Ret = 114.

the top disk) recirculates at large radius towards the centre of the slower disk due
to the lateral confinement. At low rotation ratio, the centrifugal effect of the slower
disk is not strong enough to counteract the inward flow from the faster disk, and
the meridional flow simply consists of a single recirculating cell, similar to that of
the rotor–stator or co-rotating cases. On the other hand, when the rotation ratio is
increased above a certain value, the slower disk induces a centrifugal flow too, and the
meridional flow becomes organized into a two-cell recirculating structure, associated
with a stagnation circle on the slower disk where the radial component of the velocity
vanishes, as illustrated by the PIV measurements in figure 2.

In the two-cell regime, the presence of a stagnation circle has important con-
sequences on the structure of the base flow, as can be seen in figure 10(a) – that will
be described in § 5.3. The axial vorticity at mid-height, ωz(z = h/2), plotted in
figure 3(a) as a function of the radius, shows a pronounced maximum that separates
an inner region of low angular velocity, which rotates with the bottom disk, from
an outer region which rotates with the faster disk. In the same figure, the azimuthal
vorticity profile on the bottom disk, ωθ (z = 0), is also shown. The location where ωθ

crosses zero defines the stagnation radius, rst , separating an inner region, where the
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flow close to the bottom disk is outward, from an outer region where it is inward. It
appears that the radius of maximum vorticity, R0, approximately coincides with the
stagnation radius. Measurements of R0 as a function of s, shown in figure 3(b) in
the case Γ =7, confirm that this radius closely follows the stagnation radius rst . As
the rotation ratio is increased, the annular shear layer and the stagnation circle are
pushed outward, as the result of the increasing centrifugal effect of the slower disk,
and take value close to 1 in the limit of the exact counter-rotation s → 1. However, this
figure clearly shows that the shear layer exists for all s > 0, while the stagnation circle
only exists for sufficiently high rotation ratio, s � s0. This means that, although the
slower disk rotation may not be strong enough to develop an outward recirculation
flow, it causes the inward boundary layer to decelerate, leading to a local increase
of the vertical velocity. As a consequence, negative angular momentum of the slower
(bottom) disk is advected upwards, leading to an annular shear layer even in the
absence of a stagnation circle. But in any case, this mechanism is strongly enhanced
by the presence of the stagnation circle for s � s0, which detaches the inward boundary
layer into the bulk of the flow, and an intense annular shear layer is encountered
when the stagnation circle is present. This annular shear layer is prone to a shear
instability that breaks the axisymmetry of the base flow as the rotation ratio s is
increased, leading to the flow patterns described in section § 5.

4.2. Existence domain of the stagnation circle

The two-cell structure of the counter-rotating flow was first reported by Dijkstra &
van Heijst (1983), from axisymmetric simulation and experimental investigation at
Γ =14.3. Despite a moderate resolution, these authors gave clear evidence of a
minimum rotation ratio for the stagnation circle to appear. This was further observed
numerically by Lopez (1998) for smaller aspect ratios, Γ =2, 4, and 8. Measurements
at Γ = 20.9 were carried out by Gauthier et al. (2002) for various Reynolds numbers,
and it was suspected that the stagnation circle was always present at the onset of
negative spirals. However, due to uncertainty in the experimental method, no clear
conclusion on the role of the stagnation circle was drawn. In order to remove this
uncertainty, a systematic study of the stagnation circle has been carried out using
axisymmetric stationary simulations for Γ ranging from 1 to 28, focusing on its
existence domain as function of the parameters (Γ, Ret , s).

Values of the normalized stagnation radius, rst/R, are shown in figure 4 as a func-
tion of the rotation ratio s = Ωb/Ωt for various values of Ret (the aspect ratio is
kept at Γ = 7). In the limit of high Reynolds numbers, the different curves collapse
into a single master curve, starting from rst ≈ 0 for s = s0 ≈ 0.10. For lower Reynolds
numbers, higher values of s, around 0.2–0.5, are needed for the two-cell structure to
develop, and the stagnation circle directly appears at a non-zero radius.

The minimum counter-rotation ratio s0 for various aspect ratios is plotted as a
function of Ret in figure 5. These curves separate the lower part, s < s0, where only one
recirculating cell exists, from the upper part, s � s0, where the two cells are present.
On the same figure, experimental determinations of s0, obtained for Γ = 20.9 from
the data of Gauthier et al. 2002 (see their figure 7), are also shown, and compare
rather well with the present numerical results.

For sufficiently large aspect ratio, the critical ratio s0 decreases from s0 ≈ 0.67 ± 0.02
in the limit of low Reynolds numbers, and saturates towards a constant value
s0 ≈ 0.100 ± 0.003 for higher Reynolds numbers. It is worth pointing that the Ret → 0
limit is in excellent agreement with the computation of Dijkstra & van Heijst (1983)
(see their Appendix A.3), who predicted a limiting value s0 = 2/3 for the Stokes
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s = Reb/Ret for Γ = 7, from axisymmetric simulations. The corresponding Reynolds number
of the top disk, Ret , is indicated.
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Figure 5. Critical counter-rotation ratio s0 as a function of Ret . Lines: numerical results,
for various aspect ratios, Γ =1, 2, 4, 7, 14, 21 and 28 (from top to bottom). ◦, Experimental
measurements, for Γ = 20.9.

flow. However, the much larger Reynolds number of their experiments and numerical
simulations did not allow them to confirm this result.

The collapse of the different curves s0 = f (Ret ) for high aspect ratio, Γ > 4, is re-
markable. The reason is that for a flat cavity, the radius R does not play an important
role in the flow structure, so that the Reynolds number Ret =Ωth

2/ν based on the
thickness h is the only relevant parameter in the problem. This similarity breaks
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for lower aspect ratio, around Γ < 4, for which the minimum counter-rotation ratio
s0 significantly increases, suggesting a stabilizing influence of the sidewall on the
stagnation circle formation.

In the high aspect ratio case, the crossover between the Stokes regime, where s0 →
2/3, and the higher Reynolds number regime, where s0 ≈ 0.10, takes place at Ret ≈ 60.
Above this crossover, separated boundary layers appear over each disk, with
δt + δb <h, where δt and δb are the top and bottom boundary layer thickness. Both δt

and δb are controlled by the faster disk, and scale as δ = (ν/Ωt )
1/2. Using the values

δt/δ ≃ 2.2 and δb/δ ∼ 4.5 reported by Gauthier et al. (2002) gives a rough estimate for
the transition Reynolds number,

Ret = Ωth
2/ν ≈ (2.2 + 4.5)2 ≈ 45. (4.1)

Although slightly smaller, this value is of the same order as the crossover Ret ≈ 60 in
figure 5. One may conclude that, for Ret > 60, the stagnation radius results from the
competition between well-defined boundary layers, while for Ret < 60 it results from
purely viscous effects.

5. Instability patterns

5.1. Visualizations

On increasing the Reynolds number, the axisymmetric base flow becomes unstable,
leading to instability patterns that can be visualized from the light reflected from the
anisotropic flakes, as shown in figure 6 for aspect ratio Γ =R/h ranging from 6.1 to
20.9.

The instability patterns basically consist of a sharp-cornered polygon of m sides,
surrounded by a set of 2m outer spiral arms. However, the combination of these two
aspects of the pattern can only be seen simultaneously for some modes and values of
the aspect ratio. The lower modes observed for low aspect ratio essentially show the
polygon pattern (figure 6a–c, with m =3, 4 and 5), similar to those observed by Lopez
et al. (2002) at Γ = 2 using dye visualization. In figure 6(b), both the m = 4-sided
polygon and the surrounding 2m =8 spiral arms can be seen. In addition a set of m

inner arms connecting the corners of the polygon to the centre also appears, which
become spiral arms as the aspect ratio Γ is increased (figure 6d–f , with m =7 and
11). Both the m inner arms and the 2m outer arms can be seen in figure 6(f ), and
the corners of the polygon appear as bright V-shaped patterns where the m arms
split into 2m arms. On the other hand only the m inner spiral arms can be seen in
figure 6(e). In this figure the polygon and the outer spiral arms extend to larger radii,
where visualization is not possible due to the cylindrical rim.

The spiral arms seen here correspond to the negative spirals described by Gauthier
et al. (2002), where the observations were restricted to Γ = 20.9. The name of
‘negative’ spirals has been chosen because they roll up to the centre in the direction
of the slower disk – but also to distinguish them from the positive spirals, a pattern
that arises from an instability of the inward boundary layer close to the slower disk,
and which is also present in the rotor–stator and co-rotating flows.

Close to the onset, the pattern slowly rotates as a whole, in the sense of the faster
or the slower disk, with an angular velocity of order of one tenth of the faster
rotating disk. Measurements of phase velocities are given in § 6.3. As the Reynolds
number is increased slightly beyond their transition values, higher-order modes quickly
superimpose on the fundamental one, eventually leading to a disordered pattern. Only
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Figure 6. Instability patterns visualized by seeding flakes. (a) (Γ,Ret ,Reb) = (6.1, 584, 79),
showing a mode m= 3. (b) (7, 282, 47.1), m= 4. (c) (7, 282, 51.8), m= 5. (d) (10.8, 60.6, 26.8),
m= 7. (e) (20.9, 46, 10.5), m= 11. (f ) (20.9, 74, 13.6), m= 11. The flow is only visible on a
central region, r � 0.83R, due to the shadow from the cylindrical rim. Disk rotations are
indicated by the arrows in (a).

the patterns at the onset are considered here, and the Reynolds numbers are kept
close to that for the onset of the instability.

The relationship between the light intensity reflected by the flakes and the velocity
gradient tensor field of the flow is non-trivial in the general case (Gauthier, Gondret &
Rabaud 1998). Although the intensity field may represent the depth-averaged orient-
ation of the flakes, screening effects from the upper regions may considerably alter
the interpretation of the observed patterns, so that the three-dimensional flow structure
cannot be directly inferred from the visualizations of figure 6. This visualization
method is nevertheless convenient as a first approach, as it allows us to easily define
the domains of parameters of interest where more quantitative measurements are to
be performed.

5.2. Onset curves

The experimental onset curves of the patterns are shown in figure 7 in the plane of
parameters (Ret , Reb) for various aspect ratios Γ ranging between 2 and 20.9. These
curves are obtained by slowly increasing the bottom disk angular velocity Ωb at fixed
value of Ωt and visually inspecting the intensity pattern of the light reflected by the
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Figure 7. Stability curves for various aspect ratios Γ = R/h from 2 to 21. �, Γ = 2; �, 3; �,
5.2; +, 7; ⋆, 9.3; �, 12.6; �, 14.4; ×, 18; �, 20.9; ⊕, Instability threshold obtained by Lopez
et al. (2002), at Γ = 2. The continuous line indicates the stagnation circle onset for Γ = 7,
and separates the one-cell domain (lower region) from the two-cell domain (upper region).
The dashed lines indicate the exact counter-rotation slope, s = 1, and the slope s = s0 ≃ 0.10
corresponding to the onset of the two-cell structure at high Reynolds number.

flakes. No hysteresis is observed within our experimental uncertainty, of around 3%.
The scatter mainly originates from the very large growth time of the instability close
to the onset, which can be as large as 100 rotation periods of the faster disk. For high
aspect ratio, boundary layer instabilities arise at moderate Reynolds numbers, and
the onset curves for the shear layer instability become defined only for a restricted
range of Ret . It is worth pointing out that, although no hysteresis is observed for
the instability threshold, noticeable hysteresis is present for the onset mode, which
will be described in § 6.2. The point (Γ, Ret , Reb) = (2, 250, 102) obtained by Lopez
et al. (2002), also shown in figure 7, is in excellent agreement with the present results.

In the same figure the line separating the one-cell and two-cell domains is also
plotted for Γ =7. This curve is given by Reb = s0Ret , where s0(Γ, Ret ) is the minimum
rotation ratio for the two-cell structure and the associated stagnation circle to appear
(see figure 5). Similar curves are obtained for other aspect ratios, not shown here
for clarity. From figure 7 it appears that the stability curves essentially fall into the
two-cell domain, except for the highest aspect ratio, around Γ > 16, for which the
instability arises in the upper part of the one-cell domain. Note that, for low aspect
ratios, the presence of the two-cell structure is not a sufficient condition for the base
flow to become unstable, and a much higher Reb is needed for the instability to arise.

Figure 8 shows the same data as in figure 7, but plotted in the plane of parameters
(Γ Ret , Γ Reb). Using this new set of parameters, the onset curves tend to collapse
reasonably well, except for those corresponding to the lowest aspect ratios, Γ = 2
and 3, which significantly depart from it. The curves start from Γ Reb ≈ 200 ± 40 and
collapse towards a constant rotation ratio line, s ≈ 0.13 ± 0.01, slightly beyond the
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Figure 8. Stability curves. Same data as in figure 7, but plotted in the (Γ Ret , Γ Reb) plane of
parameters. The axisymmetric base flow is stable in the lower region.

rotation ratio for the onset of the two-cell structure, which takes place at s0 ≈ 0.10
for high Reynolds numbers.

The approximate collapse of the onset curves in figure 7 indicates that the polygon
pattern and the negative spirals arise from the same instability mechanism, a shear
layer instability, although the nonlinear saturation leads to very a different morpho-
logy. Taking the shear ΩR/h as an estimate for the growth rate of the instability, and
h2/ν for the damping timescale, then the natural control parameter is (ΩR/h)h2/

ν ∼ Γ Re. This is a rough estimate, since the instability takes place for radii that may
be much lower than the cell radius R, but it is supported well by the approximate
collapse of the data observed for Γ � 4.

As the sidewall rotates with one of the two disks, the flow configuration is not
invariant by reflection with respect to the horizontal plane. The influence of the
sidewall is expected to be negligible in the limit of large aspect ratio Γ , but may be
significant for the range of Γ spanned in the present study. It may therefore be of
interest to compare the stability curve of the actual flow configuration with that of
the symmetric configuration. We call configuration A (resp. B) the situation where the
sidewall rotates with the faster (resp. slower) disk. Figure 9(a) shows the stability curve
in configurations A and B for an aspect ratio Γ = 7.2 in the plane of parameters
(Refast, Reslow), the Reynolds numbers based respectively on the faster and slower
rotating disk.

The thresholds in configuration B appear to be around 10% lower than that
of configuration A, with no significant trend as the Reynolds number is varied. In
configuration A, the fluid rotation due to the faster disk is sustained by the co-rotating
sidewall, and the resulting flow at the periphery of the cell is closer to a solid-body
rotation. As a result, the stagnation circle where the centrifugal effects of each disk
balance is smaller, and the internal shear layer is weakened, so that configuration A is
more stable than B . The normalized threshold difference (Reslow,A − Reslow,B)/Reslow,
plotted as a function of the aspect ratio in figure 9(b), shows a decrease proportional
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Figure 9. (a) Stability curves for an aspect ratio Γ =7.2. �, Configuration A: the sidewall
rotates with the faster disk; �, Configuration B: the sidewall rotates with the slower disk.
(b) Relative deviation of the threshold between configurations A and B as a function of Γ .
The line shows 0.9Γ −1, and the error bars reflect the variability of the deviation along the
curves from (a).

to Γ −1, indicating that the boundary condition at r =R has an influence of order
of h/R on the instability threshold. This difference between configurations A and B

remains small for high aspect ratio, and in the following we will restrict ourselves to
the configuration A.

5.3. Numerical and experimental description of the flow patterns

In order to obtain further insight into the instability mechanism of the counter-rotating
flow, PIV measurements and numerical simulations have been performed close to the
onset.

Figure 10 shows the horizontal velocity field and the associated vertical vorticity
field, measured by PIV at mid-height, z =h/2, for Γ = 7. As previously, only one
quarter of the velocity vectors are shown, and the vorticity colour map has been
rescaled by the angular velocity of the top disk. Figure 10(a) shows the axisymmetric
base flow, while the three bifurcated fields in (b), (c) and (d) show azimuthal modula-
tions of modes m =5, 4 and 3, obtained for increasing (Ret , Reb) along the onset
curve. The annular shear layer is found to evolve towards a sharp-cornered polygonal
pattern, each side containing a local minimum and maximum of vorticity. The modula-
tion of the vorticity level along the shear layer is similar to the classical Kelvin–
Helmholtz ‘cat’s eyes’ pattern for the linear case. The vorticity maxima are located
slightly downstream of the corners of the polygon, which probably results from a
nonlinear deformation of an initially symmetric chain of vorticity extrema. Flatter
cavities (figures 11a, for Γ = 9.3, and 11b, for Γ = 14) show the same modulated shear
layer, but the vertical confinement leads to a saturated pattern that becomes more
complex than the one observed for low Γ . In addition to the polygonal shear layer,
a set of m inner spiral arms appears in the centre of the flow, where local vorticity
minima, of the same sign as the slower rotating disk, becomes concentrated.

Because of the above-mentioned limitations of the PIV measurements, the structure
of the vorticity field for even flatter cavities can only be investigated from the
numerical simulations. For Γ = 21, illustrated in figure 12, the annular shear layer
appears to be much thinner, leading to a higher-order mode, here m =11. The
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Figure 10. Experimental velocity and vorticity fields ωz at mid-height Γ = 7; (a) is below
the onset, and (b–d) are for increasing Reynolds numbers along the onset curve. (a) (Ret ,Reb) =
(240, 40); (b) (240, 43); (c) (289, 45); (d) (341, 50).
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Figure 11. Experimental vorticity fields ωz at mid-height. (a) (Γ,Ret ,Reb) = (9.3, 183, 28.5),
mode m= 7. (b) (14, 80, 19), mode m= 8. The colour maps are the same as in figure 10.
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Figure 12. Numerical axial vorticity field ωz at mid-height z = h/2 for Γ =21, Ret = 67,
Reb = 14.3, showing a mode m= 11. Only the central region r � 0.95R is shown.
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Figure 13. Numerical axial vorticity ωz (a) and axial velocity vz (b) at different heights
z/h = 0.1 (close to the slower disk), 0.3, 0.7 and 0.9 (close to the faster disk), for Γ = 7,
Ret = 250, Reb = 57, showing a mode m= 5. The colour maps for both ωz and vz are normalized
by their minimum and maximum on each field. Only the central region r/R � 0.6 is shown.

similarity with the visualization in figure 6(e) is remarkable. Only the m inner spiral
arms can be seen, suggesting that the 2m outer spiral arms are outside the mid-height
plane.

The three-dimensional structure of the pattern can be inferred from the numerical
vertical vorticity and velocity fields shown in figure 13 for Γ =7, for heights z ranging
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from 0.1h (close to the slower disk) up to 0.9h (close to the faster disk). From these
figures, the vertical structure of the polygonal shear layer and the influence of the
boundary layers of each disk can be seen.

It is remarkable that the locations of the vorticity extrema approximately coincide
for each field, suggesting that the flow structure is roughly invariant along the vertical
direction, except close to the disks where the boundary layers occur. Along these
columnar vortices strong upward flow is present, which advects negative vorticity
from the bottom to the top disk. Close to the faster disk (4th slice), the outer spiral
arms appear surrounding the polygonal shear layer. Slight vorticity modulations show
2m extrema along the azimuthal direction, similar to the 2m outer spiral arms seen in
figure 6(c). These spiral arms result from the interaction of the shear layer primary
instability pattern in the bulk of the flow with the centrifugal Ekman boundary layer
over the faster disk. The Ekman layer advects the perturbation outwards with an
anticlockwise rotation, resulting in the observed negative spirals. Since they are mainly
localized near the top disk, these negative spirals can clearly be seen in the seeding
flakes visualizations in figure 6, although they are associated with very weak vorticity
modulation.

5.4. Growth rates and nonlinear saturation of the instability

We now investigate the growth rates and the nonlinear saturation of the bifurcated
flow slightly above the onset. The energy of the instability pattern may be defined as
the difference between the total energy of the flow and the energy of the unstable
axisymmetric base flow. Since the unstable base flow obviously cannot be deduced
from experimental measurements of the bifurcated flow, we approximate it by the
azimuthal average of the total energy. Note that we are only dealing with the con-
tribution of the horizontal components of the velocity at a given height, since the
vertical component is not accessible from the present two-dimensional PIV measure-
ments. Within these approximations, the energy per unit mass of the bifurcated flow
at a given height can be written

�E =
1

2

1

πR2

∫ 2π

0

∫ R

0

{[vr (r, θ) − v̄r (r)]
2 + [vθ (r, θ) − v̄θ (r)]

2}r dr dθ, (5.1)

where the overbars denote the azimuthal average of the horizontal components of the
instantaneous velocity field. Since the bifurcated state is very sensitive to the distance
to the threshold, the PIV measurements have been performed at small aspect ratio,
Γ = 3, where a wider range of Reynolds numbers can be explored before secondary
instabilities occur. For this aspect ratio the pattern is confined to small radii, and the
radial integration in equation (5.1) has been restricted to the range 0 � r � 0.64R.

Figure 14(a) shows the energy �E as a function of time for a fixed value Ret = 280,
after a sudden increase of Reb at t ≈ 0, from a value slightly below the threshold, 70,
up to values between 75 and 79. At t = 0, the flow is axisymmetric, and the non-zero
value of �E simply corresponds to the noise level of the PIV measurements and
the azimuthal average procedure. For Reb ∈ [75, 78], after a transient growth, the
energy saturates towards a constant value, �Es , which is plotted in figure 14(b) as a
function of Reb. The corresponding flow patterns are shown in figure 15. Above the
instability threshold, Reb,c ≈ 74 here, the energy linearly increases proportionally to
Reb − Reb,c, as expected for a supercritical bifurcation. Similar results were reported
by Gauthier et al. (2002) in the case Γ =20.9, and we believe that the bifurcation
remains supercritical for the whole range of aspect ratio spanned in this paper. For

17

https://doi.org/10.1017/S0022112004008833


0.5

1.0

(a) (b)
1.5

0 20 40 60 80 100

∆
E

 (
cm

2
 s

–
2
)

tΩt/2π

0

0.5

1.0

1.5

68 70 72 74 76 78 80

∆
E

s 
(c

m
2
 s

–
2
)

Reb

Figure 14. (a) Energy of the non-axisymmetric part of the flow, equation (5.1), as function of
time, after a sudden increase of Reb at t =0 s from 70 to 75, 76, 77, 78 and 79 (from solid line
to short-dashed line), computed from the velocity fields of figure 15 (Γ =3 and Ret = 280).
(b) Energy of saturation of the bifurcated state as a function of Reb .
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Figure 15. Experimental velocity and vorticity fields for Γ = 3 and Ret = 280. (a) Reb = 75;
(b) Reb = 77; (c) Reb = 79. The grey scale has been chosen in order to emphasize the local
vorticity extrema of the shear layer.

Reb = 79, the pattern is a non-steady combination of modes m =4 and 5 (figure 15c),
and �E does not show saturation, as depicted by the error bar in figure 14(b).

Linear computations have been performed for the same flow parameters, Γ = 3
and Ret =280, in order to provide further insight into the observed modes. Figure 16
shows the growth rate σ of each mode as a function of Reb. The most unstable mode
is m =3 at Reb =72.3, but it is closely followed by the mode m =4, which becomes
more unstable for Reb > 73.9. This mode m =3 was not observed experimentally,
probably due to our limited resolution on the Reynolds numbers, of order of 3%. If
Reb is further increased, the dominant mode becomes m =5, for Reb = 78.9, in good
agreement with the experiment (figure 15). Note that the growth rates cannot be
inferred from the experimental measurements of figure 14(a), because only the very
late time before saturation can be observed experimentally, and the earlier exponential
growth falls largely below the experimental noise level.

The numerically observed modes for Γ = 3 and 7 are summarized in the marginal
stability curves in figure 17. The experimentally observed modes at Γ = 3 are also
shown for comparison. In both cases the critical mode is m =3. These curves show the
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Figure 16. Non-dimensional growth rate of the different modes as a function of Reb ,
for Γ = 3, Ret = 280.
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Figure 17. Marginal stability curves obtained from the linear computations for Ret = 280. �,
critical Reynolds number Reb for a given mode m; thick line, most unstable mode. The dashed
curve joining the points is guide for the eye. (a) Γ = 3, Reb,c = 72.3; �, experimentally observed
modes. (b) Γ = 7, Reb,c = 37.8.

important sensitivity of the most unstable mode slightly beyond the instability thre-
shold. This sensitivity remains of the order of the experimental uncertainty, around
3%, making difficult any accurate determination of the onset mode. The restricted
range of experimentally observed modes compared to the linearly unstable modes
may be the result of a nonlinear wavenumber selection, such as the Eckhaus instability
(Ahlers et al. 1986).

Since in the experiment the Reynolds number cannot be kept close to the transition,
one may expect nonlinearities to significantly affect the selected modes. In order to
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(b)(a)

Figure 18. Iso-vorticity levels at mid-height obtained for the same parameters, Γ = 3,
Ret = 280, Reb = 80, starting from different initial conditions: (a) from sudden increase of
Reb from 70, showing a mode m= 5; (b) from progressive increase of Reb from 70, showing a
mode m= 4. Only the central circle r � 0.65R is shown.

check this point, nonlinear computations have been performed at Γ = 3, Ret =280
and Reb = 80, i.e. 11% beyond the transition. For these values, linear computations
show that the modes m =2 to 7 are unstable, the most unstable being the mode m = 5
(see figure 16).

Figure 18 shows the long-time evolution of two computations performed for the
same flow parameters, which differ only by the initial condition. The axisymmetric
stable flow for Reb = 70 is taken as the initial condition for the first computation
(figure 18a), in a similar way as for the experiments, where Reb was suddenly increased
from 70 to a value above the threshold. For the second computation (figure 18b), the
bottom Reynolds number has been gradually increased from 70 up to 80 in four steps,
waiting for the saturation of the flow at each step (typically 300 rotation periods of
the faster disk). While the first computation (a) shows a mode m =5, the second one
(b) shows a mode m =4. For similar values of Reb (see figure 15c), the experiment
shows a mixed state, dominated by modes 4 and 5. The progressive increase of Reb

in the second case probably constrained the flow to follow the metastable branch
m =4, although other branches may be more unstable. These observations clearly
illustrate the sensitivity of the observed pattern to the initial condition. They are in
good agreement with a number of experimental observations, where strong hysteresis
is observed for the modes, although no hysteresis is present in the value of the
threshold. This situation is generic for systems where the geometrical confinement
leads to azimuthal wavenumber quantization (see, e.g., Rabaud & Couder 1983).

6. Characterization of the shear layer instability

6.1. Local control parameter for the shear layer instability

The experimental and numerical vorticity fields in figures 10–13 indicate that the basic
mechanism responsible for the observed flow pattern is a shear layer instability. In
order to confirm this observation, and to test any possible influence of the curvature,
the local Reynolds number Rel based on the thickness w of the shear layer and the
velocity jump �U across it can be computed:

Rel = �Uw/ν. (6.1)

It is expected that, just below the onset of the instability, this local Reynolds number
reaches a unique critical value.
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Figure 19. Azimuthal velocity profiles vθ (r) computed from PIV fields at mid-height z = h/2,
measured just below the onset of instability, for Γ = 7. – –, Ret =239; —, Ret =277. The
corresponding solid-body rotation profiles vθ (r) = 0.3Ωtr are also shown for both Ret (– - –).
Only the central circle r � 0.6R is measured. The definitions of the shear layer thickness w
and velocity jump �U are sketched for the curve —.

A series of PIV measurements for Γ = 7 along the onset curve has been performed,
and the shear layer thickness and velocity difference have been extracted from the
velocity fields. Figure 19 shows two azimuthal velocity profiles, averaged over [0, π]
(negative r corresponds to the other half [π, 2π]). The two profiles correspond to
two different top Reynolds numbers but, in each case, the bottom Reynolds number
has been set just below its corresponding critical value. Both profiles consist of two
sections of quasi-solid-body rotation separated by a rather sharp velocity front. The
inner region rotates in the direction of the slower disk, with an angular velocity of
about −0.5Ωb, and the outer region rotates with the faster disk, at ∼ 0.3Ωt . While
the former value probably strongly depends on the height z, it is interesting to note
that the latter value is close to the angular velocity found in the inviscid core of the
Batchelor (1951) flow, vθ (r) ≈ 0.313Ωtr (see Zandbergen & Dijkstra 1987).

From this figure the velocity jump �U is computed as the difference between the
surrounding extrema across the front, and the thickness w as the distance between
these extrema. Only the horizontal projection of the thickness is actually measured.
However, since the shear layer was shown to be almost vertical (see the numerical
vorticity fields in figure 13), at least for moderate Γ , the apparent thickness gives a
reasonable estimate for the actual one. This thickness is found to be of order the
gap between the disks, w ≈ (0.6 ± 0.1)h, and shows no significant variation with the
Reynolds number. The scaling w ∝ h, although not tested experimentally for other
aspect ratios, is in qualitative agreement with experimental and numerical fields (see
figures 11 and 12), from which the shear layer thickness appears to decrease as Γ is
increased.

The local Reynolds number computed from these measurements is shown in
figure 20(a) as a function of Ret . Although Ret is varied from 140 to 370, Rel remains
approximately constant, giving evidence that this Reynolds number is the relevent
local control parameter for the instability. The scatter is significant, and is mainly due
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Figure 20. (a) Critical local Reynolds number Rel,c based on the shear layer thickness as a
function of Ret for Γ = 7. For each measurement, the bottom Reynolds number Reb is fixed
to its transition value. (b) Corresponding normalized wavenumber mw/R0.

to the precision in the measurement of w, but the critical local Reynolds number can
be estimated as

Rel,c ≈ 110 ± 20. (6.2)

This value is in qualitative agreement with the threshold Re ≈ 85 ± 10 measured by
Rabaud & Couder (1983) from the circular shear layer experiment. Our slightly
higher value may be due to the overestimation of the apparent shear layer thickness,
or to some stabilizing effect due to the particular geometry of the annular shear layer.
It is worth pointing out that, for the range of Reynolds number Ret spanned here,
the relative curvature of the shear layer, w/R0 (where R0 is the shear layer radius),
increases from 0.16 to 0.52. However, this important variation does not significantly
affect the threshold Rel , suggesting that the curvature has only weak effect on the
stability of this shear layer.

The approximate collapse of the onset curves in the plane of parameters (Γ Ret ,

Γ Reb), observed in figure 8, follows from this constant Rel at the onset. Taking R0Ωt

as an estimate for the velocity jump �U , and using w ∼ h for the shear layer thickness,
then the condition Rel = �Uw/ν ≈ const simply yields R0hΩt/ν = Γ RetR0/R ≈ const,
confirming the experimental finding that the Reynolds numbers Γ Rei are the most
relevant global control parameters to describe the onset curves. However, the link
between the global and local control parameters, Γ Ret and Rel , remains non-trivial
because of the additional ratio R0/R, and may account for the systematic deviations
observed in figure 8.

One consequence of this shear layer instability mechanism is that the critical wave-
length should scale as the thickness w of the shear layer (Drazin & Reid 1979). As a
result, the number of vortices along the shear layer is expected to scale as 2πR0/w.
This is indeed the case, as shown in figure 20(b), where the normalized wavenumber
mw/R0 is plotted as a function of Ret . The observed constant value,

m w

R0

≈ 1.10 ± 0.15, (6.3)

confirms this picture, leading to a wavelength λ= 2πR0/m ≈ (5.7 ± 0.8)w. Here again
this finding compares well with the circular shear layer experiment of Rabaud &
Couder (1983), for which the shear layer radius is constrained by the geometry of the
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Figure 21. Experimental regime diagram of the onset modes in the plane (Γ,Ret ), where
Γ = R/h is the aspect ratio and Ret the top Reynolds number (the bottom Reynolds number,
Reb , is fixed at its transition value). The numbers indicate the onset modes, and the transition
lines separate regions of constant onset mode. Modes between m= 2 and 11 are observed, for
Γ between 2 and 21. In the upper region, denoted BLI (Ret > 31 × 103Γ −2), boundary layer
instabilities occur in addition to the shear layer instability. In the lower domain, denoted Axi
(Ret < 105Γ −1/2), the axisymmetric base flow remains stable.

apparatus. In the present rotating disks experiment, this radius R0 is not fixed, but is
determined by the competition of the centrifugal effects on each disk.

From the m ∝ R0 law observed here for Γ = 7, one may deduce that the onset mode
is a decreasing function of Ret , since the increasing centrifugal effect of the faster
disk tends to decrease the radius of the shear layer R0. This is indeed the case (see,
e.g., figure 10), at least for moderate aspect ratios Γ ; for higher aspect ratios the
interaction with the boundary layers significantly affects this behaviour, as shown in
the next section.

6.2. Onset modes

The observed modes are found to depend not only on the Reynolds numbers and
the aspect ratio, but also on the time history of the control parameters (Reb, Ret ), as
shown in § 5.4. As a consequence, the only quantity that may be summarized is the
critical mode that first becomes unstable just at the onset when slowly approaching
the onset curve from below.

Figure 21 shows the experimental regime diagram for the onset mode in the plane
of parameters (Γ,Ret ). For each value of the top Reynolds number, Ret , the bottom
Reynolds number, Reb, has been fixed at its corresponding critical value (see figure 7),
so that the set of three parameters (Γ, Ret , Reb) reduces to two. In this diagram, the
lines delimit regions where a unique onset mode is experimentally observed. As
noted in § 5.4, the sensitivity of the observed mode slightly beyond the onset curve is
important (see figure 17), so that the observed mode m may occasionally overestimate
the actual onset mode, shifting the transition lines between modes upwards.
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This diagram is restricted to a triangle in the plane (Γ,Ret ). In the domain denoted
Axi, below a line given by

Ret ≈ (105 ± 9)Γ −1/2, (6.4)

the flow is found to remain axisymmetric. In this domain the shear layer is probably
stabilized by the thick boundary layers that fill an important part of the vertical gap,
but no simple argument is found to explain the observed Γ −1/2 behaviour.

The domain above the upper line, denoted BLI for ‘boundary layer instability’,
corresponds to the destabilization of the inward boundary layer on the slower rotating
disk, giving rise to the propagating circles and positive spirals that have been described
in detail by Gauthier et al. (2002). Since the boundary layer stability is controlled by
a local Reynolds number, Rer = Ωr2/ν, an approximate condition for stability is that
Rer <Rec for all r <R, leading to a line ΩtR

2/ν = Rec, or equivalently

Ret = Ωth
2/ν = RecΓ

−2. (6.5)

This is indeed the case, and we determine experimentally Rec ≈ (31 ± 2) × 103. Note
that although measurements of the critical mode were sometimes possible slightly
beyond this upper limit, we choose to restrict ourselves to the situation where the
boundary layers remain stable.

For high Reynolds number, Ret > 200 (i.e. only for Γ < 12), the transition lines
between modes are nearly horizontal, i.e. the onset modes m are essentially controlled
by the top Reynolds number, Ret , and take values from 5 down to 2 as Ret is increased.
The corresponding flow pattern essentially consists of the sharp-cornered polygon,
as seen in figure 6(a–c). The onset mode m =4 reported by Lopez et al. (2002) for
(Γ, Ret ) = (2, 250) agrees with the m =4 domain in figure 21, which extends between
Ret =230 ± 10 and 320 ± 20. In this regime, the boundary layers over each disk are
well separated, δ = (ν/Ωt )

1/2 <h/12, so that the dynamics of the annular shear layer
can be seen as essentially two-dimensional. The onset mode then only depends on
the shear layer radius R0 and thickness δ ∼ h, in agreement with the law m ∝ R0

observed in the previous section for Γ = 7 (equation (6.3)). As a consequence, while
the Reynolds number based on the azimuthal velocity, Γ Ret = RhΩt/ν, is the most
relevant control parameter for the instability threshold (see figure 8), the Reynolds
number Ret = h2Ωt/ν is the one that controls the onset mode in the Ret > 200 domain.

For lower Reynolds numbers, Ret < 200, this behaviour does not hold any more
and the regime diagram becomes more complex. In this regime, the flow is fully three-
dimensional, with thick boundary layers, δ >h/12, that may strongly interact with the
annular shear layer. The corresponding flow pattern now evolves towards the spiral
arms of figure 6(d–f ). As Γ is increased, the transition lines between modes become
nearly vertical, and their slope becomes negative for Γ > 12. As a consequence, the
critical mode is an increasing function of Ret , in contrast to the low aspect ratio
case. This new behaviour is in agreement with the results of Gauthier et al. (2002) at
Γ =20.9, where modes 9, 10 and 11 were reported for increasing Reynolds numbers.

We finally note that extrapolating the boundaries of the two domains Axi and BLI
towards higher aspect ratio suggests that the shear layer instability described here
should only be observed for Γ < 40. For higher aspect ratio, the boundary layers
would become unstable as soon as they become separated, probably inhibiting or
strongly affecting the shear layer instability. Other instability mechanisms may also
appear for such high aspect ratios, such as the turbulent spots in the torsional Couette
flow described by Cros & Le Gal (2002) in the rotor–stator configuration.
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Figure 22. Normalized phase velocity ω/Ωt at the onset as a function of Ret for various
aspect ratios Γ . Experiment: �, Γ = 3; �, 5.2; +, 7; ⋆, 9.3; ×, 17; �, 20.9. Numerics: �, Γ = 7.
The dashed line is ω/Ωt = 0.095.

6.3. Phase velocities

Because of the asymmetry of the flow, the instability patterns are not steady, but
rather appear as rotating waves, characterized by a well-defined drift velocity ω.
Figure 22 shows the experimentally measured angular phase velocity at the onset, ω,
normalized by the top angular velocity, Ωt , as a function of Ret for various aspect
ratios. Values obtained from numerical simulations, for Γ = 7, are also plotted and
are found to compare well with the experimental results. Although the scatter is
significant, the different curves appear to collapse reasonably well. The phase velocity
is found to increase, starting from slightly negative values for low Ret , crossing zero for
Ret ∼ 50–100, and finally saturating towards a constant positive value for Ret > 250:

ω

Ωt

≈ 0.095 ± 0.01. (6.6)

For high Reynolds numbers, the shear layer can be seen as essentially two-
dimensional, with no significant influence of the boundary layers. The constant phase
velocity ω/Ωt observed in this case is similar to the classical linear Kelvin–Helmholtz
case, for which the phase velocity is given by the average of the two stream velocities
(Drazin & Reid 1979). Extending this result to the annular case yields ω = (Ω1 +Ω2)/2,
where Ω1 and Ω2 are respectively the inner and outer angular velocities on each side
of the shear layer. These angular velocities are non-trivial functions of the bottom
and top disk velocities, Ωb and Ωt . However, a rough estimate for ω may be obtained
by neglecting Ω1, and taking Ω2 ≈ 0.3Ωt as for the classical Batchelor flow (see
figure 19). These approximations yield ω/Ωt ≈ 0.3/2 ≈ 0.15, which is in reasonable
agreement with the observed limit, ω/Ωt ≈ 0.095 ± 0.01. The much lower values for
ω found in the lower Reynolds number regime, Ret < 250, probably result from the
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interaction with the thicker boundary layers, which tend to slow down the pattern 
rotation.

7. Conclusion

This paper describes a joint laboratory and numerical study of the instability
patterns in the flow between counter-rotating disks, spanning a range of aspect
ratio Γ = R/h between 2 and 21. This study is restricted to the situation where the
boundary layers remain stable, focusing on the shear layer instability that occurs only
in the counter-rotating regime. For sufficiently large counter-rotation, the shear layer
that separates two regions of opposite angular velocities is prone to an azimuthal
symmetry breaking. The associated pattern is a combination of a sharp-cornered
polygonal shear layer with m vorticity extrema, surrounded by a set of m inner and
2m outer spiral arms. At small aspect ratio and large velocity, only the m-sided
polygon is observed, where the mode m decreases as the top Reynolds number is
increased. On the other hand, for higher Γ , only the spiral arms remain, their number
now increasing as the top Reynolds number is increased. These observations are in
remarkable agreement with the three-dimensional numerical simulations performed
for the same values of the parameters (Γ , Ret , Reb).

Focusing on the low aspect ratio case, Γ < 10, where PIV measurements are possible,
we further characterized the instability in terms of local Reynolds number Rel based
on the shear layer thickness w. The constant value of this Reynolds number at the
onset of the instability, Rel,c ≈ 110 ± 20, confirms that the transition originates from
a shear layer instability. Consequently, the critical mode m scales as R0/w, where R0

is the radius of the annular shear, which results from the competition between the
centrifugal effects of each disk. In other words, the instability patterns can be simply
seen as a set of vortices of size ∼ w regularly filling the shear layer perimeter. As
a result, the onset mode is a decreasing function of the Reynolds number, since the
shear layer radius decreases as the faster disk becomes more dominant.

All these findings indicate that this instability of the flow between counter-rotating
disks can simply be described in terms of a classical Kelvin–Helmholtz instability,
where curvature has only a weak effect, and that the surrounding spiral arms result
from the interaction of this unstable shear layer with the Ekman boundary layers
over the faster disk. These observations for various aspect ratios reveal the continuity
between the patterns observed by Lopez et al. (2002) for Γ � 2 and the ‘negative
spirals’ of Gauthier et al. (2002) for Γ = 21.
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Gadoin, E., Le Quéré, P. & Daube, O. 2001 A general methodology to investigate flow instabilities

in complex geometries: application to natural convection in enclosures. Intl J. Numer. Meth.
Fluids 37, 175–208.

Gauthier, G., Gondret, P. & Rabaud, M. 1998 Motions of anisotropic particles: application to
visualization of three-dimensional flows. Phys. Fluids 10, 2147–2154.

Gauthier, G., Gondret, P. & Rabaud, M. 1999 Axisymmetric propagating vortices in the flow
between a stationary and a rotating disk enclosed by a cylinder J. Fluid Mech. 386, 105–126.

Gauthier, G., Gondret, P., Moisy, F. & Rabaud, M. 2002 Instabilities in the flow between co-
and counter-rotating disks. J. Fluid Mech. 473, 1–21.

Gelfgat, A. Y., Bar-Yoseph, P. Z. & Solan, A. 2001 Three-dimensional instability flow in a
rotating lid–cylinder enclosure. J. Fluid Mech. 438, 363–377.

Goda, K. 1979 A multistep technique with implicit difference schemes for calculating two or three
dimensional cavity flows. J. Comput. Phys. 30, 76–95.

Hide, R. & Titman, C. W. 1967 Detached shear layers in a rotating fluid. J. Fluid Mech. 29, 39–60.
Humphrey, J. A. C., Schuler, C. A. & Webster, D. R. 1995 Unsteady laminar-flow between a

pair of disks corotating in a fixed cylindrical enclosure. Phys. Fluids 7, 1225–1240.
Hyman, J. M. & Shashkov, M. 1997 Natural discretization for the divergence, gradient and curl

on logically rectangular grids. Comput. Math. Appl. 33, 81–104.
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