
HAL Id: hal-01179866
https://hal.science/hal-01179866

Preprint submitted on 23 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resultants and subresultants of p-adic polynomials
Xavier Caruso

To cite this version:

Xavier Caruso. Resultants and subresultants of p-adic polynomials. 2015. �hal-01179866�

https://hal.science/hal-01179866
https://hal.archives-ouvertes.fr

Resultants and subresultants of p-adic polynomials

Xavier Caruso

July 23, 2015

Abstract

We address the problem of the stability of the computations of resultants and subresultants
of polynomials defined over complete discrete valuation rings (e.g. Zp or k[[t]] where k is a
field). We prove that Euclide-like algorithms are highly unstable on average and we explain,
in many cases, how one can stabilize them without sacrifying the complexity. On the way,
we completely determine the distribution of the valuation of the subresultants of two random
monic p-adic polynomials having the same degree.

1 Introduction

As wonderfully illustrated by the success of Kedlaya-type counting points algorithms [9], p-adic
technics are gaining nowadays more and more popularity in computer science, and more specifically
in symbolic computation. A crucial issue when dealing with p-adics is those of stability. Indeed,
just like real numbers, p-adic numbers are by nature infinite and thus need to be truncated in
order to fit in the memory of a computer. The level of truncation is called the precision. Usual
softwares implementing p-adics (e.g. magma [5], pari [3], sage [11]) generally tracks the precision
as follows: an individual precision is attached to any p-adic variable and this precision is updated
after each basic arithmetic operation. This way of tracking precision can be seen as the analogue
of the arithmetic intervals in the real setting. We refer to §2.1.2 for more details.

In the paper [6], the authors propose a new framework to control p-adic precision. The aim
of this paper is to illustrate the technics of loc. cit. on the concrete example of computation of
gcds and subresultants of p-adic polynomials. There is actually a real need to do this due to
the combination of two reasons: on the one hand, computating gcds is a very basic operation for
which it cannot be acceptable to have important instability whereas, on the other hand, easy ex-
perimentations show that all standard algorithms for this task (e.g. extended Euclide’s algorithm)
are very unstable. Figure 1 illustrates the instability of the classical extended Euclide’s algorithm
(cf Algorithm 1) when it is called on random inputs which are monic 2-adic polynomials of fixed
degree (see also Example 2.3). Looking at the last line, we see that extended Euclide’s algorithm
outputs the Bézout coefficients of two monic 2-adic polynomials of degree 100 with an average loss
of 160 significant digits by coefficient whereas a stable algorithm should only loose 3.2 digits on
average. This “theoretical” loss is computed as the double of the valuation of the resultant. Indeed
Cramer-like formulae imply that Bézout coefficients can be computed by performing a unique di-
vision by the resultant, inducing then only the aforementioned loss of precision (see §2.1.2, Eq. (8)

Degree
Loss of precision (in number of significant digits)

Euclide algorithm expected

5 6.3 3.1

10 14.3 3.2

25 38.9 3.2

50 79.9 3.2

100 160.0 3.2

Figure 1: Average loss of precision when computing the gcd of two random monic polynomial of
fixed degree over Z2.

1

Algorithm 1: Extended Euclide’s algorithm

Input : Two polynomials A,B ∈ Qp[X] (whose coefficients are known at given precision)
Output: A triple D,U, V such that D = AU +BV = gcd(A,B)

1 S1 ← A; U1 ← 1; V1 ← 0
2 S2 ← B; U2 ← 0; V2 ← 1
3 k ← 2
4 while Sk 6= 0 do
5 Q,Sk+1 ← quotient and remainder in the Euclidean division of Sk−1 by Sk

6 Uk+1 ← Uk−1 −QUk

7 Vk+1 ← Vk−1 −QVk
8 k ← k + 1

9 return Sk−1, Uk−1, Vk−1

A — a commutative ring (without any further assumption)
W — a complete discrete valuation ring
π — a uniformizer of W
K — the fraction field of W
k — the residue field of W

A<n[X] — the free A-module consisting of polynomials over A of degree < n
A≤n[X] — the free A-module consisting of polynomials over A of degree ≤ n
An[X] — the affine space consisting of monic polynomials over A of degree n.

ResdA,dB (A,B) — The resultant of A and B “computed in degree (dA, dB)”

ResdA,dB

j (A,B) — The j-th subresultant of A and B “computed in degree (dA, dB)”

Figure 2: Notations used in the paper

for a full justification). Examining the table a bit more, we observe that the “practical” loss of
precision due to Euclide’s algorithm seems to grow linearly with respect to the degree of the input
polynomials whereas the “theoretical” loss seems to be independant of it. In other words, the
instability of Euclide’s algorithm is becoming more and more critical when the degree of the input
increases.

Content of the paper The aim of this article is twofold. We first provide in §3 a theoretical
study of the instability phenomenon described above and give strong evidences that the loss of
precision grows linearly with respect to the degree of the input polynomials, as we observed empir-
ically. In doing so, we determine the distribution of the valuation of the subresultants of random
monic polynomials over Zp (cf Theorem 3.3). This is an independant result which has its own
interest.

Our second goal, which is carried out in §4, is to rub out these unexpected losses of precision.
Making slight changes to the standard subresultant pseudo-remainder sequence algorithm and
using in an essential way the results of [6], we manage to design a stable algorithm for computing
all subresultants of two monic polynomials over Zp (satisfying an additional assumption). This
basically allows to stably compute gcds assuming that the degree of the gcd is known in advance.

Notations Figure 2 summerizes the main notations used in this paper. The definitions of many
of them will be recalled in §2.

2 The setting

The aim of this section is to introduce the setting we shall work in throughout this paper (which
is a bit more general than those considered in the introduction).

2

2.1 Complete discrete valuation rings

Definition 2.1. A discrete valuation ring (DVR for short) is a domain W equipped with a map
val :W → Z ∪ {+∞} — the so-called valuation — satisfying the four axioms:

1. val(x) = +∞ iff x = 0

2. val(xy) = val(x) + val(y)

3. val(x+ y) ≥ min(val(x), val(y))

4. any element of valuation 0 is invertible.

Throughout this paper, we fix a discrete valuation ring W and assume that the valuation on
it is normalized so that it takes the value 1. We recall that W admits a unique maximal ideal m,
consisting of elements of positive valuation. This ideal is principal and generated by any element
of valuation 1. Such an element is called a uniformizer. Let us fix one of them and denote it by π.
The residue field of W is the quotient W/m =W/πW and we shall denote it by k.

The valuation defines a distance d on W by letting d(x, y) = e−val(x−y) for all x, y ∈ W .
We say that W is complete if it is complete with respect to d, in the sense that every Cauchy
sequence converges. Assuming that W is complete, any element x ∈W can be written uniquely as
a convergent series:

x = x0 + x1π + x2π
2 + · · ·+ xnπ

n + · · · (1)

where the xi’s lie in a fixed set S of representatives of classes modulo π. Therefore, as an additive
group,W is isomorphic to the set of sequences N→ k. On the contrary, the multiplicative structure
may vary.

Let K denote the fraction field of W . The valuation v extends uniquely to K by letting
val(xy) = val(x) − val(y). Moreover, it follows from axiom 4 that K is obtained from W by
inverting π. Thus, any element of K can be uniquely written as an infinite sum:

x =

∞∑

i=i0

xiπ
i (2)

where i0 is some relative integer and the xi’s are as above. The valuation of x can be easily read
off this writing: it is the smallest integer i such that xi 6≡ 0 (mod π).

2.1.1 Examples

A first class of examples of discrete valuation rings are rings of formal power series over a field.
They are equipped with the standard valuation defined as follows: val(

∑

i≥0 ait
i) is the smallest

integer i with ai 6= 0. The corresponding distance on k[[t]] is complete. Indeed, denoting by f [i]
the term in ti in a series f ∈ k[[t]], we observe that a sequence (fn)n≥0 is Cauchy if and only if the
sequences (fn[i])n≥0 are all ultimately constant. A Cauchy sequence (fn)n≥0 therefore converges
to
∑

i≥0 ait
i where ai is the limit of fn[i] when n goes to +∞. The DVR k[[t]] has a distinguished

uniformizer, namely t. Its maximal ideal is then the principal ideal (t) and its residue field is
canonically isomorphic to k. If one chooses π = t and constant polynomials as representatives
of classes modulo t, the expansion (1) is nothing but the standard writing of a formal series.
The fraction field of k[[t]] is the ring of Laurent series over k and, once again, the expansion (2)
corresponds to the usual writing of Laurent series.

The above example is quite important because it models all complete discrete valuation rings
of equal characteristic, i.e. whose fraction field and residue field have the same characteristic. On
the contrary, in the mixed characteristic case (i.e. when the fraction field has characteristic 0 and
the residue field has positive characteristic), the picture is not that simple. Nevertheless, one can
construct several examples and, among them, the most important is certainly the ring of p-adic
integers Zp (where p is a fixed prime number). It is defined as the projective limit of the finite
rings Z/pnZ for n varying in N. In concrete terms, an element of Zp is a sequence (xn)n≥0 with
xn ∈ Z/pnZ and xn+1 ≡ xn (mod pn). The addition (resp. multiplication) on Zp is the usual

3

coordinate-wise addition (resp. multiplication) on the sequences. The p-adic valuation of (xn)n≥0

as above is defined as the smallest integer i such that xi 6= 0. We can easily check that Zp equipped
with the p-adic valuation satisfies the four above axioms and hence is a DVR. A uniformizer of
Zp is p and its residue field is Z/pZ. A canonical set of representatives of classes modulo p is
{0, 1, . . . , p− 1}.

Given a p-adic integer x = (xn)n≥0, the i-th digit of xn in p-basis is well defined as soon as
i < n and the compatibility condition xn+1 ≡ xn (mod pn) implies that it does not depend on
n. As a consequence, a p-adic integer can alternatively be represented as a “number” written in
p-basis having an infinite number of digits, that is a formal sum of the shape:

a0 + a1p+ a2p
2 + · · ·+ anp

n + · · · with ai ∈ {0, 1, . . . , p− 1}. (3)

Additions and multiplications can be performed on the above writing according to the rules we
all studied at school (and therefore taking care of carries). Similarly to the equal characteristic
case, we prove that Zp is complete with respect to the distance associated to the p-adic valuation.
The writing (3) corresponds to the expansion (1) provided that we have chosen π = p and S =
{0, 1, . . . , p− 1}. The fraction field of Zp is denoted by Qp.

2.1.2 Symbolic computations over DVR

We now go back to a general complete discrete valuation ring W , whose fraction field is still
denoted by K. The memory of a computer being necessarily finite, it is not possible to represent
exhaustively all elements of W . Very often, mimicing what we do for real numbers, we choose
to truncate the expansion (1) at some finite level. Concretely, this means that we work with
approximations of elements of W of the form

x =

N−1∑

i=0

xiπ
i +O(πN) with N ∈ N (4)

where the notation O(πN) means that the xi’s with i ≥ N are not specified.

Remark 2.2. From a theoretical point of view, the expression (4) does not represent a single

element x of W but an open ball in W , namely the ball of radius e−N centered at
∑N−1

i=0 xiπ
i (or

actually any element congruent to it modulo πN). In other words, on a computer, we cannot work
with actual p-adic numbers and we replace them by balls which are more tractable (at least, they
can be encoded by a finite amount of information).

The integerN appearing in Eq. (4) is the so-called absolute precision of x. The relative precision
of x is defined as the differenceN−v where v denotes the valuation of x. Continuing the comparison
with real numbers, the relative precision corresponds to the number of significant digits since x
can be alternatively written:

x = pv
N−v−1∑

j=0

yjπ
j +O(πN) with yj = xj+v and y0 6= 0.

Of course, it may happen that all the xi’s (0 ≤ i < N) vanish, in which case the valuation of x is
undetermined. In this particular case, the relative precision of x is undefined.

There exist simple formulas to following precision after each single elementary computation.
For instance, basic arithmetic operations can be handled using:

(
a+O(πNa)

)
+
(
b+O(πNb)

)
= a+ b+O(πmin(Na,Nb)), (5)

(
a+O(πNa)

)
−
(
b+O(πNb)

)
= a− b+O(πmin(Na,Nb)), (6)

(
a+O(πNa)

)
×
(
b+O(πNb)

)
= ab+O(πmin(Na+val(b),Nb+val(a))). (7)

(
a+O(πNa)

)
÷
(
b+O(πNb)

)
=
a

b
+O(πmin(Na−val(b),Nb+val(a)−2val(b))).1 (8)

4

with the convention that val(a) = Na (resp. val(b) = Nb) if all known digits of a (resp. b) are zero.
Combining these formulas, one can track the precision while executing any given algorithm. This
is the analogue of the standard interval arithmetic over the reals. Many usual softwares (as sage,
magma) implement p-adic numbers and formal series this way. We shall see later that this often
results in overestimating the losses of precision.

Example 2.3. As an illustration, let us examine the behaviour of the precision on the sequence
(Ri) while executing Algorithm 1 with the input:

A = X5 +
(
27 +O(25)

)
X4 +

(
11 +O(25)

)
X3 +

(
5 +O(25)

)
X2 +

(
18 +O(25)

)
X +

(
25 +O(25)

)

B = X5 +
(
24 +O(25)

)
X4 +

(
25 +O(25)

)
X3 +

(
12 +O(25)

)
X2 +

(
3 +O(25)

)
X +

(
10 +O(25)

)
.

The remainder in the Euclidean division of A by B is S3 = A − B. According to Eq. (6), we do
not loose precision while performing this substraction and the result we get is:

S3 =
(
3 +O(25)

)
X4 +

(
18 +O(25)

)
X3 +

(
25 +O(25)

)
X2 +

(
15 +O(25)

)
X +

(
15 + O(25)

)
.

In order to compute S4, we have now to perform the Euclidean division of S2 = B by S3. Noting
that the leading coefficient of S2 has valuation 0 and using Eq (5)–(8), we deduce that this operation
does not loose precision again. We get:

S4 =
(
26 +O(25)

)
X3 +

(
17 +O(25)

)
X2 +

(
4 +O(25)

)
X +

(
16 +O(25)

)
.

We observe now that the leading coefficient of S4 has valuation 1. According to Eq. (8), divising
by this coefficient — and therefore a fortioti computing the euclidean division of S3 by S4 — will
result in loosing at least one digit in relative precision. The result we find is:

S5 =
(
3
4 +O(22)

)

︸ ︷︷ ︸

rel. prec.=4

X2 +
(
6 +O(23)

)

︸ ︷︷ ︸

rel. prec.=2

X +
(
3 +O(23)

)

︸ ︷︷ ︸

rel. prec.=3

.

Continuing this process, we obtain:

S6 =
(
20 +O(25)

)
X +

(
12 +O(25)

)
and S7 = 7

4 +O(2).

The relative precision on the final result S7 is then 3, which is less than the initial precision which
was 5.

2.2 Subresultants

A first issue when dealing with numerical computations of gcds of polynomials over W is that the
gcd function is not continuous: it takes the value 1 on an open dense subset without being constant.
This of course annihilates any hope of computing gcds of polynomials when only approximations of
them are known. Fortunately, there exists a standard way to recover continuity in this context: it
consists in replacing gcds by subresultants which are playing an analoguous role. For this reason,
in what follows, we will exclusively consider the problem of computing subresultants.

Definitions and notations

We recall briefly basic definitions and results about resultants and subresultants. For a more
complete exposition, we refer to [2, §4.2], [8, §3.3] and [12, §4.1]. Let A be an arbitrary ring and
let A and B be two polynomials with coefficients in A. We pick in addition two integers dA and dB
greater than or equal to the degree of A and B respectively. We consider the Sylvester application:

ψ : A<dB
[X]× A<dA

[X] → A<dA+dB
[X]

(U, V) 7→ AU +BV

1We observe that these formulas can be rephrased as follows: the absolute (resp. relative) precision on the result
of a sum or a substraction (resp. a product or a division) is the minimum of the absolute (resp. relative) precisions
on .

5

where A<d[X] refers to the finite free A-module of rank d consisting of polynomials over A of degree
strictly less than d. The Sylvester matrix is the matrix of ψ in the canonical ordered basis, which
are

((XdB−1, 0), . . . , (X, 0), (1, 0), (0, XdA−1), . . . , (0, 1)) for the source

and (XdA+dB−1, . . . , X, 1) for the target.

The resultant of A and B (computed in degree dA, dB) is the determinant of the ψ; we denote it
by ResdA,dB(A,B). We observe that it vanishes if dA > degA or dB > degB. In what follows, we
will freely drop the exponent dA, dB if dA and dB are the degrees of A and B respectively. Using
Cramer formulae, we can build polynomials UdA,dB (A,B) ∈ A<dB

[X] and V dA,dB(A,B) ∈ A<dA
[X]

satisfying the two following conditions:

i) their coefficients are, up to a sing, maximal minors of the Sylvester matrix, and

ii) A · UdA,dB (A,B) +B · V dA,dB(A,B) = ResdA,dB (A,B).

These polynomials are called the cofactors of A and B (computed in degree dA, dB).

The subresultants are defined in the similar fashion. Given an integer j in the range [0, d) where
d = min(dA, dB), we consider the “truncated” Sylvester application:

ψj : A<dB−j [X]× A<dA−j [X] → A<dA+dB−j[X]/A<j[X]

(U, V) 7→ AU +BV.

Its determinant (in the canonical basis) is the j-th principal subresultant of A and B (computed

in degree dA, dB). Just as before, we can construct polynomials UdA,dB

j (A,B) ∈ A<dB−j [X] and

V dA,dB

j (A,B) ∈ A<dA−j [X] such that:

i) their coefficients are, up to a sing, maximal minors of the Sylvester matrix2, and

ii) A · UdA,dB

j (A,B) +B · V dA,dB

j (A,B) ≡ detψj (mod A<j [X]).

We set RdA,dB

j (A,B) = A ·UdA,dB

j (A,B)+B ·V dA,dB

j (A,B): it is the j-th subresultant of A and B

(computed in degree dA, dB). The above congruence implies that RdA,dB

j (A,B) has degree at most
j and that its coefficient of degree j is the j-th principal subresultant of A and B. As before, we
freely drop the exponent dA, dB when dA and dB are equal to the degrees of A and B respectively.
When j = 0, the application ψj is nothing but ψ. Therefore, ResdA,dB

0 (A,B) = ResdA,dB (A,B)

and, similarly, the cofactors agree: we have UdA,dB

0 (A,B) = UdA,dB(A,B) and V dA,dB

0 (A,B) =
V dA,dB (A,B).

We recall the following very classical result.

Theorem 2.4. We assume that A is a field. Let A and B be two polynomials with coefficients in
A. Let j be the smallest integer such that Resj(A,B) does not vanish. Then Resj(A,B) is a gcd

of A and B.

Since they are defined as determinants, subresultants behave well with respect to base change: if
f : A→ A′ is a morphism of rings andA andB are polynomials overA then ResdA,dB

j (f(A), f(B)) =

f
(
ResdA,dB

j (A,B)
)
where f(A) and f(B) denotes the polynomials deduced from A and B respec-

tively by applying f coefficient-wise. This property is sometimes referred to as the functoriality
of subresultants. We emphasize that, when f is not injective, the relation Resj(f(A), f(B)) =
f
(
Resj(A,B)

)
does not hold in general since applying f may decrease the degree. Nevertheless, if

dA and dB remained fixed, this issue cannot happen.

2Indeed, observe that the matrix of ψj is a submatrix of the Sylvester matrix.

6

The subresultant pseudo-remainder sequence

When A is a domain, there exists a standard nice Euclide-like reinterpreation of subresultants,
which provides in particular an efficient algorithm for computing them. Since it will play an
important role in this paper, we take a few lines to recall it.

This reinterpretation is based on the so-called subresultant pseudo-remainder sequence which
is defined as follows. We pick A and B as above. Denoting by (P %Q) the remainder in the
Euclidean division of P by Q, we define two recursive sequences (Si) and (ci) as follows:

S−1 = A, S0 = B, c−1 = 1

Si+1 = (−si)εi+1s−1
i−1 c

−εi
i · (Si−1 %Si) for i ≥ 0

ci+1 = s
εi+1

i+1 · c
1−εi+1

i for i ≥ −1.
(9)

Here ni = deg Si, εi = ni+1 − ni and si is the leading coefficient of Si if i ≥ 0 and s−1 = 1 by
convention. These sequences are finite and the above recurrence applies until Si has reached the
value 0.

Proposition 2.5. With the above notations, we have:

Resj(A,B) = Si if j = ni−1 − 1

= 0 if ni < j < ni−1 − 1

=
(

si
si−1

)εi−1 · Si if j = ni

for all i such that Si is defined.

Remark 2.6. The Proposition 2.5 provides a formula for all subresultants. We note moreover
that, in the common case where ni−1 = ni − 1, the two formulas giving Resni

(A,B) agree.
Mimicing ideas behind extended Euclide’s algorithm, one can define the “extended subresultant

pseudo-remainder sequence” as well and obtains recursive formulae for cofactors at the same time.

Important simplifications occur in the “normal” case, which is the case where all principal
subresultants do not vanish. Under this additional assumption, one can prove that the degrees of
the Si’s decrease by one at each step; in other words, degSi = dB − i for all i. The sequence (Si)
then stops at i = dB . Moreover, the εi’s and the ci’s are now all “trivial”: we have εi = 1 and
ci = si for all i. The recurrence formula then becomes:

Si+1 = s2i · s−2
i−1 · (Si−1 %Si) for i ≥ 1.

and Proposition 2.5 now simply states that Rj = SdB−j . In other words, still assuming that all
principal subresultants do not vanish, the sequence of subresultants obeys to the recurrence:

Rd+1 = A, Rd = B, Rj−1 = r2j · r−2
j+1 · (Rj+1 %Rj) (10)

where rj is the leading coefficient of Rj for j ≤ d and rd+1 = 1 by convention. Moreover, a similar
recurrence exists for cofactors as well:

Ud+1 = 1, Ud = 0, Uj−1 = r2j · r−2
j+1 · (Uj+1 −QjUj) (11)

Vd+1 = 0, Ud = 1, Vj−1 = r2j · r−2
j+1 · (Vj+1 −QjVj) (12)

where Qj is quotient in the Euclidean division of Rj+1 by Rj .
Proposition 2.5 of course yields an algorithm for computing subresultants. In the normal

case and assuming further for simplicity that the input polynomials are monic of same degree,
it is Algorithm 2, which uses the primitive prem for computing pseudo-remainders. We recall
that the pseudo-remainder of the division of A by B is the polynomial prem(A,B) defined by
prem(A,B) = lc(B)degB−degA+1(A%B) where lc(B) denotes the leading coefficient of B.

Unfortunately, while working over a complete discrete valuation field K, the stability of Algo-
rithm 2 is as bad as that of standard Euclide algorithm. The use of Algorithm 2 is interesting
because it avoids denominators (i.e. we always work over W instead K) but it does not improve
the stability.

7

Algorithm 2: Subresultant pseudo remainder sequence algorithm

Input : Two polynomials A,B ∈ Kd[X] (given at finie precision)
Output: The complete sequence of subresultants of A and B.

1 Rd ← B; rd ← 1
2 Rd−1 ← B −A
3 for j = (d− 1), (d− 2), . . . , 1 do
4 rj ← coefficient in Xj of Rj

5 if rj = 0 then raise NotImplementedError;
6 Rj−1 ← prem(Rj+1, Rj)/r

2
j+1

7 return Rd−1, . . . , R0

Example 2.7. Applying Algorithm 2 with the input (A,B) of Example 2.3, we obtain:

R4 =
(
29 +O(25)

)
X4 +

(
14 +O(25)

)
X3 +

(
5 +O(25)

)
X2 +

(
17 +O(25)

)
X +

(
17 +O(25)

)

R3 =
(
4 +O(25)

)
X3 +

(
13 +O(25)

)
X2 +

(
4 +O(25)

)
X +

(
16 +O(25)

)

R2 =
(
5 +O(25)

)
X2 +

(
20 +O(25)

)
X +O(25)

R1 =
(
1 +O(2)

)
X +

(
1 +O(2)

)

R0 = 1 +O(2)

We observe in particular that the absolute precision on R0 is 1, although it should be at least 5
since R0 is given by an integral polynomial expression in terms of the coefficients of A and B.
We note moreover that the relative precision on R0 (which is 1 as well) is worse that the relative
precision we got on S7 (which was 3) while executing Algorithm 1 (cf Example 2.3).

3 Unstability of Euclide-like algorithms

In this section, we provide strong evidences for explaining the average loss of precision observed
while executing Algorithm 2. Concretely, in §3.1 we establish3 a lower bound on the losses of
precision which depends on extra parameters, that are the valuations of the principal subresultants.
The next subsections (§§3.2 and 3.3) aim at studying the behaviour of these valuations on random
inputs; they thus have a strong probabilistic flavour.

Remark 3.1. The locution Euclide-like algorithms (which appears in the title of the Section)
refers to the family of algorithms computed gcds or subresultants by means of successive Euclidean
divisions. We believe that the stability of all algorithms in this family is comparable since we are
precisely loosing precision while performing Euclidean divisions. Among all algorithms in this
family, we chose to concentrale ourselves on Algorithm 2 because it is simpler due to the fact that
it only manipulates polynomials with coefficients in W . Nevertheless, our method extends to many
other Euclide-like algorithms including Algorithm 1; this extension is left as an exercice to the
reader.

3.1 A lower bound on losses of precision

We consider two fixed polynomials A and B with coefficients in W whose coefficients are known
with precision O(πN) for some positive integer N . For simplicity, we assume further that A and
B are both monic and share the same degree d. For any integer j between 0 and d− 1, we denote
by Rj the j-th subresultant of A and B.

In this subsection, we estimate the loss of precision if we compute the Rj ’s using the recurrence
(10). In what follows, we are going to use a flat precision model : this means that a polynomial

3in a model of precision which is slightly weaker that the usual one; we refer to §3.1 for a complete discussion
about this.

8

P (X) is internally represented as:

P (X) =

n∑

i=1

aiX
i +O(πN) with ai ∈ K and N ∈ Z.

In other words, we assume that the software we are using does not carry a precision data on each
coefficient but only a unique precision data for the whole polynomial. Concretely this means that,
after having computing a polynomial, the software truncates the precision on each coefficient to the
smallest one. One can argue that this assumption is too strong (compared to usual implementations
of p-adic numbers). Nevertheless, it defines a simplified framework where computations can be
performed and experiments show that it rather well reflects the behaviour of the loss of precision
in Euclide-like algorithms.

Let Vj be the valuation of the principal j-th subresultant of A,B and Wj be the minimum of
the valuations of the coefficients of Rj . We of course have Vj ≥Wj and we set δj = Vj −Wj .

Proposition 3.2. Let A and B as above. Either Algorithm 2 fails or it outputs the subresultants
Rj’s at precision O(πNj) with:

Nj ≤ N + Vj+1 − 2 · (δj+1 + δj+2 + · · ·+ δd−1).

Proof. Using that Rj+1 and Rj have the expected degrees, the remainder (Rj+1 %Rj) is computed
as follows:

we set: S = Rj+1 − rj+1 · r−1
j ·Rj

and we have: Rj+1 %Rj = S − s · r−1
j ·Rj

where s is the coefficient of degree j of S. Let us first estimate the precision of S. Using (7)–(8),
we find that the computed relation precision on rj+1 · r−1

j ·Rj is min(Nj+1 − Vj+1, Nj − Vj). The
absolute precision of this value is then M = min(Nj+1 − δj , Nj − δj + Vj+1 − Vj). This quantity is
also the precision of S since the other summand Rj+1 is known with higher precision. Repeating
the argument, we find that the precision of (Rj+1 %Rj) is equal to min(M−δj , Nj−δj+val(s)−Vj)
and therefore is lower bounded by M − δj ≤ Nj − 2δj + Vj+1 − Vj . From this, we derive Nj−1 ≤
Nj − 2δj − Vj+1 + Vj and the proposition finally follows by summing up these inequalities.

The difference N −N0 = −V1 + 2
∑d

k=1 δj is a lower bound on the number of digits lost after
having computed the resultant using the subresultant pseudo-remainder sequence algorithm. In
the next subsection (cf Corollary 3.6), we shall see that V1 and all δj ’s are approximatively equal
to 1

p−1 on average. The loss of precision then grows linearly with respect to d. This confirms the
precision benchmarks shown in Figure 1. We emphasize one more time that this loss of precision
is not intrinsic but an artefact of the algorithm we have used; indeed, one should not loose any
precision when computing resultants because they are given by polynomial expressions.

3.2 Behaviour on random inputs

Proposition 3.2 gives an estimation of the loss of precision in Euclide-like algorithms in terms of
the quantities Vj and δj . It is nevertheless a priori not clear how large these numbers are. The
aim of this paragraph is to compute their order of magnitude when A and B are picked randomly
among the set of monic polynomials of degree d with coefficients in W . In what follows, we assume
that the residue field k =W/πW is finite and we use the letter q to denote its cardinality.

We endowW with its Haar measure. The set Ω of couples of monic polynomial of degree d with
coefficients in W is canonically in bijection with W 2d and hence inherits the product measure. We
consider Vj , Wj and δj as random variables defined on Ω.

Theorem 3.3. We fix j ∈ {0, . . . , d − 1}. Let X0, . . . , Xd−1 be d pairwise independant discrete
random variables with geometric law of parameter (1 − q−1), i.e.

P[Xi = k] = (1− q−1) · q−k (with 0 ≤ i < d and k ∈ N).

Then Vj is distributed as the random variable

9

Yj =
d∑

i=0

min(Xj−i, Xj−i+1, . . . , Xj+i)

with Xi = +∞ if i < 0 and Xi = 0 if i ≥ d.

Remark 3.4. The above Theorem does not say anything about the correlations between the
Xj ’s. In particular, we emphasize that it is false that the tuple (Vd−1, . . . , V0) is distributed
as (Yd−1, . . . , Y0). For instance, one can prove that (Vd−1, Vd−2) is distributed as (X, X ′ +
min(X ′, [X/2])) where X and X ′ are two independant discrete random variables with geometric
law of parameter (1− q−1) and the notation [·] stands for the integer part function. In particular,
we observe that (Vd−2, Vd−1) 6= (2, 1) almost surely although the events {Vd−1 = 2} and {Vd−2 = 1}
both occur with positive probability.

Nonetheless, a consequence of Proposition 3.10 below is that the variables V̄j = 1{Vj=0} are
mutually independant.

Theorem 3.5. For all j ∈ {0, . . . , d− 1} and all m ∈ N, we have:

P[δj ≥ m] ≥ (q − 1)(qj − 1)

qj+1 − 1
q−m.

The proof of these two theorems will be given in §3.3. We now derive some consequences. Let
σ denote the following permutation:

(

1 2 · · · d
2

d
2 + 1 d

2 + 2 · · · d

1 3 · · · d− 1 d d− 2 · · · 2

)

if 2 | d

(

1 2 · · · d+1
2

d+3
2

d+5
2 · · · d

1 3 · · · d d− 1 d− 3 · · · 2

)

if 2 ∤ d.

In other words, σ takes first the odd values in [1, d] in increasing order and then the even values in
the same range in decreasing order.

Corollary 3.6. For all j ∈ {0, . . . , d− 1}, we have:

(1) E[Vj] =

d−j
∑

i=1

1

qσ(i) − 1
; in particular 1

q−1 ≤ E[Vj] <
q

(q−1)2

(2) qj−1
qj+1−1 ≤ E[δj] ≤ E[Vj]

(3) σ[Vj]
2 =

d−j
∑

i=1

(2i− 1) · qσ(i)
(qσ(i) − 1)2

; in particular
√
q

q−1 ≤ σ[Vj] <
q
√
q+1

(q−1)2

(4) P[Vj ≥ m] ≤ q−m+O(
√
m)

(5) E[max(V0, . . . , Vd−1)] ≤ logq d+O(
√

logq d)

Proof. By Theorem 3.3, we have E[Vj] =
∑d

i=0 E[Zi] with Zi = min(Xj−i, . . . , Xj+i) (j is fixed
during all the proof). Our conventions imply that Zi vanishes if i ≥ d − j. On the contrary, if
i < d−j, let us define τ(1), . . . , τ(d−j) as the numbers σ(1), . . . , σ(d−j) sorted in increasing order.
The random variable Zi is then the minimum of τ(i) independant random variables with geometric
distribution of parameter (1− q−1) and thus its distribution is geometric of parameter (1− q−τ(i)).
Its expected value is then 1

qτ(i)−1 and the first formula follows. The inequality 1
q−1 ≤ E[Vj] is clear

because 1
q−1 is the first summand in the expansion of E[Vj]. The upper bound is derived as follows:

E[Vj] <

∞∑

i=0

1

qi − 1
≤

∞∑

i=0

1

qi − qi−1
=

q

(q − 1)2
.

10

The first inequality of claim (2) is obtained from the relation

E[δj] =

∞∑

m=1

m · P[δj = m] =

∞∑

m=1

P[δj ≥ m]

using the estimation of Theorem 3.5. The second inequality is clear because δj ≤ Vj .
The variance of Vj is related to the covariance of Zi’s thanks to the formula

Var(Vj) =
∑

1≤i,i′≤d−j

Cov(Zi, Zi′).

Moreover, given X and X ′ two independant variables having geometric distribution of parameter
(1− a−1) and (1 − b−1) respectively, a direct computation gives:

Cov(X,min(X,X ′)) =
ab

(ab− 1)2
.

Applying this to our setting, we get:

Cov(Zi, Zi′) =
qe(i,i

′)

(qe(i,i′) − 1)2

where e(i, i′) = min(τ(i), τ(i′)) = τ(min(i, i′)). Summing up these contributions, we get the
equality in (3). The inequalities are derived from this similarly to what we have done in (1).

We now prove (4). Let (Zi)i≥0 be a countable family of independant random variable having all
geometric distribution of parameter (1 − q−1). We set Z =

∑∞
i=1 min(Z1, . . . , Zi). Cleary Vj ≤ Z

and it is then enough to prove:
P[Z ≥ m] ≤ q−m+O(

√
m).

We introduce the event Em formulated as follows: there exists a partition (m1, . . . ,mℓ) of m such
that Xi ≥ mi for all i ≤ ℓ. Up to a measure-zero subset, Em contains the event {Z ≥ m}. We
obtain this way:

P[Z ≥ m] ≤ P[Em] ≤
∑ ℓ∏

i=1

P[X1 ≥ mi]

where the latter sum runs over all partitions (m1, . . . ,mℓ) of m. Replacing P[X1 ≥ mi] by q
−mi ,

we get P[Em] ≤ p(m) · q−m where p(m) denotes the number of partitions of m. By a famous
formula [1], we know that log p(m) is equivalent to π

√

2m/3. In particular it is in qO(
√
m) and (4)

is proved.
We now derive (5) by a standard argument. It follows from (4) that

P[max(V0, . . . , Vd−1)] ≤ d · q−m+c
√
m

for some constant c. Therefore:

E[max(V0, . . . , Vd−1)] ≤
∞∑

m=1

min(1, d · q−m+c
√
m).

Let m0 denote the smallest index such that d · q−m0+c
√
m0 , i.e. m0 − c

√
m0 ≥ logq d. Solving

the latest equation, we get m0 = logq +O(
√

logq d). Moreover
∑∞

m=m0
d q−m+c

√
m is bounded

independantly of d. The result follows.

3.3 Proof of Theorems 3.3 and 3.5

During the proof, A and B will always refer to monic polynomials of degree d and Rj (resp. Uj

and Vj) to their j-th subresultant (resp. their j-th cofactors). If P is a polynomial and n is a
positive integer, we use the notation P [n] to refer to the coefficient of Xn in P . We set rj = Rj [j].

Preliminaries on subresultants. We collect here various useful relations between subresultants
and cofactors. During all these preliminaries, we work over an arbitrary base ring A.

11

Proposition 3.7. The following relations hold:

• Uj−1Vj − UjVj−1 = (−1)jr2j ;
• Uj [d−j−1] = −Vj [d−j−1] = (−1)jrj+1;

• Resj,j−1
k (Rj , Rj−1) = r

2(j−k−1)
j Rk for k < j;

• Resd−j,d−j−1
k (Uj−1, Uj) = r

2(d−j−k−1)
j Ud−1−k for k < d− j.

Moreover rj depends only on the 2(d− j)− 1 coefficients of highest degree of A and B.

Proof. By functoriality of subresultants, we may assume that A = Z[a0, . . . , ad−1, b0, . . . , bd−1] and
that A and B are the two generic monic polynomials A = Xd+

∑

i=0 aiX
i and B = Xd+

∑

i=0 biX
i.

Under this additional assumption, all principal subresultant are nonzero. Therefore, the sequences
(Rj)j , (Uj)j and (Vj)j are given by the recurrences (10)–(12). The two first announced relations

follow easily. Let now focus on the third one. We set R̃j = Rj and R̃k = r
2(j−k−1)
j Rk for k < j.

An easy decreasing induction on k shows that this sequence obeys to the recurrence:

R̃k−1 = r̃2k · r̃−2
k+1 · (R̃k+1 % R̃k)

where r̃j = 1 and r̃k is the coefficient of R̃k of degree k for all k < j. Comparing with (10),

this implies that R̃k is the k-th subresultant of the pair (Rj , Rj−1) and we are done. The fourth
equality and the last statement are proved in a similar fashion.

For any fixed index j ∈ {1, . . . , d− 1}, we consider the function ψj that takes a couple (A,B) ∈
Ad[X]2 to the quadruple (Uj , Uj−1, Rj , Rj−1). It follows from Proposition 3.7 that ψj takes its
values in the subset Ej of

(
A≤d−j−1[X]

)
×
(
A≤d−j[X]

)
×
(
A≤j [X]

)
×
(
A≤j−1[X]

)

consisting of the quadruples (Uj ,Uj−1,Rj ,Rj−1) such that:

Uj−1[d−j] = (−1)j−1 Rj [j]

and Resd−j,d−j−1(Uj−1,Uj) = −Rj[j]
2(d−j−1).

Let E×j be the subset of Ej defined by requiring that Rj [j] is invertible in A. In the same way, we

define Ω×
j as the subset of Ad[X]2 consisting of couples (A,B) whose j-th principal subresultants

(in degree (d, d)) is invertible in A.

Proposition 3.8. The function ψj induces a bijection between Ω×
j and E×j .

Proof. We are going to define the inverse of ψj . We fix a quadruple (Uj ,Uj−1,Rj ,Rj−1) in E×j and
set a = Rj [j]. Let Wj and Wj−1 denote the j-th cofactors of (Uj−1,Uj) in degree (d−j, d−j−1).
Define Vj = αWj and Vj−1 = −αWj−1 where α = a4j−4d+6. The relation:

Uj−1Vj − UjVj−1 = a2. (13)

then holds. We now define A and B using the formulae:

{

A = (−1)j · a−2 · (VjRj−1 − Vj−1Rj)

B = (−1)j−1 · a−2 · (UjRj−1 − Uj−1Rj)
(14)

and let ϕj be the function mapping (Uj ,Uj−1,Rj ,Rj−1) to (A,B). The composite ϕj ◦ψj is easily
checked to be the identity: indeed, if ψj(A,B) = (Uj ,Uj−1,Rj ,Rj−1), the relation (13) implies
that Vj−1 and Vj are the missing cofactors and, consequently, A and B have to be given by the
system (14).

To conclude the proof, it remains to prove that the composite in the other direction ψj ◦ ϕj is
the identity as well. Since both ϕj and ψj are componant-wise given by polynomials, we can use
functoriality and assume that A is the field Q(c0, c1, . . . , cn) (with n = 2d) and that each variable

12

ci corresponds to one coefficient of Uj , Uj−1, Rj and Rj−1 with the convention that c0 (resp.
(−1)j−1c0) is used for the leading coefficients of Rj (resp. Uj−1). Set:

(A,B) = ϕj(Uj ,Uj−1,Rj ,Rj−1)

and (Uj , Uj−1, Rj , Rj−1) = ψj(A,B)

Since A is a field and Rj [j] does not vanish, the Sylvester mapping

A<d−j[X]× A<d−j[X] → A<2d−j[X]/A<j[X]

(U, V) 7→ AU +BV

has to be bijective. Therefore there must exist λ ∈ A such that Rj = λ · Rj and Uj = λ · Uj.
Similarly (Rj−1,Uj−1) = µ · (Rj−1, Uj−1) for some µ ∈ A. Identifying the leadings coefficients, we

get λ = µ. Writing Resd−j,d−j−1(Uj−1,Uj) = Resd−j,d−j−1(Uj−1, Uj), we get λ2(d−j)−1 = 1. Since
the exponent is odd, this implies λ = 1 and we are done.

Corollary 3.9. We assume that A = W . Then the map ψj : Ω×
j → E×j preserves the Haar

measure.

Proof. Proposition 3.8 applied with the quotient rings A = W/πnW shows that (ψj mod πn) is a
bijection for all n. This proves the Corollary.

The distribution in the residue field. We assume in this paragraph that A is a finite field of
cardinality q. We equip ΩA = Ad[X]2 with the uniform distribution. For j ∈ {0, . . . , d − 1} and
(A,B) ∈ ΩA, we set V̄j(A,B) = 1 if rj(A,B) vanishes and V̄j(A,B) = 0 otherwise. The functions
V̄j ’s define random variables over ΩA.

Proposition 3.10. With the above notations, the V̄j ’s are mutually independant and they all follow
a Bernoulli distribution of parameter 1

q .

Proof. Given J ⊂ {0, . . . , d − 1}, we denote by ΩA(J) the subset of ΩA consisting of couples
(A,B) for which rj(A,B) does not vanish if and only if j ∈ J . We want to prove that ΩA(J)
has cardinality q2d−Card J(q − 1)Card J . To do this, we introduce several additional notations.
First, we write J = {n1, . . . , nℓ} with n1 > n2 > · · · > nℓ and set nℓ+1 = 0 by convention.
Given n and m two integers with m < n, we let V(m,n) denote the set of polynomials of the form
amX

m+am+1X
m+1 · · ·+anXn with ai ∈ A and an 6= 0. Clearly, V(m,n) has cardinality (q−1)qn−m.

If P is any polynomial of degree n and m < n is an integer, we further define P [m:] ∈ V(m,n) as
the polynomial obtained from P by removing its monomials of degree < m. Finally, given (A,B)
in ΩA, we denote by (Si(A,B)) its subresultant pseudo-remainder sequence as defined in §2.2. We
note that, if (A,B) ∈ ΩA(J), the sequence (Si(A,B)) stops at i = ℓ and we have degSi = ni for
all i. We now claim that the mapping

ΛJ : ΩA(J) → V(n1,n2) × · · · × V(nℓ,nℓ+1)

(A,B) 7→
(
Si(A,B)[ni+1:]

)

1≤i≤ℓ

is injective. In order to establish the claim, we remark that the knowledge of Si−1(A,B) and
Si(A,B)[ni+1:] (for some i) is enough to reconstruct the quotient of the Euclidean division of
Si(A,B) by Si−1(A,B). Thus, one can reconstruct Si(A,B) from the knowledge of Si−2(A,B),
Si−1(A,B) and Si(A,B)[ni+1:]. We deduce that ΛJ(A,B) determines uniquely all Si(A,B)’s and
finally A and B themselves. This proves the claim.

To conclude the proof, we note that the claim implies that the cardinality of ΩA(J) is at most
q2d−ℓ(q−1)ℓ. Summing up these inequalities over all possible J , we get CardΩA ≤ q2d. This latest
inequality being an equality, we must have Card ΩA(J) = q2d−Card J(q − 1)Card J for all J .

Proof of Theorem 3.5. We assume first that j < d−1. Proposition 3.10 above ensures that rj+1

is invertible in W with probability (1− q−1). Moreover, assuming that this event holds, Corollary

13

3.9 implies that Rj is distributed in W≤j [X] according to the Haar measure. An easy computation

gives P[δj ≥ m | rj+1 ∈W×] = q(qj−1)
qj+1−1 and therefore:

P[δj ≥ m] ≥ (1− q−1) · q(q
j − 1)

qj+1 − 1
=

(q − 1)(qj − 1)

qj+1 − 1
.

The case j = d− 1 is actually simpler. Indeed, the same argument works expect that we know for
sure that rj+1 = rd is invertible since it is equal to 1 by convention. In that case, the probability

is then equal to q(qj−1)
qj+1−1 .

Proof of Theorem 3.3. We fix j ∈ {0, . . . , d − 1}. We define the random variable V
(0)
j as the

greatest (nonnegative) integer v such that all principal subresultants rj′ have positive valuation for
j′ varying in the open range (j − v, j + v) (with the convention that rj′ = 0 whenever j′ < 0). It

is clear from the definition that rj−v or rj+v (with v = V
(0)
j) has valuation 0. Moreover, assuming

first that val(rj+v) = 0, we get by Proposition 3.7:

val(rj) = v + val
(
rj−v,j−v+1
v (A(0), B(0))

)

with A(1) = 1
rj+vXj−v−1 · Rj+v[j−v−1 :],

and B(1) = A(1) + 1
πXj−v−1 · Rj+v−1[j−v−1 :]

where we recall that, given a polynomial P and an integer m, the notation P [m:] refers to the
polynomial obtained from P by removing its monomials of degree strictly less than m. We notice
that all the coefficients of B(1) lie in W because rj′ has positive valuation for j′ ∈ (j − v, j + v).
Furthermore, Corollary 3.9 shows that the couple (A(1), B(1)) is distributed according to the Haar
measure on (W2v−1[X])2. If val(rj+v) = 0, one can argue similarly by replacing Rj+v and Rj+v−1

by the cofactors Uj−v and Uj−v+1 respectively. Replacing (A,B) by (A(1), B(1)), we can now define

a new random variable V
(1)
j and, continuing this way, we construct an infinite sequence V

(m)
j such

that Vj =
∑

m≥0 V
(m)
j .

We now introduce a double sequence (X
(m)
i)0≤i<d,m≥0 of mutually independant random vari-

ables with Bernoulli distribution of parameter 1
q and we agree to set X

(m)
j′ = 0 for j′ < 0 and

X
(m)
j′ = 1 for j ≥ d. It follows from Proposition 3.10 (applied with A = k) that V

(0)
j has the

same distribution than Y
(0)
j =

∑d
i=1 min(X

(0)
j−i, . . . , X

(0)
j+i). In the same way, keeping in mind

that A(1) and B(1) have both degree 2V
(0)
j − 1, we find that V

(1)
j has the same distribution than

∑V
(0)
j −1

i=1 min(X
(1)
j−i, . . . , X

(1)
j+i), which can be rewritten as Y

(1)
j =

∑d
i=1 min(X

(0)
j−i, X

(1)
j−i, . . . , X

(0)
j+i, X

(1)
j+i).

More precisely, the equidistribution of (A(1), B(1)) shows that the joint distribution (V
(0)
j , V

(1)
j) is

the same as those of (Y
(0)
j , Y

(1)
j). Repeating the argument, we see that (V

(m)
j)m≥0 is distributed

as (Y
(m)
j)m≥0 where:

Y
(m)
j =

d∑

i=1

min(X
(0)
j−i, . . .X

(m)
j−i , . . . , X

(0)
j+i, . . . , X

(m)
j+i).

Setting finally Xi =
∑

m≥0min(X
(0)
1 , . . . , X

(m)
i), we find the Xi’s (0 ≤ i < d) are mutually

independant and that they all follow a geometric distribution of parameter (1 − q−1). We now

conclude the proof by noting that Yj equals
∑d

i=1 min(Xj−i, . . . , Xj+i) (recall that the X
(m)
i ’s only

take the values 0 and 1).

4 A stabilized algorithm for computing subresultants

We have seen in the previous sections that Euclide-like algorithm are unstable in practice. On the
other hand, one can compute subresultants in a very stable way by evaluating the corresponding

14

Figure 3: Picture of a lattice in the ultrametric world

minors of the Sylvester matrix. Doing so, we do not loose any significant digit. Of course, the
downside is the rather bad efficiency.

In this section, we design an algorithm which combines the two advantages: it has the same
complexity than Euclide’s algorithm and it is very stable in the sense that it does not loose any
significant digit. This algorithm is deduced from the subresultant pseudo-remainder sequence
algorithm by applying a “stabilization process”, whose inspiration comes from [6].

4.1 Crash course on ultrametric precision

In this subsection, we briefly report on and complete the results of [6] where the authors draw the
lines of a general framework to handle a sharp (often optimal) track of ultrametric precision. In
what follows, the letter W still refers to a complete DVR while the letter K is used for its fraction
field.

4.1.1 The notion of lattice

As underlined in Remark 2.2, the usual way of tracking precision consists in replacing elements of
W — which cannot fit entirely in the memory of a computer — by balls around them. Using this
framework, a software manipulating d variables in W will work with d “independant” balls. The
main proposal of [6] is to get rid of this “independance” and model precision using a unique object
contained in a d-dimensional vector space. In order to be more precise, we need the following
definition.

Definition 4.1. A W -lattice in a finite dimensional vector space E over K is a W -submodule of
E generated by a K-basis of E.

Although the defintion of a lattice is similar to that of Z-lattice in Rd, the geometrical rep-
resentation of it is quite different. Indeed, the elements of W themselves are not distributed as
Z is in R but rather from a ball inside K (they are exactly elements of norm ≤ 1). More gener-
ally, assume that E is equipped with a ultrametric norm ‖ · ‖E compatible with that on K (i.e.
‖λx‖E = |λ| · ‖x‖E for λ ∈ K, x ∈ E). (A typical example is E = Kn equipped with the sup
norm.) One checks that the balls

BE(r) =
{
x ∈ E

∣
∣ ‖x‖E ≤ r

}

are all lattices in E. Moreover, any lattice is deduced from BE(1) by applying a bijective linear
endomorphism of E. Therefore, lattices should be thought as special neighborhoods of 0 (see
Figure 3). As a consequence, cosets of the form x+H , where H is a lattice, appear as interesting
candidates to model precision. This feeling is consolidated by the following result which roughly
speaking claims that such cosets behave quite well under differentiable maps.

15

Lemma 4.2 ([6], Lemma 3.4). Let E and F be two normed finite dimensional K-vector spaces.
Let f : E → F be a function of class C1 and let x be a point in Kn at which the differential of f ,
denoted by f ′(x), is surjective. Then, for all ρ ∈ (0, 1], there exists δ > 0 such that the following
equality holds:

f(x+H) = f(x) + f ′(x)(H) (15)

for any lattice H satisfying BE(ρr) ⊂ H ⊂ BE(r) for some r < δ.

In what follows, we will often use Lemma 4.2 with ρ = 1. It states in this particular case that

f(x+BE(r)) = f(x) + f ′(x)(BE(r)) (16)

as soon as r is small enough. It is moreover possible to provide an explicit upper bound on r
assuming that f has more regularity. The case of locally analytic functions is treated in [6] in full
generality. Nevertheless, for the application we have in mind, it will be enough to restrict ourselves
to the simpler case of integral polynomial functions. In order to proceed, we assume that E is
endowed with distingushed “orthonormal” basis4, that is a basis (e1, . . . , en) with the property
that ‖∑n

i=1 xiei‖E = max1≤i≤n|xi| for all families of λi’s lying in K. In other words, the choice of
this distingushed “orthonormal” basis defines a norm-preserving isomorphism between E and Kn

endowed with the sup norm. We assume similarly that we are given a distingushed “orthonormal”
basis (f1, . . . , fm) of F . Then any function f : E → F can be written in our distinguished system
of coordinates as follows:

f(x) =
m∑

j=1

Fj(x1, . . . , xn)fj with x =
n∑

i=1

xiei.

Definition 4.3. The function f is integral polynomial if all Fj ’s are polynomials functions with
coefficients in W .

Example 4.4. Let us examine more closely the case of polynomial spaces since it will be considered
repeadtly in the sequel. We take E = K<n[X] and F = K<m[X] and endow both with the Gauss
norm, which is defined by:

‖a0 + a1X + · · ·+ an−1X
n−1‖E = max

(
|a0|, |a1|, . . . , |an−1|

)

‖b0 + b1X + · · ·+ bm−1X
m−1‖F = max

(
|b0|, |b1|, . . . , |bm−1|

)

It is clear from these definitions that the canonical basis (1, X, . . . , Xn−1) and (1, X, . . . , Xm−1)
of E and F respectively are “orthonormal”. Moreover the coordinates in these basis are the ai’s
and the bi’s respectively. Hence, an integral polynomial function f : E → F is nothing but a
function mapping a a polynomial P to a polynomial Q whose coefficients are given by polynomial
expressions which involve only the coefficients of P and some constants in W .

Obviously, all integral polynomial functions are function of class C1 (and even locally analytic),
so that Lemma 4.2 applies to them. Proposition 4.5 below exhibits an explcit value for the bound
δ appearing in Lemma 4.2 when f is integral polynomial and r = 1.

Proposition 4.5. Let f : E → F be an integral polynomial function and x ∈ BE(1). Then,
Eq. (16) holds as soon as BF (r) ⊂ f ′(x)(BE(1)).

Proof. It is a direct corollary of [6, Proposition 3.12].

4.1.2 Application to precision

Let us now briefly explain how Lemma 4.2 can be utilized for tracking precision.

4One can prove that such a basis always exists.

16

Tracking precision locally Assume first that we want to perform a given rather simple op-
eration — corresponding, say, to an elementary step (e.g. an iteration of the main loop) of the
algorithm we are executing — modeled by a function g of class C1 defined on an open subset U
of a finite dimensional normed K-vector space E and taking values in another finite dimensional
normed K-vector space F . Our input is an approximated element of U which is represented by
a coset C with respect to some lattice H , that is a subset of U of the form C = x +H for some
x ∈ U . We would like to insist on the following: the value of x is a priori not given; only is given
the subset C. However, since H is stable under addtion, we have C = x + H for any element
x ∈ C.5 As explained in §2.1.2, assuming that g is given as an algebraic expression, the naive
solution for evaluating g(C) consists in using formulas (5)–(8). However, this often results in an
overestimation on the precision, in the following sense: this method leads to some inclusion

g(C) = g(x+H) ⊂ y +Hnaive

where y ∈ F and Hnaive is a lattice which is generally much more larger that g′(x)(H), the latter
being the best possible one according to Lemma 4.2 (assuming that the assumptions of this Lemma
are fullfiled). In order to avoid this and be sharp on precision, another solution consists in splitting
the computation of g(C) into two parts as follows:

(A) compute g′(x)(H), and

(B) compute g(x) for some x ∈ C.

Part (A) is not easy to handle in full generality: in order to be efficient, a special close analysis
taking advantage of the particular problem under consideration is often necessary. For now, let us
simply assume that we have given two lattices Hmin and Hmax with the property that:

Hmin ⊂ g′(x)(H) ⊂ Hmax. (17)

We shall see later (cf §4.2) how these lattices can be constructed — for a negligible cost — in the
special case of subresultants.

We now focus on part (B), which also requires some discussion. Indeed, computing g(x) is
not straightforward because x itself lies in a K-vector space and therefore cannot be stored and
manipulated on a computer. Nevertheless, one can take advantage of the fact that x may be chosen
arbitrarily in C. More precisely, we pick a sublattice H ′ of H and consider the new approximated
element x+H ′ ⊂ x+H . Concretely, this means that we arbitrarily increase the precision on the
given input x. Now, applying the naive method with x +H ′, we compute some y ∈ F and some
lattice H ′

naive ⊂ F with the property that:

g(x+H ′) ⊂ y +H ′
naive.

If furthemore H ′ is chosen in such a way that H ′
naive ⊂ Hmin, the two cosets y + g′(x)(H) and

g(C) have a non-empty intersection because g(x) lies in both. Therefore they must coincide. We
deduce that y ∈ g(C). This exactly means that y is an acceptable value for g(x) and we are done.
Moreover, estimating the dependance of H ′

naive in terms of H ′ is usually rather easy (remember
that g is supposed to model a simple operation). Hence since Hmin is known — as we had assumed
— finding H ′ satisfying the required assumption is generally not difficult.

Tracking precision globally As already said, we shall use the above method for tracking pre-
cision while executing a single step in a complete algorithm. Let us now address the problem of
“glueing”. We consider an algorithm F consisting in a succession of n steps G0, . . . , Gn−1. It is
modeled by a function f : U → F of class C1 where U is an open subset in a finite dimensional
normed K-vector space E and F is a finite dimensional normed K-vector space. The input of F is
an approximated element in U represented as a coset C = x+H where x ∈ U and H is a lattice.
We also introduce notations for each individual step. For all i, we assume that Gi is modeled by a

5This assertion means that any element of the “rectangle” C is a center of it... which might be surprising if we
are accustomed to real numbers.

17

g
x+H

x+H ′

g(x)+Hmax

g(x)+

g′(x)(H)

g(x)+Hmin

y+H ′
naive

Figure 4: Method for tracking precision based on Lemma 4.2

function gi : Ui → Ui+1 of class C1 where Ui is an open subset is some normed K-vector space Ei

and, by convention, U0 = U , E0 = E and Un = En = F . We thus have:

f = gn−1 ◦ gn−2 ◦ · · · ◦ g1 ◦ g0.
For all i, we set fi = gi−1 ◦ · · · ◦ g0. It is the function modeling the execution of the i first steps
of our algorithm. We further define xi = fi(x) and Hi = f ′

i(x)(H). The chain rule for composing
differentials readily implies the recurrence

Hi+1 = g′i(xi)(Hi) (18)

For simplicity, we make the following assumptions:

• the Zp-submodule Hi is a lattice in Ei such that xi +Hi ⊂ Ui;

• the triple (gi, xi, Hi) satisfies the assumptions of Lemma 4.2;

• for all i, we have succeeded in finding (good enough) explicit lattices Hmin,i and Hmax,i such
that Hmin,i ⊂ Hi ⊂ Hmax,i;

• for all i, we have succeeded in finding an explicit lattice H ′
i such that, while tracking naively

precision, we end up with an inclusion

gi(xi +H ′
i) = xi+1 +Hnaive,i+1

with Hnaive,i+1 ⊂ Hmin,i+1.

We note that the first and the second assumptions are quite strong because they imply in particular
that the sequence of dimEi is non-increasing. However, it really simplifies the forthcoming discus-
sion and will be harmless for the application developed in this paper. As already mentionned, the
construction of Hmin,i and Hmax,i will generally follow from a theoretical argument depending on
the setting, while exhibiting H ′

i will often be straightforward. Anyway, we are now in position to
apply the method for tracking precision locally we have discussed earlier to all gi’s. This leads to
a stabilized version of the algorithm F whose skeleton is depicted in Algorithm 3.

The correctness of Algorithm 3 (under the assumptions listed above) is clear after Lemma 15.

4.2 Application to subresultants

We now apply the theory presented in §4.1 above to the problem of computing subresultants, i.e.
the abstract Algorithm F is now instantiated to Algorithm 2. We split this algorithm into steps in

18

Algorithm 3: Stabilized version of F

Input : x given at precision O(H)
Output: g(x) given at precision O(Hmax,n)

1 x0 ← x
2 for i = 0, . . . , n− 1 do
3 lift xi to precision O(H ′

i)
4 xi+1 ← Gi(xi)

5 return xn +O(Hmax,n)

the obvious manner, each step corresponding to an iteration of the main loop. We thus consider
the functions:

gd : Kd[X]×Kd[X] → Kd[X]×K≤d−1[X]

(A,B) 7→ (B,A−B)

and gj : K≤j+1[X]×K≤j[X] → K≤j[X]×K≤j−1[X]

(Rj+1, Rj) 7→ (Rj , Rj−1)

where Rj−1 is defined as usual by Rj−1 = r2j · r−2
j+1 · (Rj+1 %Rj) where rj (resp. rj+1) stands

for the coefficient of degree j in Rj (resp. of degree j + 1 in Rj+1). We remark that gj is only
defined on the subset consisting of pairs (Rj+1, Rj) for which Rj+1 has degree j + 1; this reflects
the fact that Algorithm 2 fails on inputs for which at least one principal subresultant vanishes.
The composite function f = g1 ◦ · · · ◦ gd (be careful with the order of the indices) models (a slight
variant of) Algorithm 2. For all j, we put fj = gj+1 ◦ · · · ◦ gd; it is the function:

fj : Kd[X]×Kd[X] → K≤j[X]×K≤j−1[X]

(A,B) 7→ (Resj(A,B),Resj−1(A,B)).

For simplicity, we assume in addition that the precision on the input (A,B) is flat, meaning
that all coefficients of A and B are known with the same absolute precision N . In the language
of §4.1, this flat precision corresponds to the lattice H = πNL where L = W<d[X] × W<d[X]
is the unit ball in Kd[X] × Kd[X] with respect to the Gauss norm (cf Example 4.4). Following
§4.1, our first task consists in finding two lattices Hmin,j and Hmax,j having the property that
Hmin,j ⊂ f ′

j(A,B)(H) ⊂ Hmax,j .

Lemma 4.6. For all (A,B) ∈ Kd[X]2, we have:

r2j · Lj ⊂ f ′
j(A,B)(L) ⊂ Lj

where rj is the j-th principal subresultant of (A,B) and Lj =W≤j [X]×W≤j−1[X] is the unit ball
in K≤j[X]×K≤j−1[X].

Proof. The second inclusion is clear because fj is a polynomial function. Let us prove the first
inclusion. One may of course assume that rj does not vanish, otherwise there is nothing to prove.
Now, we remark that fj factors through the function ψj introduced in §3.3. By continuity, the j-th
principal subresultant function does not vanish on a neighborhood of (A,B). By Proposition 3.8,
ψj is injective on this neighborhood. Therefore so is fj . Furthermore, a close look at the proof of
Proposition 3.8 indicates that a left inverse of fj is the function mapping (Sj , Sj−1) to

(−1)j · r−2
j · (VjSj−1−Vj−1Sj , −UjSj−1+Uj−1Sj)

where Uj, Vj (resp. Uj−1, Vj−1) are the j-th (resp (j− 1)-th) cofactors of (A,B). Differenting this,
we get the announced result.

Lemma 4.6 ensures that one can safely take Hmin,j = r2j · πNLj and Hmax,j = πNLj . It finally
remains to construct the lattice H ′

j ⊂ K≤j[X] × K≤j−1[X]. For this, we remark that a naive

19

track of precision leads to a loss of at most 2 · val(rj+1) digits while executing the step Gj (see also
proof of Proposition 3.2 for similar considerations). Therefore, one can take H ′

j = r2j r
2
j+1 · πNLj .

Instantiating Algorithm 3 in this particular case, we end up with Algorithm 4 below which then
appears as a stable version of Algorithm 2.

Algorithm 4: Stabilized version of Algorithm 2

Input : Two polynomials A,B ∈ Kd[X] given at flat precision O(πn)
Output: The sequence of subresultants of A and B given at flat precision O(πn)

1 Rd ← B; rd ← 1
2 Rd−1 ← B −A
3 for j = (d− 1), (d− 2), . . . , 1 do
4 rj ← coefficient in Xj of Rj

5 if vj ≥ N
2 then raise NotImplementedError;

6 lift (Rj+1, Rj) at precision O(π
N+2val(rj)+2val(rj+1)))

7 Rj−1 ← prem(Rj+1, Rj)/r
2
j+1

8 return Rd−1 +O(πN), . . . , R0 + O(πN)

Proposition 4.7. Algorithm 4 computes all subresultants of (A,B) at precision O(πN) under the
following assumption6

(H): all principal subresultants of (A,B) do not vanish modulo πN/2.

It runs in O(d2 · M(N +max(V0, . . . , Vd−1)) bit operations where Vj denotes the valuation of rj and
M(n) is the number of bit operations needed to perform an arithmetic operation (addition, product,
division) in W at precision O(πn).

Remark 4.8. In all usual examples (p-adic numbers, Laurent series), one can choose M(n) to be
quasi-linear in n and the size of the residue field k.

Proof. Correctness has been already proved (the assumption (H) ensures that Proposition 4.5
applies to each gj). As usual Euclide’s algorithm, Algorithm 1 requires O(d2) operations in the
base ringW . Moreover, we observe that the maximal precision at which we are computing is upper
bounded by N + 2max(V0, . . . , Vd−1). This justifies the announced complexity.

According to Corollary 3.6, the expected value of the variable max(V0, . . . , Vd−1) is in O(logp d).
Thus, the average complexity of Algorithm 1 is O(d2 · M(N + log d)) bit operations. In all usual
cases (cf Remark 4.8), this complexity is also Õ(d2N · log |k|) bit operations.

To conclude with, let us comment on briefly the hypothesis (H). We first remark that it is
satisfied with high probability if N is large compared to 2 · logd p. Thus, replacing eventually N by
3 · logd p (which does not affect the complexity), the assumption (b) is harmless on average — but
maybe not on particularly bad instances. We moreover underline that, if we are just interested in
computing the j-th subresultant for a particular j, then we just need to assume the non-vanishing
of the principal subresultants in the range [j + 1, d− 1].

Open questions

The first hypothesis we would like to relax is of course (H). Actually, it seems quite plausible that
one can produce a stabilized version of the “complete”7 subresultant pseudo-remainder sequence
algorithm following the same strategy. Nevertheless, this extension is not completely straightfor-
ward because designing it requires to understand precisely how the coefficients ci’s (appearing in
Eq. 9) alter the behaviour of the precision. We therefore let it as an open question.

As it was presented, Algorithm 4 only accepts inputs consisting of a pair of monic polynomials
having the same degree. It is actually not difficult to make it work with all couples of polynomials

6If this assumption is not fullfiled, the algorithms fails and returns an error.
7
I.e. dealing with abnormal sequences as well.

20

(A,B) such that lc(B) is invertible inW and degA ≥ degB. Indeed, it is enough for this to replace
line 2 by:

Rd−1 ← (−1)degA−degB(A%B).

However, writing an extension of Algorithm 4 that accepts all inputs seems much more tricky and
this is the second open question we would like to point out.

Beyond this, one may wonder if one can use similar technics to compute not only subresultants
but cofactors as well. For those indexes j such that rj is invertible in W , the same analysis applies
almost verbatim. However for other indexes j, the differential computation seems to be much more
subtle. One can get around this issue by using lifting technics only when rj is a unit in W and
tracking precision naively otherwise: it is possible to get this way a stable algorithm whose average
running time is acceptable but which seems to be bad in the worst case. Can we do better?

Another quite interesting question is those of designing an algorithm which combines the preci-
sion technology developed in this paper with the “half-gcd” methods. It is actually closely related
to the previous question because “half-gcd” methods make an intensive use of cofactors in order
to speed up the computation.

5 Conclusion: towards p-adic floats

When computing with real numbers, computers very often use floating point arithmetic. The rough
idea of this model consists in representating all real numbers using the same number of digits (the
so-called precision) and to apply rounding heuristics when final digits are unsettled. In comparison
with arithmetic interval, floating point arithmetic has two main advantages. First, it allows simple
and fast implementations. Second, experiments show that the obtained results have generally more
much correct digits that those predicted by arithmetic interval. The counterpart is that, expect
on small examples, obtaining proved results is generally intractable.

In the p-adic setting, the analogue of floating point arithmetic has not been developed yet. One
reason for this is probably the well-known saying: “in the p-adic world, rounding errors do not
accumulate”. Consequently one might expect that interval arithmetic would provide sharp results.
Nonetheless this hope is failing and examples are basic and numerous: p-adic differential equations
[4, 10], LU factorization [7], SOMOS 4 sequence [6], resultants (this paper), etc. Consequently,
interval arithmetic is not as good as one might have expected at first. Therefore, it probably makes
sense to seriously study the analogue of floating point arithmetic in a ultrametric context.

Let us describe quickly what might be this analogue and what are its advantages and disad-
vantages. We keep the notations of the previous sections: the letter W denotes a complete discrete
valuation ring with uniformizer π and K is its fraction field. In the model of ultrametric float-
ing point arithmetic, we fix a positive integer N (the precision) and represent elements of K by
approximations of the form:

πe ·
N−1∑

i=0

xiπ
i (19)

where e is a relative integer and the xi’s are elements of a fixed set of representatives of W modulo
π with the convention that the representative of 0 ∈ k is 0 ∈ W . We further assume that x0 6= 0,
i.e. e is the valuation of the sum (19). We see that this framework is quite similar to usual floating
point arithmetics: the integer e plays the role of exponent, the uniformizer π plays the role of the
basis and the value

∑N−1
i=0 xiπ

i plays the role of the significand (the mantissa). It remains to define
operations ⊕ and ⊙ on approximations modeling addition and multiplication on K respectively.
We do this as follows: given x and y two elements of K of the form Eq. (19), we compute x + y
(resp. xy) in K, expand it as a convergent series

∑∞
i=v siπ

i (with sv 6= 0) and define x⊕ y (resp.
x⊙ y) by truncating the series at i = v +N .

Similarly to real floating point arithmetic, the main advantages of ultrametric floating point
arithmetic are the simplicity and the efficiency while the counterpart is the difficulty to get proved
results. Moreover, the aforementioned examples are evidences that ultrametric floating point arith-
metic may often compute much more correct digits than those predicted by an analysis based on
interval arithmetic. In order to illustrate this last assertion, let us go back to the case of resultants
discussed earlier in this paper. Let A and B be two monic polynomials of degree d (picked at

21

random) whose coefficients are all known at precision O(πN). We have proved that if we are using
the model of interval arithmetic, then the subresultant pseudo-remainder sequence algorithm will
output Res(A,B) at precision O(πN−Nint) where Nint grows linearly with respect to d on average.
On the other hand, if we are using ultrametric floating point arithmetic, then the same algorithm
will output Res(A,B) at precision O(πN−Nfloat) where Nfloat grows linearly with respect to log d
on average. We emphasize furthermore that this result is proved ! From this point of view, floating
point arithmetics seems to behave better in the ultrametric setting: we may hope to get proved
results relatively cheaply.

References

[1] G. Andrews, The Theory of Partitions, Cambridge University Press (1976)

[2] S. Basu, R. Pollack, M.-F. RoyAlgorithms in Real Algebraic Geometry, Springer-Verlag (2008),
second edition

[3] C. Batut, K. Belabas, D. Benardi, H. Cohen, M. Olivier, User’s guide to PARI-GP (1985–
2013)

[4] A. Bostan, L. González-Vega, H. Perdry, É. Schost, From Newton sums to coefficients: com-
plexity issues in characteristic p, MEGA’05 (2005)

[5] W. Bosma, J. Cannon, C. Payoust, The Magma algebra system. I. The user language. J.
Symbolic Comput. 24 (1997), 235–265

[6] X. Caruso, D. Roe, T. Vaccon, Tracking p-adic precision, LMS J. Comp. and Math. 17,
274–294

[7] X. Caruso, Random matrices over a DVR and LU factorization, to appear at J. Symb. Comp.

[8] H. Cohen, A course in Computational Algebraic Number Theory, Springer (1996)

[9] K. Kedlaya, Counting points on hyperelliptic curves using Monsky–Washnitzer cohomology, J.
Ramanujan Math. Soc. 16 (2001), 323–338

[10] P. Lairez, T. Vaccon, Computation of power series solutions with p-adic coefficients of certain
differential equations, preprint (2014)

[11] W. Stein et al. Sage Mathematics Software, The Sage Development Team (2005–2013)

[12] F. Winkler, Polynomial Algorithms in Computer Algebra, Springer Wien New Work (1996)

22

	Introduction
	The setting
	Complete discrete valuation rings
	Examples
	Symbolic computations over DVR

	Subresultants

	Unstability of Euclide-like algorithms
	A lower bound on losses of precision
	Behaviour on random inputs
	Proof of Theorems 3.3 and 3.5

	A stabilized algorithm for computing subresultants
	Crash course on ultrametric precision
	The notion of lattice
	Application to precision

	Application to subresultants

	Conclusion: towards p-adic floats

