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Abstract

We suggest a new nonparametric estimate of the interaction function of
pairwise interaction point process on Rd such that its Papangelou condi-
tional intensity is translation invariant and satisfied finite-range interaction.
We prove uniform strong consistency of the nonparametric estimate of the
interaction function . Sufficient conditions of the rates of uniform strong
consistency for the resulting kernel-type estimator are valid by the nonuni-
form mixing condition for a stationary point process, which can be viewed
interchangeably as a lattice field in Zd .

Keywords: kernel-type estimator, mixing random fields, pairwise interaction spa-
tial point process, Papangelou conditional intensity, rates of converge,uniform
strong consistency

1 Introduction
Point processes are well studied objects in probability theory and statistics, which
is of interest in such diverse disciplines as forestry, seismology, spatial epidemi-
ology, materials science, astronomy, geography, ecology and other disciplines. In
this work we will develop some recent results of nonparametric statistical spatial
processes. Functional data analysis is a typical issue in modern statistics. Dur-
ing the last years, many papers have been devoted to theoretical results or applied
studies on models involving functional data. The main goal of this paper is to
present a nonparametric estimation of interaction function for stationary pairwise
interaction point processes (they have been introduced in statistical literature by
Ripley and Kelly [20], Daley and Vere-Jones [4] and Georgii [9]) defined in the
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space Rd for which its Papangelou conditional intensity (Papangelou [17]). In
general it is not possible to deal with densities of infinite point processes, instead,
the Papangelou conditional intensity becomes the appropriate starting point for
modelling. A formal definition and interpretation of the Papangelou conditional
intensity are given below. The estimate of the interaction function plays a very
important role in the statistical analysis of spatial point pattern data. We explore
the spatial dependence of random fields (mixing random fields) and we discuss the
uniform strong consistent estimation. Many modelizations of the mixing random
fields have been proposed through in literature, we refer to Bradley [2], Rosen-
blatt [21], I.A.Ibragimov [12]. Bosq [1], Delecroix [5], Heinrich and Liebscher
[11], and Pelidrad [19]. The mixing hypothesis was introduced to extend the
central limit theorem for more general classes dependent random variables (see
Ibragimov and Linnik [13]). It also helps to generalize almost sure convergence
obtained with independent data.

The paper is organized as follows. In Section 2, we set up the generic nota-
tion. In Section 3, we present the model that has been considered for stationary
pairwise interaction point process and we suggest a new nonparametric estimator
of interaction function. We present some conditions that will be helpful in the
following paper and we present the main results, We suggest a new nonparametric
estimate of the interaction function of pairwise interaction point process on Rd in
the Papangelou conditional intensity and we prove uniform strong consistency of
the resulting estimator. The Section 4 is devoted to the proofs. Our methods of
proofs are based on new Kahane-Khintchine inequalities in Orlicz spaces induced
by exponential Young functions for stationary uniformly strong mixing random
fields, obtained by (El Machkouri [7].

2 Generic notation and Basic tools
We introduce some necessary definitions and notations and recall some basic facts
from the theory of Gibbs point processes. Let Bd be the Borel σ -field on Rd of
general dimension d ≥ 2 and Bd

O = {Λ ∈ Bd : Λ bounded} . For a set Λ ∈
Bd , |Λ| is the positive volume of Λ. We define the space of locally finite point
configurations in Rd as Nl f = {x ⊆ Rd;n(x∩Λ) < ∞,∀Λ ∈Bd

0} equipped with
the smallest σ -field Nl f containing all set of the form {x∈Nl f : n(x∩Λ) = k} for
k ∈N0 = {0,1,2,3, . . .} and any Λ ∈Bd

0 . ∑
6= denotes summation over summands

with index tuples having pairwise distinct components. The origin in Rd will be
denoted by o.

The Papangelou conditional intensity of Gibbs point processes X in Rd (Møller
and Waagepetersen [14]) is a function λ :Rd×Nl f →R+ and characterized by the
Georgii-Nguyen-Zessin (GNZ) formula (see Papangelou [18] and Zessin [22] for
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historical comments and Georgii [8] or Nguyen and Zessin [16] for a general pre-
sentation). The GNZ formula states that for any nonnegative measurable function
h on Rd×Nl f

E ∑
ξ∈X

h(ξ ,X\ξ ) = E
∫
Rd

h(ξ ,X)λ (ξ ,X)dξ . (2.1)

Heuristically, λ (ξ ,x)dξ can be interpreted as the conditional probability of X
having a point in an infinitesimal small region containing ξ and of size dξ given
the rest of X is x. Using induction we obtain the second-order GNZ-formula

E
6=

∑
ξ ,η ,∈X

h(ξ ,η ,X\{ξ ,η}) =
∫
Rd

∫
Rd

Eh(ξ ,η ,X)λ (ξ ,η ,X)dξ dη (2.2)

where λ (ξ ,η ,x) = λ (ξ ,x)λ (η ,x∪{ξ}), for ξ ,η ∈ Rd , x ∈ Nl f with a nonnega-
tive measurable function h(ξ ,η ,x) on Rd×Rd×Nl f .

3 Main results

3.1 The model and its estimator
Throughout this paper, we shall focus on stationary pairwise interaction point pro-
cesses (Daley and Vere-Jones [4], Georgii [9]). We specify that the Papangelou
conditional intensity is translation invariant for a configuration x ∈ Nl f and a lo-
cation ξ ∈ Rd should be of the form

λ (ξ ,x) = β
? exp

(
− ∑

η∈x\ξ
V2(η−ξ )

)
(3.3)

where β ? is the true value of the intensity parameter. The function V2 represents
the pair potential defined on Rd . To do this, we will assume the following condi-
tion on the potential V2:

0 <V2(ξ )< ∞. (3.4)

Condition 3.4 says that the interaction is purely repulsive. In physics applications,
V2 is interpreted as the energy of the configuration x. V = exp(−V2) represents
the pairwise interaction function. The Papangelou conditional intensity is said to
have finite interaction range R with 0 < R < ∞, if

λ (ξ ,x) = λ (ξ ,x∩B(ξ ,R)), (3.5)
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for any ξ ∈ Rd , x ∈ Nl f , where B(ξ ,R) is the closed ball in Rd with center ξ and
radius R.

Our objective is to study problems of estimation of the interaction function V
in the model (3.3). For this, let Λn ∈Bd

O, for n ∈ N, be a sequence, denotes a
bounded observation window in such a way that |Λn| → ∞, as n→ ∞. In most
application examples Λn cubes growing up to Rd . Throughout in this paper, f is
a nonnegative measurable function defined for all w,w′ ∈ Rd , x ∈ Nl f , by

f (w,w′,x) = 11(x∩B(w,R) = /0,x∩B(w′,R) = /0)

and we also introduce the following function

C̄(o, t) = E[ f (o, t,X)] = P(X∩B(o,R) = /0,X∩B(t,R) = /0). (3.6)

Now, we suggest a new edge-corrected nonparametric estimator for the func-
tion β ?V (t) by

V̂n(t) =
Ĵn(t)

Ĉn(t)
, for t ∈ Rd (3.7)

where

Ĵn(t) =
6=

∑
ξ ,η∈X∩Λn

11(η−ξ ∈ B(o,R)) f (ξ ,η ,X\{ξ ,η})K
(

η−ξ−t
bn

)
bd

n|Λn∩ (Λn +(η−ξ ))|
(3.8)

is a kernel-type estimator estimating β ?2V (t)C̄(o, t), where |Λn∩ (Λn +(η−ξ ))|
is an edge correction factor and assume this has the positive volume. Recall that
Λn +ξ = {η +ξ : η ∈ Λn} denotes Λn translated by ξ . A kernel function K will
be any measurable function associated with a sequence (bn)n≥1 of bandwidths. To
estimate the function β ?C̄(o, t), we propose an empirical estimator Ĉn(t) defined
by

Ĉn(t) = ∑
ξ∈X∩Λn

f (ξ , t +ξ ,X\{ξ})
|Λn∩ (Λn +ξ )|

. (3.9)

In this case, the denominator equals 0, we choose (by convention) an usual way
to define our estimator : V̂n(t) = 0.

3.2 Uniform strong consistency
The proof of uniform strong consistency of the nonparametric estimator V̂n(t)
defined by (3.7), requires more delicate conditions. We have to impose certain
restriction on the kernel function K and the sequence of bandwidths (bn)n≥1. The
following assumptions are required.
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(A1). The kernel function K :Rd −→ [0,∞) is bounded with bounded support, and
satisfies: Let ξ = (ξ1, . . . ,ξd)

′, ξi ∈ R,∫
Rd

ξ
i1
1 . . .ξ id

d K(xi1, . . . ,ξd)dξ1 . . .dξd =

{
1 if i1 = i2 = . . . id = 0,
0 if 0 < i1 + i2 + . . .+ id < s.∫

Rd
||ξ ||i|K(ξ )|dξ < ∞ for i = 0 and i = s,

∫
Rd

K(ξ )dξ = 1.

(A2). The kernel function K satisfies a Lipschitz condition, i.e. there exists a
constant L > 0 such that∣∣K(ξ )−K(η)

∣∣≤ L||ξ −η || for any ξ ,η ∈ Rd.

(A3). The sequence of bandwidths (bn)n≥1 is a decreasing sequence of positive
real numbers satisfying:

lim
n→∞

bd
n = 0 and lim

n→∞
bd

n|Λn|= ∞.

These assumptions are more than enough to guarantee rates of convergence of
mean and a uniform strong consistency of the kernel-type estimator Ĵn(t) (defined
by (3.8)). Now, we establish thereafter interesting results for establishing the
uniform strong consistency of the estimator V̂n(t).

Theorem 1. Let X be a stationary pairwise interaction point process in Rd with
Papangelou conditional intensity (3.3) satisfying conditions (3.4) and (3.5). Let
the kernel function K satisfy (A1) and (A2). Let the bandwidths (bn)n≥1 satisfy
(A3). Furthermore, we assume that V (t)C̄(o, t) has bounded and continuous par-
tial derivatives of order s on for any fixed compact set K0 ⊂ Rd . Then,

sup
t∈K0

∣∣V̂n(t)−β
?V (t)

∣∣ a.s−→
n→∞

0.

The proof of uniform strong consistency of the nonparametric estimator V̂n(t)
(Theorem 1) is based on some asymptotic properties of the estimators Ĉn(t) and
Ĵn(t). For the estimator Ĵn(t), we are exploring the spatial dependence of point
processes, i.e. φ -mixing conditions.

3.3 Rates of uniform strong consistency of the kernel-type es-
timator Ĵn(t)

In this section we discuss sufficient conditions which ensure uniform strong con-
sistency (including a convergence rate) of the kernel-type estimator Ĵn(t) un-
der uniformly strong mixing (i.e. φ -mixing) random fields. We use Kahane-
Khintchine inequalities in Orlicz spaces induced by exponential Young functions
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for stationary φ -mixing real random fields which satisfy some finite exponential
moment condition.

Now let us the nonuniform φ -mixing condition. Given two sub-σ -algebras U
and V of F . The φ -mixing coefficients had been introduced by I.A.Ibragimov
[12] and can be defined by:

φ(U ,V ) = sup{‖P(V |U )−P(V )‖∞ ,V ∈ V }.

In the sequel, we consider the nonuniform φ1,∞(n)-mixing coefficients φ1,∞(n)
defined for each positive integer n by

φ1,∞(n) = sup{φ(σ(Xk),FΓ), k ∈ Zd, Γ⊂ Zd, d(Γ,{k})≥ n},

where FΓ = σ(Xi, i∈ Γ) is the σ -algebra genereted by Xi, i∈ Γ, |Γ| is the cardinal
of Γ and d(Γ1,Γ2) = min{|i− k| : i ∈ Γ1,k ∈ Γ2}. We say that the random field
(Xi)i∈Zd is φ -mixing if limn→∞ φ1,∞(n) = 0. As shown by (Dobrushin [6]; Georgii
[9]; Guyon [10]), the weak dependence conditions based on the above mixing
coefficients are satisfied by large classes of random fields including Gibbs fields.

Now, we assume that the domain Λn is divided into a fixed number of sub-
domains as follows Λn =∪i∈ΓnΛi, where Λi be the unit cube centered at i∈Zd and
assume that Γn ⊂ Zd , such that |Γn| → ∞, as n→ ∞. We will consider estimation
of β ?2V (t)C̄(o, t) from Ĵn(t), where the process is observed in ∪i∈ΓnΛi as

Ĵn(t) = ∑
i∈Γn

6=

∑
ξ ,η∈X∩Λi

11(η−ξ ∈ B(o,R)) f (ξ ,η ,X\{ξ ,η})K
(

η−ξ−t
bn

)
bd

n|Λn∩ (Λn +(η−ξ ))|
.

Put

Jn,i =
6=

∑
ξ ,η∈X∩Λi

11(η−ξ ∈ B(o,R)) f (ξ ,η ,X\{ξ ,η})K
(

η−ξ − t
bn

)

and we note that: J̄n,i = Jn,i−E(Jn,i).
Recall that a Young function ψ is a real convex nondecreasing function defined

on R+ which satisfies limt→∞ ψ(t) = +∞ and ψ(0) = 0. We define the Orlicz
space Lψ as the space of real random variables Z defined on the probability space
(Ω,F ,P) such that E[ψ(|Z|/c)] < +∞ for some c > 0. The Orlicz space Lψ

equipped with the so-called Luxemburg norm ‖.‖ψ defined for any real random
variable Z by

‖Z‖ψ = inf{c > 0; E[ψ(|Z|/c)]≤ 1}
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is a Banach space. Let θ > 0. We denote by ψθ the exponential Young function
defined for any x ∈ R+ by

ψθ (x)= exp((x+ξθ )
θ )−exp(ξ θ

θ
) where ξθ =((1−θ)/θ)1/θ 11{0 < θ < 1}.

(3.10)
On the lattice Zd we define the lexicographic order as follows: if i = (i1, . . . , id)
and j = ( j1, . . . , jd) are distinct elements of Zd , the notation i <lex j means that
either i1 < j1 or for some p in {2,3, . . . ,d}, ip < jp and iq = jq for 1≤ q < p. Let
the sets V 1

i ; i ∈ Zd be defined as follows:

V 1
i = { j ∈ Zd ; j <lex i}.

To establish the proof of Theorem 2, we need the following result.

Corollary 1. (El Machkouri [7]). Let (Xi)i∈Zd be a zero mean stationary real
random field which satisfies the assumption:

∃q ∈]0,2[ ∃c > 0 E[exp(c|X0|θ(q))]<+∞,

where θ(q) = 2q/(2− q). There exists a positive universal constant M1(q) > 0
depending only on q such that for any family (ai)i∈Zd of real numbers and any
finite subset Γ in Zd ,∥∥∥∥∑

i∈Γ

aiXi

∥∥∥∥
ψq

≤M1(q)
∥∥X0
∥∥

ψθ(q)

(
∑
i∈Γ

|ai|b̃i,q(X)

)1/2

where
b̃i,q(X) = |ai|+C(q) ∑

k∈V 1
0

|ak+i|
√

φ∞,1(|k|).

C(q) is the positive constant depending only on q.

Theorem 2. Let the kernel function K satisfy (A2). Then, for any fixed compact
set K0 ⊂ Rd , we have:

If there exists 0 < q < 2 such that J̄n,0 ∈ Lψθ(q) and

∑
k∈Zd

√
φ1,∞(|k|)< ∞. (3.11)

Then

sup
t∈K0

∣∣Ĵn(t)−E(Ĵn(t))
∣∣= Oa.s.

(
(logn)1/q

(bn
√

n)d

)
as n→ ∞.
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Corollary 2. If in addition the function V (t)C̄(o, t) has bounded and continuous
partial derivatives of order s on K0 ⊂ Rd and we suppose that (A1) and (A3) are
fulfilled. If there exists 0 < q < 2 such that J̄n,0 ∈ Lψθ(q) and

∑
k∈Zd

√
φ1,∞(|k|)< ∞.

Then

sup
t∈K0

∣∣Ĵn(t)−β
?2V (t)C̄(o, t)

∣∣= Oa.s.

(
(logn)1/q

(bn
√

n)d

)
+O(bs

n) as n→ ∞.

4 Proofs
Proof of Theorem 2. Let (an)n≥1 be sequence of positive numbers going to zero.
Following Carbon et al. [3], the compact set K0 can be covered by vn cubes Tk
having sides of length Ln = anbd+1

n and center at ck. Clearly there exists c > 0,
such that vn ≤ c/Ld

n . We use the following classical decomposition

sup
t∈K0

|Ĵn(t)−E Ĵn(t)| ≤ max
1≤k≤vn

sup
t∈Tk

∣∣Ĵn(t)− Ĵn(ck)
∣∣

+ max
1≤k≤vn

sup
t∈Tk

∣∣E Ĵn(t)−E Ĵn(ck)
∣∣

+ max
1≤k≤vn

∣∣Ĵn(ck)−E Ĵn(ck)
∣∣

= B1 +B2 +B3.

For any t ∈ Tk, by assumption (A2), we derive that there exists constant L > 0
such that n sufficiently large∣∣∣∣Ĵn(t)− Ĵn(ck)

∣∣∣∣≤ Lan
1

cnd

6=

∑
ξ ,η∈X∩Λn

11(η−ξ ∈ B(o,R)) f (ξ ,η ,X\{ξ ,η}).

Using the spatial ergodic theorem of Nguyen and Zessin [15], and by the second-
order Georgii-Nguyen-Zessin formula (2.2) with

h(ξ ,η ,X) = 11(η−ξ ∈ B(o,R)) f (ξ ,η ,X)

it easily follows
B1 = Oa.s.(an).

From L1-version of the ergodic theorem of Nguyen and Zessin [15], it follows

B2 = Oa.s.(an).
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Now, we focus on the term B3. In the sequel, the letter C denotes any generic
positive constant. Let ε > 0 and t ∈ K0 be fixed. We use the Tchebychev-Markov
inequality, we have

P
(
|Ĵn(t)−E Ĵn(t)|> εan

)
= P

(
| ∑

i∈Γn

J̄n,i|> εan(nbn)
d

)

≤ exp
[
−
(

ε an(nbn)
d

||∑i∈Γn J̄n,i||ψq

+ lq

)q]
Eexp

[(
|∑i∈Γn J̄n,i|
||∑i∈Γn J̄n,i||ψq

+ lq

)q]
. (4.12)

Therefore, we assume that there exists a real 0 < q < 2, such that J̄n,0 ∈Lψθ(q) .
As a direct application of Kahane-Khintchine inequality of Corollary 1 to the zero
mean sequence J̄n,i, for i ∈ Γn, we obtain that:

P

(
| ∑

i∈Γn

J̄n,i|> εan(bnn)d

)
≤ (1+ elq

q ) exp
[
−

 ε an(bnn)d

M1(q)‖J̄n,0‖2
ψθ(q)

(∑i∈Γn b̃i,q(J̄))1/2
+ lq

q]
where

b̃i,q(J̄) = 1+C(q) ∑
k∈V 1

0

√
φ1,∞(|k|),

M1(q) and C(q) are positive universal constants depending only on q. Thus, under
condition (3.11) and from the stationary of X and by definition of the norm || ·
||ψθ(q) , we infer that there exists a constant C > 0 such that

P(|Ĵn(t)−E Ĵn(t)|> εan)≤ (1+ elq
q ) exp

[
− εqaq

n(bn
√

n)dq

Cq

]
.

Inserting an = (logn)1/q/(bn
√

n)d , we see after a short calculation that

P(|Ĵn(t)−E Ĵn(t)|> εan)≤ (1+ elq
q ) exp

[
− εq logn

Cq

]
.

From the last equality, we find that

sup
t∈K0

P(|Ĵn(t)−E Ĵn(t)|> εan)≤ (1+ elq
q ) exp

[
− εq logn

Cq

]
. (4.13)

Since

P(|B3|> εan)≤ vn sup
t∈K0

P(|Ĵn(t)−E Ĵn(t)|> εan),

using (4.13), it follows with Borel-Cantelli’s lemma

P(lim sup
n→∞

|B3|> εan) = 0

We conclude the proof of Theorem 2.
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Proof of Corollary 2. Using the second-order Georgii-Nguyen-Zessin formula (2.2)
with

h(ξ ,η ,X) =
11(η−ξ ∈ B(o,R))

bd
n|Λn∩ (Λn +(η−ξ )|

f (ξ ,η ,X)K
(

η−ξ − t
bn

)
,

we have

E Ĵn(t) = E
∫

Λ2
n

11(η−ξ ∈ B(o,R))
bd

n|Λn∩ (Λn +(η−ξ )|
f (ξ ,η ,X)K

(
η−ξ − t

bn

)
λ (ξ ,η ,X)dξ dη .

We remember the second order Papangelou conditional intensity by:

λ (ξ ,η ,X) = λ (ξ ,X)λ (η ,X∪{ξ}) for any ξ ,η ∈ Rd.

Using the finite range property (3.5) for each function λ (ξ ,X) and λ (η ,X∪{ξ}),
we have

λ (ξ ,X) = λ (ξ ,X∩B(ξ ,R))
= β

? when X∩B(ξ ,R) = /0

and

λ (η ,X∪{ξ}) = λ (η ,(X∩B(η ,R))∪{ξ})
= β

?V (η−ξ ) when X∩B(η ,R) = /0 and ξ ∈ B(η ,R).

We obtain by stationarity of X and from the definition of f giving by (3.1) and
C̄(o, t) is defined through (3.6):

E Ĵn(t) = β
?2
∫
R2d

11(ξ ∈ Λn,η ∈ Λn,η−ξ ∈ B(o,R))
bd

n|Λn∩ (Λn +(η−ξ )|
C̄(o,η−ξ )K

(
η−ξ − t

bn

)
V (η−ξ )dξ dη

= β
?2
∫
R2d

11(ξ ∈ Λn,η +ξ ∈ Λn,η ∈ B(o,R))
bd

n|Λn∩ (Λn +η |
C̄(o,η)K

(
η− t

bn

)
V (η)dξ dη

= β
?2
∫
Rd

11(η ∈ B(o,R))
bd

n|Λn∩ (Λn +η)|
C̄(o,η)K

(
η− t

bn

)
V (η)

∫
Rd

11(ξ ∈ Λn∩Λn−η)dξ dη

= β
?2
∫
Rd

|Λn∩ (Λn−η)|
bd

n|Λn∩ (Λn +η)|
11(η ∈ B(o,R)C̄(o,η)K

(
η− t

bn

)
V (η)dη .

In this way we get:

E Ĵn(t)−β
?2V (t)C̄(o, t)

= β
?2
∫
Rd

K(z)
(

11(bnz+ t ∈ B(o,R))C̄(o,bnz+ t)V (bnz+ t)−V (t)C̄(o, t)
)

dz.
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By Taylor expansion of the integrand in neighborhood of t and making use of
(A1), (A3) and the function V (t)C̄(o, t) has bounded and continuous partial deriva-
tives of order s of in Bo(t,δ ) (for some δ > 0 ), we get the following rate of
convergence

E Ĵn(t)−β
?2V (t)C̄(o, t) = O(bs

n) as n→ ∞.

By the Theorem 2, we complete the proof.

Proof of Theorem 1. We consider the decomposition

V̂n(t)−β
?V (t) =

Ĵn(t)−β ?2V (t)C̄(o, t)

Ĉn(t)
+β

?V (t)
Ĉn(t)−β ?C̄(o, t)

Ĉn(t)
. (4.14)

Now, we prove by the ergodic theorem (Nguyen and Zessin [15]) that∣∣Ĉn(t)−β
?C̄(o, t)

∣∣ a.s.−→ 0, as n→ ∞. (4.15)

Let (τy)y∈Rd be the shift group, where τy is the translation by the vector −y ∈ Rd .
Let consider the following quantity for each Borel Λ

LΛ = ∑
ξ∈X∩Λ

f (ξ , t +ξ ,X\{ξ}).

It is seen that LΛ is covariante:

LτyΛ(τyx) = LΛ(x)

and additive: if Λ1∩Λ2 = /0,

LΛ1∩Λ2 = LΛ1 +LΛ2.

Hence, from the Nguyen and Zessin [15] ergodic theorem, and additionally as-
sume that P is ergodic, Ĉn(t) converges almost surely to

L =
1
|Λ0| ∑

ξ∈X∩Λ0

f (ξ , t +ξ ,X\{ξ})

where Λ0 is a bounded Borel subset of Rd . It follows immediately from the GNZ
formula (2.1)

L =
1
|Λ0|

E ∑
ξ∈X∩Λ0

f (ξ , t +ξ ,X\{ξ})

=
1
|Λ0|

E
∫
Rd

11Λ0(ξ ) f (ξ , t +ξ ,X)λ (ξ ,X)dξ .
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Since X is stationary with translation invariant interaction function and using the
finite range property (3.5), i.e.

λ (ξ ,X) = λ (ξ ,X∩B(ξ ,R))
= β

? when X∩B(ξ ,R) = /0

then, it follows that L = β ?C̄(o, t). We conclude that Ĉn(t) defined by (4) turns out
to be unbiased estimator of β ?C̄(o, t) and strongly consistent as n tends infinity.

Using the monotony of functions C̄ and Ĉn, we can approach the functions
C̄ and Ĉn by their values in a finite number of points, furthermore by the result
(4.15), we have as n→ ∞,

sup
t∈K0

∣∣Ĉn(t)−β
?C̄(o, t)

∣∣−→ 0 (4.16)

almost surely.
By Corollary 2, the result (4.16) and the expression (4.14), we complete the

proof.
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